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Abstract

Diffusion Models (DMs) have emerged as powerful gen-
erative models with unprecedented image generation ca-
pability. These models are widely used for data augmen-
tation and creative applications. However, DMs reflect
the biases present in the training datasets. This is espe-
cially concerning in the context of faces, where the DM
prefers one demographic subgroup vs others (eg. female
vs male). In this work, we present a method for debi-
asing DMs without relying on additional reference data
or model retraining. Specifically, we propose Distribu-
tion Guidance, which enforces the generated images to fol-
low the prescribed attribute distribution. To realize this, we
build on the key insight that the latent features of denois-
ing UNet hold rich demographic semantics, and the same
can be leveraged to guide debiased generation. We train
Attribute Distribution Predictor (ADP) - a small mlp that
maps the latent features to the distribution of attributes.
ADP is trained with pseudo labels generated from existing
attribute classifiers. The proposed Distribution Guidance
with ADP enables us to do fair generation. Our method
reduces bias across single/multiple attributes and outper-
forms the baseline by a significant margin for unconditional
and text-conditional diffusion models. Further, we present
a downstream task of training a fair attribute classifier by
augmenting the training set with our generated data.
Code is available at - project page.

1. Introduction
Recent advancements in Diffusion Models (DM) [12, 37,
47] have garnered much interest among researchers in eval-
uating the quality of the generated content. These models
are not only used to generate realistic content but also to
augment real datasets [27, 50] for downstream tasks. How-
ever, existing DMs have been found to synthesize biased
content with respect to multiple demographic factors like
gender, race, etc., which can be detrimental to society once
these models are deployed in the real world [24, 32, 38].
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Figure 1. a) Random sampling from a pretrained DM [37] gen-
erates images with gender imbalance. b) Proposed method takes
a user-defined reference attribute pa

ref and performs distribution
guidance on a pretrained DM. c) Sampling with distribution guid-
ance results in fair generation that follow user define pa

ref .

The problem is largely caused by the images used to train
these models, as the outputs of these models are governed
by these training datasets [25, 32]. Effects of such harmful
biases have been shown by multiple recent works involv-
ing studies on DMs [24, 32, 38], GANs and other genera-
tive models [5, 13, 25]. In fact, Perera et al. [32] show that
unconditional DMs–even when trained with balanced data–
amplify racial biases, leading to the generation of more
white-skinned faces than dark-skinned ones. Biases in the
generated data are even more evident in large text-to-image
DMs, e.g., models mostly tend to generate a specific gender
with a given profession (like male and doctor) [26, 44, 57].

Existing works on debiasing, either require a reference
dataset [5, 57] and/or allow retraining of the model [5, 55,
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56]. On the contrary, our work aims to mitigate biases in
both unconditional and conditional DMs, enabling fair gen-
eration without model retraining. We propose a practical
setting where we provide a reference attribute distribution
(pa

ref ) for sensitive attribute a and query the DM to sample
images following pa

ref . This framework allows for adapting
any existing DM to a pre-defined distribution. E.g., a user
can provide pa

ref as a uniform distribution for a given sensi-
tive attribute to generate balanced attribute distribution. We
believe defining pa

ref provides just enough information to
condition the DM for fair generation. This is an extremely
practical setting for debiasing and is particularly important
for large text-to-image DMs [35, 37, 41] where retraining
or fine-tuning is computationally intensive.

One plausible approach for fair generation is to guide
every generated sample with attribute classifiers following
classifier guidance [8]. However, such a framework, though
simple, is overly restrictive as it requires presetting and en-
forcing attributes for each sample individually (which we
call sample guidance). Such constraints during denoising
result in inferior generation quality, as discussed in Sec.4.1.
Instead, we propose to jointly denoise a whole batch of
samples and guide the process with pa

ref (which we call
distribution guidance). Specifically, we push the generated
batch attribute distribution pa

θ and pa
ref close to each other

during the reverse process. Distribution guidance provides
more flexibility to each sample during generation as it does
not enforce a preset of attributes on a sample basis. Intu-
itively, distribution guidance prioritizes transforming easier
samples close to the decision boundary. This results in fair
generation without sacrificing the generation quality.

A major challenge for guidance-based conditioning is
that it requires separate image classifiers for each noise
scale of the diffusion process. To overcome this, we propose
to perform guidance in a semantically rich feature space -
h-space [21] of DMs. Specifically, we train an Attribute
Distribution Predictor (ADP) that predicts attribute distri-
bution directly from the h-space features. As ADP is trained
on rich and discriminative h-space features, it - a) is imple-
mented as a linear layer, b) requires minimal training data,
and c) is fast in training and inference. Finally, during in-
ference, we steer the h-space representation by matching the
predictions from ADP to pa

ref .
We extensively evaluate our proposed method for the fair

generation of single and multi-attribute cases for face gener-
ation. Additionally, we present the results of our method on
Stable Diffusion [37], a large text-to-image DM. Further, as
downstream application train debiased attribute classifiers
by augmenting the training data for minority subgroups.

The major contributions of this work are the following:
1. A novel setting for debiasing existing DMs without re-

training, given a reference attribute distribution.
2. Distribution guidance to condition the reverse diffusion

process on a reference attribute distribution.
3. Propose guidance in the intermediate features of dif-

fusion network (h-space), which leads to data-efficient
training and fast generation.

2. Related Works
Biases in Generative Models. While generative models
like Generative Adversarial Networks and Diffusion Mod-
els have become the de-facto tools for image generation in
recent times, studies show that they are not free of biases
[14, 24, 25, 32, 38]. Perera et al. [32] show that uncon-
ditional diffusion models amplify the biases in the training
data with respect to gender, race, and age. Luccioni et al.
[24] identify and quantify social biases in images generated
by popular text-to-image models like DALL-E 2, and Sta-
ble Diffusion v1.4 and 2. Maluleke et al. [25] study racial
biases in GANs and find that GANs mimic the racial distri-
bution in the training data.
Debiasing generative models by retraining. This line of
work focuses on mitigating biases in generative models by
retraining them [5, 30, 43, 49, 51, 52, 55, 56]. Some of
these works [43, 52, 55] assume knowledge of the labels of
the sensitive attribute and then debias the models such that
there is no correlation between the decision attribute and
the sensitive attribute. IMLE-GAN [56] ensures coverage
of minority groups by combining GAN adversarial train-
ing with Implicit Maximum Likelihood Estimation (IMLE)
[23]. Another body of works employs a balanced unlabelled
reference dataset to ensure unbiased generations [5, 49, 51].
Choi et al. [5] use a density-ratio based technique to iden-
tify the bias in datasets via the reference dataset, and learn
a fair model based on importance reweighting with the help
of both the original biased and the reference dataset. To
capture the distance between the small reference data and
the generated data, Um et al. [51] use the LeCam Diver-
gence [22]. On the other hand, Teo et al. [49] introduce a
transfer learning approach to solve this problem by training
the model on the biased dataset first and then adapting the
model to the reference set.
Debiasing generative models without training. As train-
ing of GANs and DMs can be resource-consuming, many
methods prefer fair generation of images without explicit
training [13, 27, 34, 48]. MaGNET [13] aims to produce
uniform sampling on the learned manifold of any generative
model like GANs or VAEs, while Ramaswamy et al. [34]
and Tan et al. [48] manipulate the latent space of GANs
to generate balanced outputs. GANDiffFace [27], on the
other hand, generates balanced synthetic for face recogni-
tion by first generating high-quality images from different
demographics using GANs and then finetuning Stable Dif-
fusion [37] using DreamBooth [39] to generate more im-
ages of such identities with different poses, expressions,
etc. Multiple works attempt to mitigate biases in vision-
language models and text-conditioned diffusion models as
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well [3, 6, 46, 57, 58]. Chuang et al. [6] debias the text em-
bedding using a calibrated projection matrix and shows un-
biased generations without any additional training or data.
However, debiasing the unconditional DMs has received
less attention, which is the main focus of this work.
Guidance in Diffusion Models. One of the primary tech-
niques to condition the diffusion model is to guide the re-
verse diffusion model with the gradients of additional net-
work [8]. GLIDE [31] used CLIP [33] based guidance
for open world caption to image generation. Guidance
is used for image-to-image translation [54], counterfactual
generation [42]. However, guidance in its original form
requires retraining of guiding networks on the noisy data
from scratch. Few works overcome this by learning a map-
ping function from the diffusion feature space to sketches
for sketch-guidance [53] and a universal guidance that re-
purposes pretrained networks for guidance [1].

3. Method
We assume a setting where we are given a pretrained DM
trained on biased data and a reference distribution of the
sensitive attributes pa

ref . Our goal is to generate data from
the DM, whose generated attribute distribution pa

θ best ap-
proximates the reference pa

ref without retraining. The key
idea is to jointly guide the denoising of a batch of samples
such that pa

ref ≈ pa
θ . Directly computing pa

θ in a closed
form is intractable. Instead, we train an Attribute Distri-
bution Predictor, a linear projection that maps the interme-
diate batch features from h-space of a denoising network to
an estimate of attribute distribution p̂a

θ .

3.1. Preliminary
Diffusion models have emerged as a powerful family of
generative models trained to learn the data distribution by
gradual denoising from a Gaussian distribution. Starting
from a clean point x0, and a set of scalar values {αt}Tt=1,
applying t steps of the forward diffusion process yields a
noisy data point xt, where ᾱt =

∏t
i=1 αi and

xt =
√
ᾱtx0 + (

√
1− ᾱt)ϵ, ϵ ≈ N (0, I) (1)

A diffusion model is learned as a neural network ϵθ that
predicts the noise from given xt and t. The reverse process
takes the form q(xt−1|xt,x0), which is parameterized as
a Gaussian distribution. In this work, we consider DDIM
[47] sampling which first computes an estimate of the clean
data point x̂0 and then sample xt−1 from q(xt−1|xt, x̂0).
Classifier guidance is proposed to condition a diffusion
model on class labels with the help of a pretrained classi-
fier [8]. Specifically, a classifier fϕ(c|xt, t) is trained on
noisy images to predict the class label c. The gradients of
the classifier are used to guide the diffusion sampling pro-
cess to generate an image of the prescribed class c. Con-
cretely, the classifier guidance performs sampling by updat-
ing the noise prediction ϵθ(xt, t) as follows:
ϵ̂θ(xt, t) = ϵθ(xt, t)−

√
1− αt∇xt log fϕ(c|xt, t) (2)

3.2. Classifier guidance for debiasing
A promising approach is to leverage pretrained attribute
classifiers to guide towards balanced generation. Assuming
a reference attribute distribution pa

ref for a binary attribute
a (e.g., gender) and corresponding attribute classifier fϕ,
we parameterize pa

ref as a Bernoulli distribution with pa-
rameter r denoting fraction of males samples. To generate
samples following pa

ref , we can randomly select Nr sam-
ples from the batch size of N and guide them towards male
class using predictions from fϕ. Similarly, for the remain-
ing N(1− r) samples, we guide them towards female class.
In practice, such a sample guidance follows pa

ref up to some
extent, but results in inferior sample quality (see Fig. 3b).

Insight.1: Transforming samples close to the decision
boundary is easier and results in higher quality generation.

Remark: We performed an insightful experiment for
changing gender attribute (female to male) using classi-
fier guidance. We group the samples in four quantiles
based on their distance from the decision boundary of a
pre-trained gender classifier in Fig. 2a). Next, we perform
sample-based guidance over the samples from each quan-
tile in Fig. 2b). The samples which are close to the deci-
sion boundary (quantiles Q1 and Q2) are easily transformed
with guidance, whereas the samples away from the decision
boundary (quantiles Q3 and Q4) are distorted during the
guidance process. This is also quantified with the quantile-
wise FID against a real set (of male images), where the sam-
ples from Q1/Q2 have better FID after conversion.
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Figure 2. Distribution of samples w.r.t. decision boundary

Insight.2: Attempting to steer the generation of individual
samples towards a pre-defined attribute class is overly re-
strictive and leads to inferior generation quality.

Remark: Sample guidance requires enforcing a preset at-
tribute state (male/female) to each sample of a batch during
the denoising process, which is too stringent and results in
distorting the outputs. This is particularly bad in the case
when samples from quantiles Q4 are selected for transfor-
mation, as shown in Fig. 2. Given an intermediate time-
stamp τ , the samples in the earlier stages (t > τ ) of reverse
diffusion process are close to the noise space, resulting in
the poor classifier of the corresponding stages. The guid-
ance becomes effective only in the later stage of denoising
(t < τ ). However, till timestep τ , some facial features are
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already formed [28]. Hence, enforcing a preset attribute
state at later stages (t < τ ) is restrictive and results in sam-
ple collapse (Fig. 3-b)). For e.g., for gender attribute, if a
sample has formed dominant female features till τ it will
be in Q4, and enforcing it to be male is overly restrictive,
resulting in distorted generations.
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Figure 3. Sample guidance vs Distribution guidance. a) Af-
ter a few steps of denoising (t = τ ), the generated samples have
learned some discriminative features for gender. Sample guid-
ance randomly selects samples from the batch uniformly from all
the quantiles for conversion enforcing samples with dominant fe-
male features to also change. However, distribution guidance ma-
jorly converts the samples close to the decision boundary (Q1/Q2),
which is easy to convert. b) Visualization of the generated sam-
ples. Samples transformed with distribution guidance are natural
looking without any distortion, whereas images with sample guid-
ance suffer from distortion or unnatural appearance.

3.3. Distribution Guidance
We propose an alternate guidance strategy termed Distri-
bution Guidance for fair generation, which provides more
flexibility to modify the attribute states during the denoising
process. The key idea is to jointly denoise a batch of sam-
ples x[1:N]

T , with the guidance from reference attribute dis-
tribution pa

ref . To realize distribution guidance, we define a
differentiable distribution prediction function gψ that maps
the batch samples to an estimate of generated attribute dis-
tribution p̂a

θ . We learn the function gψ over an intermediate
feature space - h-space [21] of denoising network instead of
image space for efficiency (Sec.3.4). Hence, the batch es-
timate is given by, p̂a

θ = gψ(h
[1:N]
t , t), where h

[1:N]
t is the

bottleneck U-Net feature representation of the batch sam-
ples x

[1:N]
t . Further, we define a loss function L(.) that

measures the similarity of two distributions. During denois-
ing we guide the batch of samples to bring p̂a

θ closer to the
reference, i.e., L(p̂a

θ ,p
A
ref ) ≈ 0. This can be easily inte-

grated into the reverse diffusion process as an extension of
classifier guidance by modifying Eq.2.

Insight.3: Distribution guidance provides flexibility to
batch samples and transforms easier samples close to the
decision boundary to match the required distribution.

Remark: As distribution guidance does not require pre-
setting for attribute states for each sample, it gives more
flexibility during the generation as long as p̂a

θ follows pa
ref .

E.g., in our running example of gender attribute, only those
samples will change gender after t = τ , which are close to
the decision boundary (in Q1 & Q2). In contrast, in sample
guidance, random samples are forced to change the attribute
state (Fig. 3) and are spread equally in all four quantiles,
resulting in inferior quality. This is quantified by the frac-
tion of samples being transformed (fQi) with each guidance
in Fig. 3a), where distribution guidance majorly transforms
samples from Q1 & Q2 and results in fair and high-quality
samples (Fig. 3b)).

A major design decision for implementing distribution
guidance is the selection of function gψ . The conventional
approach is to train multiple attribute classifiers at each level
of noise in the image space. Instead, we propose to lever-
age intermediate semantic features from the diffusion model
itself and repurpose them for the task of attribute classifica-
tion. This framework is very efficient as compared to image
space classifiers.

3.4. Guidance in the H-space
Diffusion models, although trained for image generation,
learn semantically rich representations in the internal fea-
tures of denoising network ϵθ. These representations have
been successfully used for segmentation [2] and classifica-
tion [29]. Motivated by this, we ask can we use these in-
ternal features for training guidance classifiers? To answer
this, we take features from the bottleneck layer of the dif-
fusion U-Net, termed as the h-space [21] and attach a lin-
ear head for classification. The trained classifiers achieve
good classification performance across multiple attributes,
as shown in Fig. 5. Hence, we use the trained h − space
classifiers to realize gψ . Specifically, we train a network
Attribute Distribution Predictor that maps the batch h-space
features to an estimate of attribute distribution p̂a

θ .
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Figure 4. Distribution guidance in the h-space. For a given batch
x
[1:N]
t , we extract the intermediate h-space representation h

[1:N]
t

and pass it through ADP to obtain attribute distribution p̂a
θ . Guid-

ance updates h[1:N]
t by backpropagating the derivative of loss.

Attribute Distribution Predictor (ADP) is realized via
a linear attribute classifier conditioned on the diffusion
time step t. Given a batch of generating samples x

[1:N]
t ,

we extract the corresponding h-space features h
[1:N]
t =

ϵEθ (x
[1:N]
t , t), where ϵEθ is the encoder of U-Net network.

Next, we pass the batch h
[1:N]
t to the attribute classifier and

obtain a batch of softmax predictions. The softmax predic-
tions are aggregated per class to obtain the attribute distri-
bution estimate p̂a

θ . Finally, we update the intermediate h-
vectors with the gradients of the distribution matching loss
L, where γ is the guidance strength parameter:
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h̃
[1:N]
t = h

[1:N]
t − γ ∗ ∇

h
[1:N]
t

L(p̂a
θ ,p

a
ref )

p̂a
θ =gψ(h

[1:N]
t , t)

Finally, we obtain the distribution guided noise predictions
ϵ̃ by passing the h

[1:N]
t through the U-Net decoder ϵDθ , i.e.,

ϵ̃(x
[1:N]
t , t) = ϵDθ (h

[1:N]
t , t). The predicted noise is then

used to update batch x
[1:N ]
t−1 using DDIM [47].

Insight.4: H-space guidance is extremely effective and effi-
cient as compared to image space guidance.
Remark. As compared to conventional image space guid-
ance, guidance in h-space has multiple advantages: i) it re-
quires only a set of linear layers to implement the classi-
fiers, ii) it is fast to backpropagate during guidance as com-
pared to image models, iii) highly data-efficient and can be
trained with only a few thousand examples due to semanti-
cally rich h-space. In the experiments section, we compare
these properties of the h-space guidance.
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Gender - ImageRace - ImageEyeglass - Image

Diffusion timesteps
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Figure 5. Classification accuracy for linear h-space classifiers and
ResNet-18 image space classifiers trained on 2K training exam-
ples. h-space classifiers are data efficient and achieve superior
performance even with a linear layer

4. Experiments
In this section, we first discuss the evaluation metrics, fol-
lowed by the implementation details. We take face datasets
as the subject of study, as they are subject to very high de-
mographic biases. We compare our method with other in-
ference time debiasing approaches for both single-attribute
and multi-attribute debiasing. Further, we present detailed
ablations to validate design choices. Finally, we show the
generalization of our debiasing approach on large text-to-
image generation model Stable Diffusion [37].

4.1. Evaluation Metrics
A fair generative model is evaluated on two grounds: image
quality and fairness. We discuss the metrics used to measure
these two aspects of the generated images below.
Fairness. The primary goal of this paper is to generate im-
ages based on the reference distribution pa

ref . We follow
Choi et al. [5] to define the Fairness Discrepancy (FD)

metric. Given an attribute a, we assume access to a high-
accuracy classifier for a (denoted as Ca), and using the pre-
dictions from the latter, we compute the following [5, 49]:

||p̄− Ex∼pθ(x)(y)||2
where y is the softmax output of the classifier Ca(x), p̄ is
a uniform vector of the same dimension as y, pθ is the dis-
tribution of the generated images. The lower the FD score,
the closer the distribution of the attribute values is to the
uniform distribution – i.e., the generated images are fairer
with respect to attribute a.
Image Quality. To measure the quality of generation, we
follow the standard Fréchet Inception Distance (FID) [11].
We compute this metric with the help of an attribute-wise
balanced dataset sampled from the original training data.

4.2. Implementation Details
Training h-space classifiers. We start with creating a
paired dataset Dh

clf of h-vector and attribute labels. Specifi-
cally, we take a subset D of the CelebA-HQ [18] dataset and
obtain attribute labels for the images using the pretrained
attribute classifier Ca. Next, we embed image Ii ∈ D
to obtain the corresponding h-space representation Hi =
{hi

t}t=Tt=0 using DDIM [47] inversion. This yields a labelled
dataset Dh

clf with pairs (Hi,yi), where yi = Ca(Ii) is the
predicted attribute label for image Ii (e.g. male / female).
Next, we train h-space attribute classifiers Cha (ht, t) as a
linear head over ht and conditioned on time t (ignored sam-
ple index i for brevity). These obtained classifiers generate
high-accuracy attribute predictions, as shown in Fig. 5. Fur-
ther details about the dataset and classifiers are provided in
Sec.D of supplement.
Distribution guidance. To perform distribution guidance,
we realize the distribution prediction function, ADP with
h-space classifiers Cha . Specifically for a generating batch
x
[1:N]
t , we obtain the corresponding h − space representa-

tion h
[1:N]
t and obtain a set of attribute predictions ŷ

[1:N]
t

from classifiers Cha . Finally, we add all the softmax values
for all the N images in the batch for each class to obtain the
estimate of pa

θ . We use Chi-square distance as the loss L
with the reference distribution pa

ref .
Diffusion Model Architecture. We evaluated our pro-
posed debiasing method on two state-of-the-art pretrained
DMs: a) an unconditional DM, P2 [4], trained on CelebA-
HQ dataset, and b) a text conditional DM StableDiffusion
v1.5 [37] trained on the LAION [45] dataset. Both these
models have exceptional image generation quality; how-
ever, they have significant bias concerning the sensitive face
attributes, as shown in the following subsections.

4.3. Baselines
We compare our proposed method against two techniques
for guidance-based generations for DMs, one Latent-based
editing method [21], and a state-of-the-art sampling-based
technique for debiasing generative models, MagNet [13].
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Figure 6. Balancing generated data across gender and eyeglass attributes with various guidance strategies. Minority group male and
eyeglasses are marked. Image-space Universal Guidance and Sample Guidance results generate imbalanced and poor-quality images.
For gender, Sample Guidance is able to generate only a few males while maintaining quality. Latent Editing produces collapsed images
for gender and fails to generate eyeglasses. The proposed Distribution Guidance balances (close to the ratio of 0.50 : 0.50) both the
attributes and generates high-quality images.

Sample guidance. We use classifier guidance as explained
in Sec. 3.2 in the h-space using the trained h-space at-
tribute classifiers Cha . Such guidance requires presetting an
attribute state for each generating image and pushing the
trajectory to change the attribute state.
Universal guidance [1] performs guidance in the image
space but uses pretrained classifiers trained on the clean im-
age. This resolves the additional requirement of training
image classifiers on noisy images. The key idea is to use
the DDIM scheduler and predict the approximation of x̂0

from noise image xt, and pass it through pretrained image
classifier CA. However, this process has two shortcomings:
it is slow as it backpropagates the gradients from the image
classifier (Experimentally, we found it to be 7 times slower
than h-space guidance) and it performs poorly at the early
stage due to an inaccurate approximation of x0. We use two
settings where we vary the number of images in the train-
ing set of the image space attribute classifier: (1) Using the
same training set |Dclf | = 2K as the h-space classifier and
(2) Using the entire CelebA-HQ dataset, i.e. 30k images.
Latent-based Editing [21] generates images with a spe-
cific set of attributes. Such a technique is popularly used
in debiasing GANs [16, 34] because of the well-known dis-
entangled latent spaces of GANs that allow for such edits.
Recent works have shown [21] that similar semantic con-
trol is also present in the h-space of DMs and can be used
for latent-based editing. We capitalize on this finding and
perform latent editing in the h-space to generate images of
desired attributes for fair generation.
MagNet [13] is an unsupervised method enabling fair sam-
pling from a pretrained model. They propose a method for
uniform sampling on the image manifold to generate under-
represented groups equally. We generated results by Mag-
Net sampling from a StyleGAN2 [20] model trained on the
FFHQ [19] dataset from their official codebase. Notably,

Table 1. Evaluation of balanced generation for single attribute
Gender Race Eyeglasses

Method FD ↓ FID ↓ FD ↓ FID ↓ FD ↓ FID ↓

Random Sampling 0.178 54.59 0.334 60.01 0.251 75.21
Universal Guidance (2k) [1] 0.193 52.10 0.377 93.42 0.189 64.55

Universal Guidance (30k) [1] 0.127 48.94 0.326 58.52 0.051 78.57
Latent Editing [21] 0.001 37.40 0.214 42.69 0.330 75.04

H-Sample Guidance (ours) 0.113 51.46 0.184 56.53 0.118 57.63
H-Distribution Guidance (ours) 0.049 50.27 0.113 52.38 0.014 51.78

StyleGAN2 - Random sampling 0.307 112.28 0.463 123.97 0.276 117.83
StyleGAN2 - Magnet [13] 0.267 91.15 0.454 97.05 0.281 106.55

as the base model for MagNet is StyleGAN2, we cannot
directly compare FIDs with our DM debiased results and
report random generations from StyleGAN2 as a reference.

4.4. Main Results
We first present the quantitative and qualitative results on
debiasing single binary attributes. Second, we debias mul-
tiple attributes simultaneously. We finally present the case
of debiasing attributes with multi-class labels.
Quantitative evaluation. We evaluate our debiasing
method for the single attribute case by generating balanced
generations of individual sensitive attributes - gender, eye-
glasses, and race, in Tab. 1. As these attributes are binary,
the synthesized images are expected to have a 1 : 1 ratio of
the sensitive attributes (for e.g. 0.50 fraction of males and
0.50 fraction of females in case of gender). Specifically,
we generate 10K images from each method per attribute
and compute the metrics defined in Sec. 4.1. For most at-
tributes, the proposed guidance method outperforms all the
baselines in terms of visual quality as measured by FID and
bias metric measured by FD. Although Latent editing has
a better FID and FD for gender, on qualitative evaluation
(as elaborated in the next section), artifacts are seen in the
images (Fig. 6). Moreover, this methods fails to mitigate
bias in case of multiple attributes (Tab. 3). Sample guidance
achieves comparable FID for gender; however, higher FD
indicates inferior debiasing. The tradeoff between FD and
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Table 2. Evaluation of balanced generation for multiple attribute
Gender + Race Eyeglasses + Race Gender + Eyeglasses

Method FD ↓ FID ↓ FD ↓ FID ↓ FD ↓ FID ↓

Random Sampling 0.256 60.68 0.292 89.14 0.214 70.97
Latent Editing [21] 0.124 64.84 0.219 90.63 0.230 74.93

Universal Guidance (2k) [1] 0.283 71.84 0.264 91.54 0.157 80.57
H-Sample Guidance (ours) 0.241 59.78 0.135 67.87 0.079 52.03

H-Distribution Guidance (ours) 0.075 49.91 0.101 57.46 0.057 47.45

FID is discussed in Sec.A.1 of supplement. This supports
our thesis that the distribution guidance provides enough
flexibility during generation, resulting in high-quality out-
puts even with a high guidance scale.
Qualitative evaluation. We present results for balancing
gender and eyeglasses attributes in Fig. 6. We randomly
sample 20 starting noise and use individual guidance meth-
ods for debiasing. Without guidance, the DM mostly gen-
erates female faces for the gender attribute. Although la-
tent editing achieved better quantitative metrics, it produces
images with artifacts and leads to collapsed results. Al-
though Sample and Universal guidance increase the number
of males, some images collapse. On the other hand, distri-
bution guidance generates an almost equal number of males
and females without affecting the generation quality. More-
over, all the baselines are not able to generate eyeglasses,
whereas our method leads to highly balanced generations.
Multiple attributes. We apply our method for debiasing
multiple attributes simultaneously in Tab. 3. Specifically,
given two reference distributions pa1

ref and pa2

ref , we add
guidance from two pretrained attribute distribution predic-
tors gψ1 and gψ2 . For this experiment, we define both the
reference distribution as uniform for each attribute (50%-
50% splits). The generated results follow the reference, re-
sulting in a balanced generation across attributes. Further
analysis is provided in Sec.B of supplement.
Multi Class attributes. We evaluate the efficacy of our
approach in balancing multi-class attributes - age and race
in Tab. 3. We use FFHQ [19] dataset for both attributes
and obtained annotations using pretrained models as ground
truth labels are unavailable. For age attribute, we use a pre-
trained VIT age classifier [36] to produce 3 classes: Young
(< 20 yrs), Adult (20− 60 yrs) and Old (> 60 yrs). For
race, we use the Fairface race classifier [15] to obtain 4
classes: White, Black, Asian, and Indian. Our method suc-
cessfully debiases multi-class attributes and beats the ran-
dom and sample guidance in all cases.

4.5. Generating Imbalanced Distributions
We test our distribution guidance for generating imbalanced
attribute distribution by providing skewed pa

ref - i) 0.20
female and 0.80 male ii) 0.10 white race and 0.90 black
race. These two settings are extremely challenging given
that male and black race are minority groups in the
dataset. We present qualitative results for both the settings
in Fig.7, where our distribution guidance is able to gener-
ate the defined distribution with majority males. Note, we
have binarized the race attribute as black and whites for sim-

Table 3. Balanced generation for multi-class attribute
Age (3 classes) Race (4 classes)

Method FD ↓ FID ↓ FD ↓ FID ↓

Random Sampling 0.256 60.68 0.292 89.14
H-Sample Guidance 0.124 64.84 0.219 90.63

H-Distribution Guidance 0.283 71.84 0.264 91.54

Table 4. Distribution guidance for imbalanced generation
0.20F - 0.80M 0.10W - 0.90B

Method FD ↓ FID ↓ FD ↓ FID ↓
Random Sampling 0.478 72.26 0.734 77.63

H-Distribution Sampling 0.168 51.65 0.325 53.80

plicity, and hence in the generation, brown race is consid-
ered under black category. We report quantitative metrics
in Tab. 4, where the proposed method can achieve good FD
scores with the same FID. Additional experimental results
are tabulated in Sec.B.1 of supplement.
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Figure 7. Generating imbalanced data with two non-uniform ref-
erence distribution - i) 0.9B-0.1W, ii) 0.8M-0.2F. Minority classes
are marked. Distribution guidance generates high-quality images
and closely follows the skewed reference distribution.

4.6. Ablations
We provide ablation over the batch size here and that
over the guidance scale, h-space classifier architectures
and number of training examples in Sec.A of supplement.
Batch size. As we approximate pa

θ with a an estimate p̂a
θ

over a batch of size N , we ablate over different values of N
in Tab. 5. Intuitively, using a larger batch size yields a better
estimate of pa

θ . We have found that the N = 100 works best
for our experiments, balancing both FD and FID. Addition-
ally, our model can also handle low data regime effectively.

Table 5. Ablation over batch size for gender balancing.
Batch size 2 4 8 10 25 50 75 100 125 150 200

FD ↓ 0.108 0.088 0.073 0.062 0.059 0.049 0.059 0.046 0.052 0.053 0.058
FID ↓ 60.12 51.86 49.80 50.54 51.51 50.86 50.98 51.64 49.91 49.81 49.74

4.7. Debiasing Text-to-Image Diffusion Models
We implemented our distribution guidance technique for
debiasing a text-to-image generation model, Stable Diffu-
sion (SD) v1.5 [37] concerning the gender attribute in this
subsection. We provide results on other attributes and on
mitigating spurious correlation on WaterBirds [40] genera-
tion in Sec.C of supplement. First, we generate a dataset
D, of 10K images from SD, with prompts ‘a photo of a
male’ and ‘a photo of a female’ to generate a labeled dataset
for training h-space classifiers. If the h-space classifier is
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Figure 8. Debiasing results on stable diffusion for gender. Dis-
tribution guidance can balance the gender attributes in prompts
involving other professions e.g. firefighter and doctor.

Table 6. Balancing gender on Stable Diffusion [37] model.

Method Gender Doctor Firefighter

FD ↓ FID ↓ FD ↓ FID ↓ FD ↓ FID ↓
Random Sampling 0.317 72.37 0.355 70.11 0.235 71.86

ITI-Gen [57] 0.049 64.79 0.072 67.81 0.184 70.12
Fair Diffusion [9] 0.227 71.22 0.035 74.37 0.036 68.33

H-Sample Guidance (ours) 0.026 70.96 0.021 68.43 0.097 70.42
H-Distribution Guidance (ours) 0.024 70.69 0.015 67.36 0.093 69.41

trained on CelebA-HQ dataset, guidance is ineffective due
to a significant domain shift from the SD generations. Next,
we obtain the corresponding labeled dataset Dh

clf in the h-
space and train a gender classifier in the h-spaceh-space.
We used the trained classifier for distribution guidance fol-
lowing Sec. 3.4 to generate images with balanced gender.

It is observed that SD increases the gender bias when
queried to generate certain professions (e.g. male and doc-
tor) [57]. To this end, we implement our distribution guid-
ance along the prompts ‘a photo of a doctor’ and ‘a photo of
a firefighter’ to evaluate the effectiveness in this challenging
setting. The qualitative results are shown in Fig.8, and the
quantitative results are reported in Tab. 6.
Baselines. We compare our method with the following
methods. (1) Random sampling from SD [37]. (2) ITI-
Gen [57] that learns prompt embeddings for each category
of the attribute given image reference sets of each category.
It then appends these prompts during generation to produce
balanced images. (3) Fair Diffusion [9] that uses a lookup
table to recognize the biased concept from the text input and
adds scaled attribute expressions to the prompt. Note, these
baselines are explicitly designed to debias text-conditioned
diffusion model; however, our method can debias both con-
ditional and unconditional diffusion models.

4.8. Class-imbalance in attribute classification
We explore an important downstream application of our
proposed approach in balancing minority classes by aug-
menting the under-represented classes with generated data.
Specifically, we train a race classifier (labels obtained from
CA) on the CelebA-HQ [17] dataset. The race classifier is an
ImageNet [7]-pretrained ResNet-18 [10] encoder, followed
by 2 MLP layers and a classifier. We manually oversam-
ple the Whites and undersample the Blacks in the training

Table 7. Group-wise accuracies of identical classifiers trained on
existing and generated (balanced) data

Black female White female Black male White male

Vanilla classifier 75.76 98.96 70.29 99.93
Balanced classifier 91.04 97.33 90.72 97.68

dataset such that the imbalanced dataset consists of 10k
samples of white people and 1k black people (we keep the
genders balanced within a race class). Consequently, the
model performs poorly on the minority class (i.e., Black)
due to under-representation. Next, we augment (class-
balanced) the training data by generating samples whose
distribution is inversely proportional to the class counts in
the training set to increase images of minority classes using
our distribution guidance approach. This adds 9k images of
only Black race, and the classifier trained on this balanced
data performs significantly better (Tab. 7). Even when gen-
der is balanced in both the classes, we observe a significant
disparity in the accuracies for Male and Female Black sam-
ples in the vanilla classifier. However, our proposed method
helps reduce the accuracy gap between Black males and
Black females. This shows a potential application in gen-
erating ‘class’ balanced datasets to train models for other
downstream tasks, which can also mitigate bias.

5. Discussion.
Limitations. Although our method performs guidance in
the h-space, which is efficient compared to the image space
guidance, it still requires additional training of h-space clas-
sifiers. Another limitation is reliance on accurate attribute
classifiers to obtain labels for training h-space classifiers.
Future works. An important future work is extending dis-
tribution guidance beyond de-biasing for controlled gener-
ation and data augmentation. In the context of debiasing
DMs, extending the proposed approach without needing an
attribute classifier or labeled data.

6. Conclusion
In this work, we aim to mitigate biases from pretrained
diffusion models without retraining - given only a desired
reference attribute distribution. We propose a novel ap-
proach leveraging distribution guidance that jointly guides
a batch of images to follow the reference attribute distribu-
tion. The proposed method is effective and results in both
high-quality and fair generations across multiple attributes
and outperforms sample guidance strategies based on con-
ditioning each sample individually. Extensive experiments
demonstrate the effectiveness of our method in balancing
both single and multiple attributes on unconditional DMs
and conditional text-to-image diffusion models. We believe
such a setting of debiasing without retraining is practical,
especially in today’s era of large-scale generative models.
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