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Abstract

In the image classification task, deep neural networks
[frequently rely on bias attributes that are spuriously cor-
related with a target class in the presence of dataset bias,
resulting in degraded performance when applied to data
without bias attributes. The task of debiasing aims to
compel classifiers to learn intrinsic attributes that inher-
ently define a target class rather than focusing on bias at-
tributes. While recent approaches mainly focus on empha-
sizing the learning of data samples without bias attributes
(i.e., bias-conflicting samples) compared to samples with
bias attributes (i.e., bias-aligned samples), they fall short
of directly guiding models where to focus for learning in-
trinsic features. To address this limitation, this paper pro-
poses a method that provides the model with explicit spa-
tial guidance that indicates the region of intrinsic features.
We first identify the intrinsic features by investigating the
class-discerning common features between a bias-aligned
(BA) sample and a bias-conflicting (BC) sample (i.e., bias-
contrastive pair). Next, we enhance the intrinsic features in
the BA sample that are relatively under-exploited for pre-
diction compared to the BC sample. To construct the bias-
contrastive pair without using bias information, we intro-
duce a bias-negative score that distinguishes BC samples
from BA samples employing a biased model. The experi-
ments demonstrate that our method achieves state-of-the-
art performance on synthetic and real-world datasets with
various levels of bias severity.

1. Introduction

Deep neural networks in image classification [5, 19, 20, 24]
are known to be vulnerable to the dataset bias [22], which
refers to a spurious correlation between the target classes
and the peripheral attributes. Basically, image classifica-
tion aims to learn intrinsic attributes — the visual features
that inherently define a target class — that generally ap-
pear across the samples in the class. However, when the

We note that Juyoung Lee (michael.ljy@kakaobrain.com) at Kakao
Brain, who significantly contributed to this work, should have been the
third author, but unfortunately, he was omitted due to the failure of adding
him during the paper registration phase. * indicates equal contribution.

dataset bias exists in the training data, the models tend to
use the frequently appearing peripheral attribute (i.e., bias
attribute) to predict the class unintentionally. For instance,
if airplanes in the training images are mostly in the sky, a
model can heavily rely on the sky to predict an image as
an airplane class due to its high correlation with the air-
plane class. This indicates that the model is biased towards
the bias attribute (e.g., sky) rather than focusing on intrinsic
features (e.g., the shape of wings or the body) when mak-
ing decisions. As a result, even though the biased model
achieves high accuracy on the samples including bias at-
tributes (e.g., airplanes in the sky), termed as bias-aligned
(BA) samples, it may fail to accurately predict samples de-
void of such bias attributes (e.g., airplanes on the runway),
referred to as bias-conflicting (BC) samples.

In this regard, debiasing aims to encourage the model to
focus on intrinsic attributes rather than bias attributes when
dataset bias exists. One straightforward approach is utiliz-
ing prior knowledge regarding bias (e.g., labels for bias at-
tribute) to inform the model which attributes to focus on
or not to focus on [2, 8, 21, 23]. However, acquiring such
bias information is often infeasible in real-world scenarios.
Therefore, recent studies [7, 11-14] have proposed debi-
asing methods that do not require bias information. They
identify and emphasize BC samples during the training us-
ing an additional biased classifier that mainly learns the bias
attributes. However, such a training strategy fails to directly
indicate where the model should focus to learn the intrinsic
features.

To address this issue, we present a debiasing approach
that explicitly informs the model of the region of the in-
trinsic features during the training while not using bias la-
bels. While the intrinsic features in the unbiased dataset
can simply be identified in generally appearing features in
the training samples, generally appearing features in the bi-
ased dataset inevitably include bias features. Therefore, we
identify the intrinsic features in the biased dataset by inves-
tigating the common features between a BA and a BC sam-
ple (i.e., a bias-contrastive pair). Here, the common features
also need to be class-discerning since the common features
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might include irrelevant environmental features. For exam-
ple, in the above scenario, the common feature between an
airplane in the sky (BA sample) and an airplane on the run-
way (BC sample) might include the features of wings, the
body, and trees. In this case, the intrinsic features are the
shape of the wings and the body that can distinguish the
airplane class from the others.

Specifically, we introduce an intrinsic feature enhance-
ment (IE) weight that identifies the spatial regions of intrin-
sic features commonly appearing in a bias-contrastive pair.
We leverage an auxiliary sample in addition to the original
input to construct the bias-contrastive pair. Since the major-
ity of the original input from training samples are BA sam-
ples, we mainly adopt the BC samples as the auxiliary sam-
ple. To achieve this without bias information, we present
a bias-negative (BN) score that identifies BC samples by
employing a classification loss of a biased model. Our IE
weight investigates common features in the bias-contrastive
pair and identifies the class-discerning features among the
common features. Within the identified intrinsic features,
we enhance the features that are relatively under-exploited
in the BA samples compared to the BC samples. In this way,
we can explicitly provide our model with spatial guidance
for intrinsic attributes while not using bias labels.

We verify the effectiveness of our method on both syn-
thetic and real-world datasets with various levels of bias
severity. Furthermore, the in-depth analysis demonstrates
that our method successfully guides the model to make pre-
dictions based on the intrinsic features.

2. Related work

Debiasing with bias information. Previous ap-
proaches [2, 4, 8, 17, 21, 23] utilize bias labels or prede-
fined bias types to encourage the model to learn intrinsic at-
tributes for debiasing. Kim et al. [8], Tartaglione et al. [21],
and Sagawa et al. [17] employ bias labels to encourage the
model not to learn specific bias features. Wang et al. [23]
and Bahng et al. [2] predefine the bias type (e.g., color, tex-
ture, etc.) and utilize such prior knowledge to supervise
models to be robust against such predefined bias type. How-
ever, obtaining bias information requires additional cost,
which is often infeasible in the real world.

Debiasing without bias information. Recent studies [1,
3, 6,7, 10-15, 26] propose debiasing strategies that do not
require bias information. Nam et al. [14] present an ap-
proach that encourages the model to concentrate on BC
samples during the training process considering that the bias
attributes are easier to learn than intrinsic attributes. Instead
of using bias information, they additionally train a biased
model that mainly learns bias attributes and regard the sam-
ples that are not easily trained by the biased model as BC
samples. Lee er al. [12] reveal that BC samples serve as
noisy samples when training the additional biased model

and propose a method to eliminate such BC samples using
multiple biased models. Liu ef al. [13] regard the samples
misclassified by the model trained with empirical risk min-
imization as BC samples and emphasize them during train-
ing of a debiased model. Also, MaskTune [1] expects the
model to learn intrinsic features by fine-tuning the model
with the data whose already-explored area is masked out
using Grad-CAM [18].

Another stream of approaches [7, 9, 11] synthesize sam-
ples having similar characteristics with BC samples and em-
ploy them to train a debiased model. Kim et al. [9] synthe-
size images without bias attributes leveraging an image-to-
image translation model [16]. Lee et al. [11] and Hwang et
al. [7] augment BC samples in the feature space by em-
ploying the disentangled representations and mixup [25],
respectively. A recent pair-wise debiasing method X'2-
model [26] encourages the model to retain intra-class com-
pactness using samples generated via feature-level interpo-
lation between BC and BA samples. However, such ap-
proaches lack explicit supervision about which features to
focus on to learn intrinsic features. To address this issue,
we present a debiasing method that provides spatial guid-
ance to encourage a model to learn intrinsic features dur-
ing the training while not using bias labels. We design our
model architecture using bias-contrastive pairs referring to
the previous studies [7, 26].

3. Methodology
3.1. Overview

As shown in Fig. 1, our framework consists of a biased
model f; that focuses on bias attributes and a debiased
model f; that learns debiased representations. We use Bi-
asEnsemble (BE) [12] as a backbone, where fj, is trained
with bias-amplified dataset D* which mainly consists of
BA samples, while f; concentrates on the samples that f;
fails to learn. Our method provides f; with spatial guidance
for intrinsic features using a bias-contrastive pair: an input
x and an auxiliary input x3N. We denote the auxiliary input
xBN as a bias-negative (BN) sample because we primarily
adopt samples devoid of bias attributes. We sample an im-
age x from the original training data D, and xBN from a BN
dataset DBN which mainly consists of BC samples. DN is
updated every iteration to mainly include BC samples us-
ing the BN score .S that employs f; to identify BC samples.
The BN score is also updated every iteration. Given the in-
termediate features z and zBN, we first extract the common
features between the bias-contrastive pair (c¢(z) in Fig. 1).
Also, we identify the class-discerning features that are rela-
tively under-exploited in z compared to z®N (r(z) in Fig. 1).
Next, we calculate the IE weight that indicates relatively
under-exploited intrinsic features in z based on ¢(z) and
r(z) (IE(z) in Fig. 1). Finally, we obtain the guidance g(z)
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Figure 1. Overview of our method. We provide explicit spatial guidance g(z) for a debiased model fg, which is described with f$™ and

cls

<l to learn intrinsic features. To achieve this, we leverage a bias-contrastive pair, x and x®~ from the same target class y. g(z) highlights

intrinsic features that are relatively under-exploited in z compared to z®", calculated by common feature score ¢ and relative-exploitation

score . Here, we mainly adopt BC samples from DEY, to construct DEN, where we sample x

BN DBN is updated every iteration using the

BN score S, which is also updated every iteration. At the inference, we only use fq in the gray-colored area.

that emphasizes the region of intrinsic feature in z during
the training. At the inference, we utilize f; without xBN, as
in a gray-colored area of Fig. 1.

3.2. Constructing bias-negative dataset

We construct a BN dataset DBN, where we sample xBN dur-
ing the training. As the majority of the training dataset is
BA samples, we aim to mainly adopt BC samples as xEN
to construct bias-contrastive pairs. To achieve this, we first
construct DB a candidate dataset for DBN, that contains
roughly identified BC samples. During the training, we dy-
namically update DEN every iteration to mainly adopt BC
samples from DB using our newly proposed BN score.
Constructing candidate dataset DE),. To roughly iden-
tify BC samples in D, we filter out easily learned BA
samples from D using multiple biased models, following
BE [12]. Since the bias features are easier to learn than the
intrinsic features [14], each biased model is trained only for
a few iterations so that BC samples can be distinguished
from the easily learned BA samples. Inspired by JTT [13],
we regard the samples that are incorrectly predicted by the
majority of the biased models as BC samples. Finally, we
construct DBN . with the roughly identified BC samples.
Adopting BC samples with BN score. We introduce a
BN score to update DBN to primarily exploit BC samples
as xN from DB during training f,. Considering the un-
availability of bias labels, the BN score employs fj, to fur-
ther exclude BA samples from DBN . As training proceeds,

cand*
f» is overfitted to the bias attributes in D* and outputs a

high probability on the ground-truth label for the samples
that have similar bias features with samples in D?. This
indicates that samples whose f;, loss decreases as train-
ing proceeds are likely to have bias attributes learned from
DA, Such samples disturb the extraction of intrinsic features
when selected as xBN. To validate this, we investigate the
samples in DBN, whose f; loss at the later stage of training
(50K-th iteration) decreases compared to the early stage of
training (1K-th iteration). The result shows that 95.63% of
them are BA samples. We use the BFFHQ dataset [9] with
a bias severity of 1% for the analysis. Further details of the
dataset are described in Sec. 4.1.

In this regard, we design a BN score to exclude the sam-
ples with decreasing f;, loss from the DEN | to construct DEN
by tracking the f; loss during training f,. First, the f; loss
of x at the ¢-th iteration is calculated as follows:

L(x) = ar - Lee(fo(x),y) + (1 —aq) - l—1(x), (1)

where Lcg(fp(x),y) indicates the cross-entropy (CE) loss
of x on its ground-truth label y and «; is a hyperparame-
ter for the exponential moving average (EMA). We employ
EMA to enable a stable tracking of the classification losses.
Note that I, is updated only for the samples in a mini-batch
at the ¢-th iteration.

The BN score tracks [;(x) compared to the loss recorded
at the early stage of training. The BN score at the ¢-th iter-
ation is formulated as follows:

s¢(x) = s - (le(x) = lrer(x)) + (1 — as) - s¢-1(%), (2)
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where a; is a hyperparameter for the EMA and [,.¢(x) de-
notes the reference loss of x that is first recorded after a
few iterations of training. We exploit EMA to stabilize the
tracking. Note that we update s; only for the samples in a
mini-batch at the ¢-th iteration. The negative value of s;(x)
indicates that the loss of x decreased compared to the early
stage of training, which means that the sample is likely to
contain bias attributes.

Updating DBN with BN score. At every iteration, we up-
date DBN to exclude the newly detected BA samples whose
BN score s¢(x) is smaller than zero as follows:

’D?N = {X ‘ St(X) >0,x ~ ,D?aﬁd}v (3)

where DEN indicates DBN at the ¢-th iteration. We employ
xBN ~ DBN as an auxiliary input at the ¢-th iteration. In this
way, we can construct a bias-contrastive pair that encour-
ages the intrinsic attributes to be extracted as their common
features. We abbreviate DEN as DBN for brevity in the rest
of the paper.

3.3. Intrinsic feature enhancement

To emphasize the intrinsic features in f;, we introduce the
intrinsic feature enhancement (IE) weight that imposes a
high value on the intrinsic features. The IE weight identifies
the region of intrinsic features from bias-contrastive pairs
by investigating 1) their common features with common
feature score c and 2) class-discerning features that are rela-
tively under-exploited in the input with relative-exploitation
score r. For the explanation, we split f; into two parts.
femb s REXWX3 _y RAXwXe maps an input to the inter-
mediate feature, and f$* : R">w*¢ — R js composed of
the average pooling and the linear classifier and outputs the
classification logits, where f(x) = f5 (f$™(x)).

First, given the input x, common feature score c iden-
tifies the features that are similar to the features in xBN
that has the same class label as x while not having bias at-
tributes. Specifically, we extract the intermediate features
z = f$"°(x) and zBN = femP(xBN), respectively. Next, we
obtain the common feature score of z (i.e., c¢(z) € RP*®),
Given the n-th feature of z (i.e., z,, € R°), let :*-th feature
of zBN (ie., z?*N € R°) be the most similar feature to z,,,
where i* = argmax (zPN - z,). Then, the n-th element

K2

of ¢(z) denotes the similarity score between z,, and zBN,

which is formulated as follows:

z8N .z,

c(z)n = l—w7 4)

max; ;(z; " - ;)

where - indicates a dot product operation. We adopt the dot
product for the similarity metric to consider both the scale
and the direction of the features. The max normalization is
employed to limit the score to less than one. We consider

the features with a high common feature score c in z as fea-
tures that have a high likelihood of being intrinsic features.

Next, the relative-exploitation score 7 identifies class-
discerning features that are relatively under-exploited in x
compared to xBN. Since most of the xBN does not contain
bias attributes, we identify class-discerning intrinsic fea-
tures by investigating the features that are mainly used to
predict xBN as its target label. At the same time, we iden-
tify the features that are under-exploited in the x compared
to the xBN. To achieve this, we use a visual explanation
map of Grad-CAM [18] that imposes a higher value on the
features that have more contribution to predicting a specific
label. We calculate the explanation map E(z) and E(z2N)
with respect to their ground-truth labels. We apply max
normalization to the explanation maps to compare the rela-
tive importance of the features in prediction. We compare
the n-th value of E(z) (i.e., E(z),) with the ¢*-th value of
E(zPY), where i* is the index of the feature in zBN that is
the most similar with z,,. Accordingly, the n-th element of
r(z) € R is calculated as:

r(z), = (E(zf)(j}}i)g(z)n)f, 5)

where 7 is the amplification factor. The score becomes
larger than one when the z,, is relatively under-exploited
than z2N for prediction. When z2N is not used for discern-
ing the class, E(zBN);- becomes close to zero and the score
converges to zero.

Finally, n-th element of the IE(z) is defined as:

IE(z),, = max(c(z), © r(z)n, 1), (6)

where © indicates the element-wise multiplication. The IE
weight has a large value on the features of x that commonly
appear in xBN but has not exploited enough for the predic-
tion of x. We clip the values to be larger than one to enhance
only the relatively under-exploited features in z while pre-
serving the other features.

Using the IE weight, we obtain the guidance g(z) that
emphasizes the intrinsic features in z as follows:

9(z) =z ©IE(2). @)

We broadcast IE(z) to match its shape with z before multi-
plication. During the training, this spatial guidance informs
the model of where to focus to learn intrinsic features from
training samples.

3.4. Training with intrinsic feature guidance
We basically train f; with the CE loss as follows:
Emain = w(x)£CE(fd(X)v y) (8)

where w(x) is the sample reweighting value of x [14]. w(x)
emphasizes the samples that f, fails to learn, which are
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Algorithm 1 Debiasing with the intrinsic feature guidance

Input: pretrained biased models,

training dataset D, biased model f;, debiased model
fa, reference iteration T3 for BN score, starting
iteration T2(> T1) to apply intrinsic feature guidance
Output: trained debiased model f;

1: Construct D*, DY, from D using pretrained biased
models

2: for every iteration ¢ do

3: Sample x ~ D

4 if t > T} and l..¢(x) is not initialized then

S: lref(X) — Z(X)

6: end if

7 if x € DA then

8 Train f,(x) with Lcg

9: end if

10: if t < T then

> Train w/o guidance
11: Train f4(x) with L
12: else if t > T5 then > Train w/ guidance
13: Update DBN
14: Sample xBN ~ DBN
15: Train fy(x,x5N) with L
16: end if
17: end for

mostly BC samples. The detailed description of w(x) is
included in the Supplementary.

In addition, we guide the model to focus on the region
of intrinsic features through a guidance loss and a BN loss.
We observe that the BN score has a higher value on the BC
samples compared to the BA samples as training f, pro-
ceeds (See Sec. 4.3). In this respect, we employ the BN
score of xBN (i.e., s(xBN)) to upweight the loss when BC
samples are adopted as xBN. Here, we clip the value of loss
weight s(xBV) to be larger than zero.

Guidance loss. To guide the model to exploit the intrinsic
features from x, we minimize the L1 distance between g(z)
and z as follows:

Lovide sim = S(XBN)HGAP(Z) —GAP (g(2))[l1, )

where GAP represents the global average pooling. s(x5V)
is multiplied as a loss weight to impose a high weight on
the loss when BC samples are selected as x5V,

Also, we apply the CE loss to the guidance g(z) to en-
courage it to include the intrinsic features that contribute to

the correct prediction as follows:

Louidects = w(x)Leg (£ (9(2)),y) (10)

where w(x) is the reweighting value as in £ .
Finally, our guidance loss Lgyige is calculated as follows:

ACguide = )\simcguide,sim + ‘Cguide,CISa (11)

where Agn is a hyperparameter to control the relative sig-
nificance between the losses. We set A set as 0.1.

BN loss. We also employ the CE loss on xBN to encourage
the model to learn class-discerning features. This enables
the IE weight to find intrinsic features among the common
features. The BN loss is defined as:

Lax = s(x®N) Leg(fa(xEN), ). (12)

Here, we also exploit s(x5Y) to impose high weight on the
loss when xBN is a BC sample.

Overall objective function. In summary, the overall ob-
jective function is defined as follows:

Ltntal = Amainﬁmain + Lguide + ‘CBNa (13)

Amain 18 the constant value that linearly increases from zero
to one during training f; with the guidance. This prevents
the model from focusing on bias features in x in the early
phase. The overall process of our method is provided in
Algorithm 1. Here, we set 77 and 75 as 1K and 10K, re-
spectively. Note that all the hyperparameters are identically
applied across different datasets and bias severities. We pro-
vide further details of the training and the implementation
in the Supplementary.

4. Experiments
4.1. Experimental settings

Dataset. We utilize Waterbirds [17], biased FFHQ
(BFFHQ) [9], and BAR [14] for the experiments. Each
dataset contains different types of target class and bias at-
tributes: Waterbirds - {bird type, background}, BFFHQ -
{age, gender}, and BAR - {action, background}. The for-
mer and the latter in the bracket indicate the target class
and the bias attribute, respectively. To be specific, the Wa-
terbirds dataset has two bird classes: waterbirds and land-
birds. Most of the waterbirds are in the water background,
and most of the landbirds are in the land background. In the
training dataset of BFFHQ, most young people are female
while most old people are male. The word ‘young’ indi-
cates an age ranging between 10 and 29, and ‘old’ indicates
an age ranging between 40 and 59. Lastly, the BAR dataset
consists of six classes of action (e.g., fishing), where the
background (e.g., water surface) is highly correlated with
each class. Following the previous studies [11, 12, 14], we
validate our model’s effectiveness under different levels of
bias severity, i.e., a ratio of BC samples to the total training
samples: 0.5%, 1%, 2%, and 5%. In the test sets, the spuri-
ous correlations found in the training set do not exist. More
details are provided in Supplementary.

Evaluation. We report the best accuracy of the test set
averaged over five independent trials with different random
seeds. The Waterbirds dataset has an extremely skewed test
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Method Waterbirds BFFHQ BAR
0.5 1.0 2.0 50 | 05 1.0 2.0 50 | 1.0 5.0

Vanilla [5] 5741 5807  61.04 6413 | 5564 6096  69.00  82.88 | 70.55  82.53
HEX [23] 57.88 5828  61.02 6432 | 5696 6232 7072 8340 | 7048  81.20
LNL [8] 5849  59.68 6227 6607 | 5688 6264  69.80  83.08 - -

EnD [21] 5847 5781 6126 6411 | 5596  60.88 ~ 69.72  82.88 - -

ReBias [2] 5544 5593 5853 6214 | 5576  60.68  69.60 8264 | 73.04  83.90
LfF [14] 60.66 6178 5892 6143 | 6519 6924  73.08  79.80 | 70.16  82.95
DisEnt [11] 59.59 6005  59.76 6401 | 6208  66.00  69.92  80.68 | 7033  83.13
LfF+BE [12] 6122 6258  63.00 6348 | 6736 7508 8032 8548 | 7336  83.87
DisEnt+BE [12] | 51.65  54.10 5343 5421 | 6756 7348 7948  84.84 | 7329  84.96
Ours | 63.64 6522 6523 6633 | 71.68 77.56  83.08 87.60 | 7514  85.03

Table 1. Comparison to the baselines. We measure the classification accuracy on test sets with different bias severities. The best accuracy
values are in bold. The hyphen mark ‘-” means it is not applicable. Results with standard deviations are provided in the Supplementary.

\ Dgﬁd - DBN \ DBN/D (%)
Dataset |  BA BC | BA BC
Waterbirds | 26.50 +532  0.75 +£0.83 | 2.75 £031 79.69 +£3.72
BFFHQ 199.80 +40.14 8.00 +2.76 | 0.46 +0.00 50.00 +1.04
BAR 30.60 +3.83  3.20 +1.60 | 3.58 +0.14 47.14 +5.71

Table 2. Effectiveness of BN score on excluding BA samples.
DEN . - DBN presents the number of excluded samples when con-
structing DBN from DEY,. DBV/D indicates that the ratio of sam-

ples in DBN to the samples in D.

dataset composed of 4,600 landbirds and 1,194 waterbirds.
This can mislead the debiasing performance as the model
may achieve high classification accuracy by simply predict-
ing most images as landbirds. We measure the classification
accuracy for each class and report their average value to ob-
tain an accurate understanding of the effectiveness of meth-
ods, regardless of class frequencies. Also, for the BFFHQ,
we report the best accuracy of BC samples in the test set,
following the previous works [11, 12]. For the analyses, we
utilize the datasets with 1% bias severity.

4.2. Comparison to previous works

We compare the classification accuracy on the test sets be-
tween the baselines and ours in Table 1. For baselines, we
employ a vanilla model trained with the CE loss, the meth-
ods using explicit bias label (i.e., LNL [8], EnD [21]), pre-
suming the type of the bias (i.e., HEX [23], ReBias [2]), and
assuming the bias information is unknown (i.e., LfF [14],
DisEnt [11], LfF+BE [12], DisEnt+BE [12]). Our approach
achieves state-of-the-art performance in comparison to the
previous methods including those utilizing explicit bias la-
bels. The results exhibit that our method improves perfor-
mance robustly across various levels of bias severity, even
under the constraints of extreme bias severity (e.g., 0.5 %).

(a) Waterbirds (b) BFFHQ (c) BAR
6 0.5 05
0.4
) o o 0.4
= 0.4 =03 =
o) oY Q0.3
Q Q Q
i £0.2 Z02
Z02 Z Z
m mol Mol
oopd . 00 0.0
0K 10K 20K _30K 40K 50K 0K 10K 20K 30K 40K 50K 0K 10K 20K ‘30K 40K 50K
Iterations Iterations Iterations

Figure 2. Visualization of BN scores of the samples in DEN, during
the training. The red lines and the blue lines indicate the BN scores
of BA and BC samples, respectively.

This shows that providing explicit spatial guidance for in-
trinsic features effectively encourages the model to learn
debiased representations, leading to performance improve-
ment.

4.3. Analysis of BN score

We analyze our BN score that identifies and emphasizes BC
samples in DEN | during training f;. In this section, we as-
sess the effectiveness of the BN score on excluding BA sam-
ples from DEN . Also, we evaluate the efficacy of the BN
score as a loss weight by investigating the BN scores of the
samples in DEN .
Effectiveness of BN score on excluding BA samples. Ta-
ble 2 presents how the BN score effectively filters out BA
samples from DEN  while preserving BC samples when
constructing DBN. The first two columns present the num-
ber of the BA and BC samples excluded from DBY, to con-
struct DBN, respectively. Also, the last two columns rep-
resent the ratio of the number of the BA and BC samples
in DBN to that in D, respectively. For the analysis, we use
DBN at the 50K-th iteration and report the mean value of the
five independent trials. Here, we expect DBN to contain a
maximal number of BC samples while including a minimal

number of BA samples. As shown in the first two columns
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Figure 3. Visualization of the spatial guidance using (a) Waterbirds and (b) BAR dataset. Given bias-contrastive pairs, x and x®~, E(z)
indicates the regions originally focused on by f4 and IE(z) shows the regions highlighted by our IE weight.
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Figure 4. Comparison of the region focused by a debiased model trained with and without our method. We compare Grad-CAM results on

the test set of (a) Waterbirds and (b) BAR.

of Table 2, our BN score excludes a large number of BA
samples while minimizing the loss of BC samples. As a re-
sult, DBN preserves around 50-80% of BC samples, while
containing a minimal number of BA samples compared to
D, as presented in the last two columns.

Efficacy of BN score as loss weight. We utilize the BN
score to upweight the training loss when BC samples are
chosen as xBN. To verify its effectiveness as a loss weight,
we compare the BN scores of BC samples and BA samples
in DBN | during the training for the Waterbirds, BFFHQ, and
BAR dataset. In Fig. 2, we present the average BN scores of
BA (red line) and BC samples (blue line) in D?alid at every
500 iterations. Since BN scores are recorded after the 1K-
th iteration, the BN scores until the 1K-th iteration are re-
ported as zero. The BN scores of BC samples in the BFFHQ
dataset mostly range from 0.4 to 0.5 while the scores of BA
samples are close to 0. This indicates that the BN score as
a loss weight in the BFFHQ imposes a much larger value

on the BC samples, while approximately zero values on the

BA samples. Also, the BN scores of BC samples in the
Waterbirds and the BAR dataset become twice larger than
the scores of BA samples. The result shows that the BN
score effectively emphasizes BC samples compared to the
BA samples in DEN, during the training. Further analysis

of the BN score is included in the Supplementary.

4.4. Analysis of intrinsic feature guidance

We conduct a qualitative analysis of the regions emphasized
by our intrinsic feature guidance during the training and the
features learned by f, after training. We use the Waterbirds
and BAR datasets with 1% of bias severity for the analysis.
Visualization of the guidance during training. In Fig. 3,
we visualize the features emphasized by our IE weight
IE(z). For comparison, we also visualize E(z), the fea-
tures focused by the model before applying IE(z) for guid-
ance. We select a BA sample as x and a BC sample as xBN
from the training data for the analysis. For the Waterbirds
dataset in Fig. 3(a), IE(z) highlights the wings or the beak
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of the bird compared to E(z), where the forest or the wa-
ter (i.e., bias attributes) is highlighted. Also, in Fig. 3(b),
E(z) focuses more on the bias attributes such as rocks or
the water than the intrinsic attributes. In contrast, IE(z)
emphasizes the action of the human that is less exploited
compared to the bias features in E(z). The results demon-
strate that our guidance successfully identifies and enhances
under-exploited intrinsic features during the training.
Effect of intrinsic feature guidance on debiasing. We
qualitatively evaluate the effectiveness of the intrinsic fea-
ture guidance by investigating the visual explanation maps
of the test samples. We compare the Grad-CAM [18] re-
sults of the model trained with and without our method in
Fig 4. The Grad-CAM results highlight the features that the
model employs to predict the input as its ground-truth la-
bel. In Fig. 4 (a), while the model trained without guidance
focuses on the forest or the sea, ours focuses on the tail or
a curved shape of the bird’s body. Additionally, Fig. 4 (b)
shows that ours focuses on the motion of the human rather
than the backgrounds that are concentrated on by the model
trained without our guidance. The results verify that our
method successfully encourages the model to learn intrinsic
features from the training dataset, improving the robustness
of the model against dataset bias.

4.5. Ablation study

As shown in Table 3, we perform ablation studies to ver-
ify the effectiveness of the individual components in our
method. The results of ours are reported in the last row.
Importance of xBN selection and BN score as loss weight.
We demonstrate the efficacy of adopting BC samples as
xBN, We train the model by sampling xEN from three differ-
ent datasets: D, DEN,and DBN. In the first row of Table 3,
we randomly sample xBN from the training dataset D with-
out using the BN score. In the second row, we train the
model with xBN sampled from DEN,, where BA samples
are roughly filtered out using the early-stopped biased mod-
els. The model in the third row is trained with xBN from
DBN that mainly includes BC samples using our BN score.
The results show a gradual improvement in debiasing per-
formance as more BC samples are selected as xN. This
is because auxiliary samples without bias attributes prevent
the common features from including the bias features, com-
posing a bias-contrastive pair with the input. Therefore, our
guidance effectively enhances the intrinsic features during
the training. Finally, the last row in Table 3 presents that
employing the BN score s(xBY) to reweight the losses fur-
ther enhances performance by emphasizing the usage of BC
samples as xBN.

Training objectives. = We examine the impact of each
training objective, Lgyige and Lpy, in our method. We re-
port the performance of the model trained without Lguige
(the fourth row) and without Lgy (the fifth row) in Table 3.

s(xBN) as
Lauige Loy | xBN | Waterbirds BFFHQ BAR
loss weight
v v | D X 62.79 121 71.04 £2.55 73.36 £1.40
v v |DEY, X 64.65 +1.23 75.64 +187 T4.27 +0.66
v v |D®N X 65.10 +0.87 77.08 £2.05 74.62 £1.07
X v |DBN v 63.81 £124 76.92 x1.03 74.03 £1.13
v X |DN v 62.10 +335 74.84 +2.00 74.87 +151
v v | DBN v 65.22 +095 77.56 +124 75.14 +0.382

Table 3. Ablation study on the proposed training objectives, the
dataset that x®N is sampled from, and the BN score of x®N as
a loss weight. The check mark (v') denotes the inclusion of the
corresponding method, while the cross mark (X) indicates the ex-
clusion of the component in the experiment.

The model trained without Lyiq. exhibits degraded perfor-
mance, facing difficulties in identifying where to focus to
learn intrinsic features. Similarly, training the model with-
out Lgy also results in a performance decrease. The re-
sults verify that Lgyn successfully supports the IE weight
to identify intrinsic features among the common features
by learning class-discerning features from xBN. The model
that incorporates both Lgyi¢e and Lgn demonstrates the best
performance (the last row of Table 3).

5. Conclusion

In this paper, we propose a debiasing method that explic-
itly provides the model with spatial guidance for intrinsic
features. Leveraging an auxiliary sample, we first identify
intrinsic features by investigating the class-discerning fea-
tures commonly appearing in a bias-contrastive pair. Our IE
weight enhances the intrinsic features that have not been fo-
cused on yet in the input by a debiased model. To construct
the bias-contrastive pair without bias labels, we introduce a
bias-negative (BN) score that tracks the classification loss
of a biased model to distinguish BC samples from BA sam-
ples during the training. The effectiveness of our method
is demonstrated through experiments on synthetic and real-
world datasets with varying levels of bias severity. We be-
lieve this work sheds light on the significance of providing
explicit guidance on the intrinsic attributes for debiasing.
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