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Abstract

Despite the remarkable success of Vision Transformers
(ViT) across diverse fields in computer vision, they have a
clear drawback of expensive adaption cost for downstream
tasks due to the increased scale. To address this, Visual
Prompt Tuning (VPT) incorporates learnable parameters
in the input space of ViT. While freezing the ViT backbone
and tuning only the prompts, it exhibits superior perfor-
mances to full fine-tuning. However, despite the outstand-
ing advantage, we point out that VPT may lead to serious
unfairness in downstream classification. Initially, we inves-
tigate the causes of unfairness in VPT, identifying the bias-
edly pre-trained ViT as a principal factor. Motivated by this
observation, we propose a Fair Visual Prompt Tuning (Fair-
VPT) which removes biased information in the pre-trained
ViT while adapting it to downstream classification tasks. To
this end, we categorize prompts into “cleaner prompts” and
“target prompts”. Based on this, we encode the class token
in two different ways by either masking or not masking the
target prompts in the self-attention process. These encoded
tokens are trained with distinct objective functions, result-
ing in the inclusion of different information in the target and
cleaner prompts. Moreover, we introduce a disentanglement
loss based on contrastive learning to further decorrelate
them. In experiments across diverse benchmarks, the pro-
posed method demonstrates the most superior performance
in terms of balanced classification accuracy and fairness.

1. Introduction

Pre-trained language models [5, 6, 13, 44, 54] based on self-
attention mechanisms have achieved immense success in
the field of Natural Language Processing (NLP), attributed
to their remarkable efficiency and capability to handle large-
scale datasets. In light of the accomplishments in NLP,
many studies [14, 17, 36, 53, 57] have tried to alternative
conventional Convolutional Neural Networks (CNN) [23]

*Corresponding authors with equal contribution.

Method TA SA Acc. (↑) EO (↓)
M F

VPT [24] A 52.7 93.1 81.7 32.1
NA 89.1 65.2

VPT [24]-Head+NCM [39] A 68.1 84.6 76.1 47.4
NA 99.4 21.0

ViT [14]+NCM [39] A 20.6 92.3 69.4 82.3
NA 99.6 6.7

Table 1. Exploring primary factors of unfairness. This reports
classification accuracy (Acc.) and equalized odds (EO) [21] on
CelebA [35]. The target attribute (TA) corresponds to whether in-
puts are attractive (A) or not (NA) and the sensitive attribute (SA)
is set to Gender (abbreviated as M for male and F for female).
“Head” and “NCM” denote the classification head and Nearst
Class Mean classifier [39], respectively. The scores reported in the
third and fourth columns represent the classification accuracy of
the respective groups. The results indicate that the pre-trained ViT
is the key factor contributing to the unfairness in VPT.

to self-attention-based architectures (e.g., Transformer [54]
and BERT [13]) across diverse tasks of computer vision.
Notably, Vision Transformer (ViT) [14] has demonstrated
outstanding performance and versatility, leading to its adop-
tion in various fields, including image classification [47],
semantic segmentation [33], and image captioning [10].

Nonetheless, a notable limitation of ViT is the expen-
sive adaptation cost for downstream tasks. Due to the in-
creased scale compared to conventional CNNs, full fine-
tuning for each task becomes cost-prohibitive and occasion-
ally inefficient [24]. To address this, Visual Prompt Tuning
(VPT) was proposed [24], which is an efficient approach for
adapting the pre-trained transformer models to downstream
computer vision tasks. It prepends a small portion of learn-
able parameters (i.e., prompt) to the input space for each
task, resulting in effective adaptation while keeping the ViT
backbones frozen. In many cases, it has demonstrated supe-
rior performance compared to full fine-tuning. However, we
point out that VPT may cause unfairness issues in classifi-
cation tasks.

As deep learning models deployed in real-world applica-
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tions have raised controversial ethical problems, the ethics
of AI have been considered as crucial as their performances
[4, 7, 56]. For instance, COMPAS system, utilized in the US
court, judged black defendants to be more likely to recidi-
vate than white defendants [1], and Google Photos incor-
rectly identified some black people as gorillas [15]. To deal
with the issues, researchers have defined various notions of
fairness [16, 21, 28] and tried to ensure it in terms of sen-
sitive attributes which are characteristics that should not be
discriminated against, such as gender, ethnicity, and region
[25, 29, 42, 46].

In this context, we initially evaluate the fairness of VPT
on the benchmark dataset (i.e., CelebA [35]) and ana-
lyze the underlying causes of observed unfairness. In Ta-
ble 1, we compare three different methods by measuring
classification accuracy (Acc.) for the target attribute At-
tractive and fairness with equalized odds (EO) [21] for
the sensitive attribute Gender. It is devised to investigate
the extent of unfairness arising from three major compo-
nents of VPT: a pre-trained ViT, learnable prompts, and a
classification head. First, VPT exhibits significantly unfair
performances, particularly favoring majority groups (i.e.,
Attractive-Female and Not Attractive-Male). Subsequently,
we replace the classification head with Nearest Class Mean
(NCM) classifiers [39]. The deteriorated fairness implies
that the classification head partially alleviates unfairness.
Lastly, ViT+NCM, without any training for the downstream
task, shows the most unfair results. This indicates that bi-
ased information pertaining to the sensitive attribute within
the pre-trained ViT stands out as a primary factor of the un-
fairness arising from VPT.

Therefore, we propose a novel method, namely Fair Vi-
sual Prompt Tuning (Fair-VPT), which removes biased in-
formation related to sensitive attributes in the pre-trained
ViT model while adapting it to downstream classification
tasks. Inheriting the philosophy of prompt tuning, we first
add learnable parameters, known as prompts, in the input
space. The key idea is to select certain prompts as “cleaner
prompts”, which are encoded to contain biased informa-
tion from the pre-trained model. In contrast, the remain-
ing prompts, referred to as “target prompts”, are encoded
to learn only target features that are not correlated with the
sensitive attribute. To this end, we encode the class token
in dual parallel manners. One method involves encoding
the class token by masking the target prompts in the self-
attention process, while the other method encodes it with all
the prompts and image patches following the original mech-
anism [24]. Subsequently, the two types of encoded class
tokens are respectively encouraged to predict sensitive and
target attributes through classification heads. Consequently,
most of the information related to the sensitive attribute is
included within the cleaner prompts through the masked
self-attention process, while the rest information pertaining

to the target attribute is learned by the target prompts. More-
over, we introduce a disentanglement loss based on con-
trastive loss to explicitly mitigate the correlation between
the prompts. During inference, fairness can be ameliorated
by excluding the cleaner prompts for target classification.

In the experiment section, we conduct extensive valida-
tion on several benchmark datasets, i.e., CelebA [35], UTK
Face [60], bFFHQ [30], and Waterbirds [48]. In all the
experiments, the proposed method markedly enhances the
fairness of ViT and achieves the most superior generalized
performance and fairness. Moreover, through an ablation
study, we demonstrate the effectiveness of each proposed
component and justify the design of the proposed method.
We summarize the main contributions of this paper as fol-
lows:
• To the best of our knowledge, we investigate the unfair-

ness stemming from Visual Prompt Tuning (VPT) and its
underlying causes for the first time.

• We propose Fair Visual Prompt Tuning (Fair-VPT) that
efficiently adapts the pre-trained ViT model to down-
stream classification tasks while eliminating biased infor-
mation related to sensitive attributes

• Through extensive experiments on benchmark datasets,
we demonstrate that the proposed method efficiently en-
hances the fairness of ViT in various scenarios.

2. Related Work
2.1. Fairness-aware Classification

Numerous studies [12, 41, 42, 45, 46, 49, 50, 55, 58, 59]
have tried to ensure fairness with respect to sensitive at-
tributes in image classification tasks. Some approaches
[42, 45, 55, 59] enhanced fairness by preventing the encoder
networks from learning biased information related to sensi-
tive attributes. Other approaches [12, 41, 49] disentangled
the feature space into subspaces for target and sensitive at-
tributes. In downstream tasks, these methods excluded the
subspaces for sensitive attributes to ameliorate fairness. Ad-
ditionally, certain methods [37, 48] mitigated imbalance be-
tween demographic groups by minimizing the worst-case
training loss across all the groups. On the other hand, sev-
eral approaches [46, 50, 58] endeavored to improve fairness
by generating an unbiased dataset by utilizing Generative
Adversarial Networks (GANs) [19]. Recently, Sudhakar et
al. [52] and Qiang et al. [43] tried to address the unfairness
problem caused by ViT models.

Notably, some studies [8, 9, 29, 30, 40, 61] have ad-
dressed model fairness under limited supervision of sen-
sitive attributes. Several approaches [30, 32, 40] capital-
ized on the observation that the bias inducing significantly
biased results, i.e., malignant bias, is more easily learned
than the target attribute. Consequently, these approaches es-
timated the bias using deliberately biased networks and sub-
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sequently eliminated it. Similarly, other approaches [51, 61]
utilized the proxies with high correlation to sensitive at-
tributes, such as feature representation from biased net-
works, to estimate sensitive attributes. On the other hand,
some research [29, 34] enhanced fairness without demo-
graphics by up-weighting the misclassified samples. DRO
[22] demonstrated that minimizing the worst-case risk over
all appropriate distributions can enhance fairness concern-
ing potential sensitive attributes.

2.2. Transformers in Computer Vision

Inspired by the remarkable achievement of transformer
models in the field of Natural Language Processing (NLP),
a variety of research has attempted to introduce architec-
tures based on self-attention into the various fields of com-
puter vision. Vision Transformer [14] is the initial work
that utilized the transformer architecture for image process-
ing. It introduced an approach of tokenizing an image into
patches, which are then utilized as inputs for the trans-
former. It achieved strong performances for various tasks,
including image classification, detection, and segmentation.
Subsequently, Touvron et al. [53] proposed a new distil-
lation strategy based on distillation tokens to enhance the
data efficiency in training, and Liu et al. [36] significantly
reduced the computation cost by introducing hierarchical
feature maps. On the other hand, some works [2, 3, 17, 57]
utilized the ViT-based backbones to encode the frame-level
features in video understanding tasks, such as video ac-
tion recognition. In addition, other studies [11, 31, 38] ex-
ploited the vision-language pre-training models based on
transformer architectures for multi-modal tasks (e.g., visual
question answering (VQA)).

From a different perspective, Jia et al. [24] proposed Vi-
sual Prompt Tuning (VPT), which efficiently adapts the pre-
trained transformer model on large-scale datasets into vari-
ous downstream tasks. They added a small amount of learn-
able parameters, i.e., prompts, in the input space and only
trained the prompts for transfer learning. It achieved com-
parable performances with full fine-tuning while keeping
the transformer backbone frozen. Nevertheless, the analy-
sis from the perspective of fairness was overlooked. In this
paper, we identify unfairness in VPT and analyze its under-
lying causes, proposing a novel method that not only adapts
the pre-trained ViT model to downstream tasks but also ef-
fectively enhances fairness.

3. Proposed Method
The proposed method is designed to ensure fairness with
respect to sensitive attributes while adapting the pre-trained
ViT to downstream classification tasks. The overall frame-
work, which is illustrated in Figure 1, comprises the key
components: categorized prompts, masked self-attention,
and disentanglement loss.

3.1. Fairness Definition

Fairness notions have been diversely defined in the litera-
ture [7, 16, 18, 21, 56]. In this section, we first introduce
the widely used notions of fairness, i.e., demographic parity
[16], equal opportunity [21], and equalized odds [21], and
define fairness in this paper. Demographic parity means that
a model should ensure the same ratio of positive outcomes
across sensitive groups. Since it pursues the equality of out-
come, it has the drawback of overlooking the real data dis-
tributions. Equal opportunity mitigates the shortcoming by
ensuring the equality of True Positive Rates (TPR) across
sensitive groups. Nevertheless, it is still limited in that it
does not address the imbalance of negative outcomes. To
equally consider positive and negative outcomes, we adopt
the equalized odds (EO) to define fairness, which is mea-
sured as follows:

EO =
|TPRs=0 − TPRs=1|+ |FPRs=0 − FPRs=1|

2
(1)

where s and FPR denote the sensitive attribute and false
positive rates.

3.2. Preliminaries

Let training samples (x,y,s) be given, where x ∈ X is the
input image, y ∈ Y is the target label, and s ∈ S is the sen-
sitive attribute. For Vision Transformer (ViT) [14], the input
image x is reshaped into N patches xp ∈ RN×3×wp×hp .
Here, wp and hp are the fixed width and height of the
patches. The patches are flattened with the linear protection
and added with the positional embeddings as follows:

z0 = [xcls, E(x(1)
p ), E(x(2)

p ), ..., E(x(N)
p )], (2)

where E(xp) ∈ RN×D represents the embedded patches
and xcls denotes the class token. Subsequently, they are en-
coded by the transformer T as follows:

zl = Tl(zl−1), l = 1, 2, ...L. (3)

Here, the transformer layer Tl consists of Multi-headed
Self-Attention (MSA) and Feed-Forward Networks (FFN),
where LayerNorm (LN) and residual connections are re-
spectively deployed before and after each block. Finally, the
encoded class token xcls

L are fed into the classification head
C(·) as follows:

y′ = C(xcls
L ). (4)

When a pre-trained model T̂ is given, Visual Prompt
Tuning (VPT) [24] adapts it to downstream classification
tasks. The prompts P ∈ RN×D, which are M learnable
parameters, are added in the input space as follows:

ẑ0 = [xcls, P (1), ..., P (M), E(x(1)
p ), ..., E(x(N)

p )]. (5)
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Figure 1. Illustration of the proposed method. The transformer encoder and linear projection are frozen, with only the prompts, classification
head, and projection head being trained. The prompts are categorized into the target prompts (i.e., Pt) and cleaner prompts (i.e., Pc). These
are concurrently encoded using Multi-head Attention (left) and Masked Multi-head Attention (right), which involves masking the target
prompts. The differently encoded tokens (i.e., orange and green) are trained to predict the target label and sensitive attribute, respectively.

The input sequence is encoded by the pre-trained model T̂
as follows:

ẑl = T̂l(ẑl−1), l = 1, ...L, (6)

While maintaining T̂ frozen, only the prompts and classifi-
cation head Ĉ(·) for downstream tasks are trained through
the classification loss Ld = l(Ĉ(x̂cls

L ), y), where l repre-
sents the cross entropy loss.

3.3. Fair Visual Prompt Tuning

3.3.1 Categorizing Prompts

As aforementioned, the key idea is to designate certain
prompts as “cleaner prompts”, intended for the absorption
of biased information originating from the pre-trained ViT.
To this end, we reformulate the input sequence ẑ0 using tar-
get prompts Pt and cleaner prompts Pc as follows:

ẑ0 = [xcls, P
(1)
t , ..., P

(α)
t , P (1)

c , ..., P (M−α)
c , E(xp)], (7)

where α ∈ N, 1 ≤ α ≤ M . In addition, we will represent
each vector in ẑ as ẑi (e.g., ẑ00 = xcls

0 ).

3.3.2 Masked MSA and Encoding Prompts

Let denote query, key, and value representations of ẑl
as k̂l, q̂l, v̂l ∈ R(1+N+M)dk . We calculate standard self-
attention SA(ẑl) and masked self-attention SA∗(ẑl) in each
layer as follows:

SA(ẑl) = softmax(
q̂lk̂l

T

√
dk

)v̂l, (8)

SA∗(ẑl) = softmax(
q̂lk̂

T
l +Mask√

dk
)v̂l. (9)

Here, the mask is defined as follows:

Maski,j =

{
−inf if 1 ≤ j ≤ α
0 else

, (10)

where i, j ∈ {0, 1, ...,M + N}. Following the previous
works [14, 24], self-attention is extended to Multihead Self-
Attention (MSA) with h attention layers. The transformer
layers encode the input sequence in two parallel ways, uti-
lizing standard and masked MSA as follows:

ẑl = T̂l(ẑl−1), l = 1, ...L, (11)

ẑ∗l = T̂ ∗
l (ẑ

∗
l−1), l = 1, ...L, (12)

where T̂ ∗
l is the transformer layers incorporating masked

MSA. The resulting class tokens are input into the classi-
fication heads for the target label y and sensitive attribute
s, represented by Ĉ(ẑ

(0)
L ) and C̃(ẑ

∗(0)
L ), respectively. The

classification loss Lcls is formulated as:

Lcls = l(Ĉ(ẑ
(0)
L ), y) + l(C̃(ẑ

∗(0)
L ), s). (13)

Since the target prompts are masked in ẑ∗l, predicting
the sensitive attribute using ẑ∗l encourages information re-
lated to the sensitive attribute to be included in the cleaner
prompt. Simultaneously, by predicting the target label with
ẑl, the rest information about the target label is contained in
the target prompts.

12271



3.3.3 Contrastive Loss for Disentanglement

However, a limitation of the aforementioned approach is
that Lcls cannot ensure the exclusion of information related
to the target label in the cleaner prompts, which leads to a
loss of useful information for the target task. Besides, re-
dundant information regarding sensitive attributes may be
partially included in the target prompts. To address these
issues, we design a disentanglement loss based on super-
vised contrastive learning [26] to explicitly decorrelate the
prompts. Let I examples {x(i)}i=1,...,I be randomly sam-
pled into a mini-batch. We embed r(i) = g(ẑl(i)) and
r∗(i) = g(ẑ∗l (i)) with the shared projection network g(·) ∈
Rdkdp . They are normalized to lie on the unit hypersphere
and share a lower dimensional latent space for contrastive
learning. When an embedded sample r∗(i) is selected as
an anchor, we define the positive set P (i) and negative set
N(i) as follows:

P (i) = {r∗(j)|y(j) = y(i), s(j) = s(i)}, (14)

N(i) = {r(k)|y(k) = y(i), s(k) = s(i)}. (15)

While both P (i) and N(i) have the same target label and
sensitive attribute with the anchor, it is worth noting that
they are encoded in different manners, i.e., Masked MSA or
MSA. The disentanglement loss is defined as follows:

Ldis = −
∑

∀r∗(i)

1

|P (i)|
∑

r∗(j)∈P (i)

log
exp(r∗(j) · r∗(i)/τ)∑

r(k)∈N(i) exp(r(k) · r∗(i)/τ)
,

(16)

where 1
|P (i)| is the normalization term, exp denotes the ex-

ponential function, and · represents the inner product. τ
is a temperature parameter. The loss encourages the target
and cleaner prompts to include distinct information to each
other by diminishing the similarity between r and r∗.

The overall loss is formally defined as:

L = Lcls + λLdis, (17)

where λ is a hyper-parameter.

3.3.4 Training Downstream Classifier

After the prompt tuning, it is essential to exclude the cleaner
prompts to ensure fairness with respect to the sensitive
attribute. Therefore, we introduce a mask for the cleaner
prompts in the self-attention process, defined as:

Maski,j =

{
−inf if α < j ≤ M
0 else

. (18)

With keeping the transformer model and prompts frozen,
the encoded class token z

(0)
L is achieved through

the masked MSA, which is denoted as SA(ẑl) =

softmax(
q̂lk̂

T
l +Mask√

dk
)v̂l. Subsequently, the final classifier

Cf is trained to predict the target label utilizing z
(0)
L while

maintaining the other frozen components.

4. Experiment

4.1. Dataset

For reliable evaluation, we conduct extensive experiments
on various benchmark datasets as follows.

• CelebA [35]: comprising about 200k facial images of
celebrities with 40 facial attributes. To evaluate the fair-
ness, we set Male as the sensitive attribute following the
previous works [25, 42]. Based on the Pearson correlation
[20] with it, we choose two target attributes, Attractive
and Big Nose.

• UTK Face [60]: containing about 20k facial images with
annotation for Gender, Race, and Age. Since the data split
is not explicitly specified in the original version, we de-
termine it based on the setting in [42]. Specifically, we set
Male as the sensitive attribute and Race as the target la-
bel. We deliberately construct the imbalanced training set,
where the majority groups (i.e., Male-White and Female-
Black) include four times as many samples as the minor-
ity groups (i.e., Female-White and Male-Black). Addi-
tionally, we configure the validation and test sets as fully
balanced datasets.

• bFFHQ [30]: containing about 21k images from the
Flickr-Faces-HQ (FFHQ) dataset with a high resolution
of 1024x1024. The target label is set to Age and the sen-
sitive attribute to Gender, which are highly correlated to
each other in the training set. To be specific, the minor-
ity groups (i.e., Young-Male and Old-Female) account for
only 0.5% of the training samples. The test set is com-
posed as a fully unbiased dataset.

• Waterbirds [48]: including about 5k images which com-
bine bird photos from CUB and backgrounds from the
Place. The target label y ={Waterbird, Landbird} has
a significant correlation with the background s={Water,
Land}. Specifically, the minority groups (i.e., Waterbirds-
Land and Landbirds-Water) constitute only 0.5% of the
training set. The validation and test sets are configured
to have equal proportions of backgrounds for each target
class.

4.2. Implementation Detail

For all comparable methods, we utilize the ViT-B/16 back-
bone [14] pre-trained on ImageNet-21k [47]. For ViT, we
train a single fully connected layer for downstream clas-
sification without fine-tuning the backbone. For VPT-based
methods, we exploit VPT-shallow following the original pa-
per [24]. The length and dimensions of prompts (i.e., M and
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Method Target label Sensitive attribute Accuracy (↑) Balanced Accuracy (↑) Equalized Odds (↓)s=0 s=1

ViT [14] t=0 69.1 96.4 78.4 68.7 41.6t=1 82.7 26.8

VPT [24] t=0 65.2 93.1 81.7 75.0 32.1t=1 89.1 52.7

VPT [24]+AT [45] t=0 38.9 63.7 67.6 63.2 24.0t=1 86.9 63.5

VPT [24]+FSCL+ [42] t=0 30.7 60.1 69.3 66.5 20.6t=1 93.6 81.8

Fair-VPT (Ours) t=0 73.8 85.8 78.6 76.3 12.0t=1 78.8 66.7

Table 2. Experimental results for Attractive on CelebA. We set Male to the sensitive attribute and evaluate the results through three
metrics. The third and fourth columns represent the group-wise classification accuracy. The bold represents the best scores in each metric.

Method Target label Sensitive attribute Accuracy (↑) Balanced Accuracy (↑) Equalized Odds (↓)s=0 s=1

ViT [14] t=0 98.1 79.1 81.7 61.3 30.6t=1 12.8 55.1

VPT [24] t=0 98.3 81.6 82.7 62.8 28.5t=1 15.4 55.8

VPT [24]+AT [45] t=0 99.4 86.3 81.2 57.3 23.7t=1 4.5 38.8

VPT [24]+FSCL+ [42] t=0 99.3 89.9 84.6 63.6 25.1t=1 12.2 53.2

Fair-VPT (Ours) t=0 92.7 79.1 79.9 65.4 15.9t=1 35.6 53.9

Table 3. Experimental results for Big Nose on CelebA. The sensitive attribute is set to Male. The proposed method achieves the best
scores in terms of Balanced Accuracy and Equalized Odds.

D) are set to 50 and 768, respectively. In addition, the classi-
fication heads are designed as a single fully connected layer.
For VPT+AT, we incorporate adversarial training [45] into
VPT. To be specific, we introduce an auxiliary classification
head that predicts the sensitive attribute with x̂cls

L , followed
by a Gradient Reversal Layer (GRL). This framework en-
courages the prompts to exclude information about the sen-
sitive attribute. For VPT+FSCL+, we employ the fair super-
vised contrastive loss [42] for prompt tuning. Subsequently,
we train the downstream classifier based on the cross en-
tropy loss. For ours, we determined hyper-parameters τ and
α to be 0.1 and 25. Specifically, 25 cleaner prompts are ran-
domly selected from the entire set of prompts. The other
hyper-parameter λ is varied in the range of 0.1 to 1, depend-
ing on the dataset. All methods are trained using the Adam
optimizer [27] with weight decay, and the initial learning
rates are determined in the range of 0.1 to 0.01, depending
on the datasets. We report the average score after three inde-
pendent trials for all experiments and select the best model

based on the validation set for 10 epochs. More details are
provided in Appendix.

4.3. Evaluation metric

In our experiments, multiple metrics are exploited for re-
liable evaluation. Classification accuracy (Acc.) measures
model performance within the data distribution of the test
set, while balanced accuracy (BAcc.), calculated by averag-
ing group-wise accuracy, assesses the generalization perfor-
mance for classification. We adopt equalized odds (EO) [21]
as the primary metric for evaluating fairness, supplementing
it with equal opportunity (Eopp) [21] and demographic par-
ity (DP) [16]. The results measured by Eopp and DP are
provided in Appendix.

4.4. Comparison on CelebA

In Table 2 and 3, we show the comparison results on CelebA
[35]. For both target attributes, i.e., Attractive and Big Nose,
ViT [14] demonstrates the most unfair performances in
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Method TL SA BAcc. (↑) EO (↓)s=0 s=1

ViT [14] t=0 96.0 80.3 88.4 13.4t=1 83.1 94.4

VPT [24] t=0 95.3 82.3 89.0 12.6t=1 83.6 94.9

VPT [24]+AT [45] t=0 95.5 81.5 88.9 11.6t=1 84.8 94.1

VPT [24]+FSCL+ [42] t=0 96.1 85.8 89.0 9.9t=1 82.3 91.9

Fair-VPT (Ours) t=0 95.1 89.3 90.9 4.9t=1 87.5 91.6

Table 4. Experimental results on UTK. The target label and sen-
sitive attribute are respectively set to Race and Gender. TL, SA,
BAcc., and EO denote the target label, sensitive attribute, balanced
accuracy, and equalized odds, respectively. Following the previous
work [42], we compose the biased training set and balanced test
set. Since accuracy and balanced accuracy are equal in this set-
ting, accuracy is not reported.

terms of equalized odds (EO) and the lowest worst-group
accuracy, which stands at 25.8 and 12.8, respectively. VPT
[24] significantly enhances classification performance over
ViT, achieving the highest accuracy; however, the balanced
accuracy (BAcc.) is lower than ours due to its biased per-
formances. Moreover, it demonstrates poor results in terms
of fairness. For Attractive, VPT+AT [45] and VPT+FSCL+
[42] significantly enhances the fairness, while largely de-
grading the classification performances, where both accu-
racy and balanced accuracy are notably inferior to VPT. For
Big Nose, while they ameliorate fairness over VPT, it rather
aggravates the worst-group accuracy. For both settings, the
proposed method achieves the most superior performances
in terms of fairness. Despite a slight trade-off between fair-
ness and accuracy, the proposed method exhibits improved
generalization performances, resulting in the highest bal-
anced accuracy. Particularly, the worst-group accuracy of
ours is improved by 39.9% compared to ViT for Attractive.

4.5. Comparison on UTK Face

We reported the comparison results on UTK Face [60] in
Table 4. We set the target label as Race and the sensitive
attribute as Gender. Due to the imbalanced training set,
ViT and VPT demonstrate unfair results, which stand at
13.4% and 12.6% in terms of equalized odds, respectively.
VPT+AT and VPT+FSCL+ enhances fairness while main-
taining balanced accuracy over VPT, but the improvement
is not significant. When considering the results on CelebA
together, they suggest that the straightforward integration
of conventional fairness methods based on CNNs (e.g., Ad-
versarial Training [45] into VPT framework may result in
a significant information loss for the target label or only

Method TL SA BAcc. (↑) EO (↓)s=0 s=1

ViT [14] t=0 99.1 54.3 74.8 48.9t=1 46.3 99.5

VPT [24] t=0 98.9 48.3 76.0 46.3t=1 57.5 99.5

VPT [24]+AT [45] t=0 99.5 58.7 77.5 43.1t=1 53.1 98.7

Fair-VPT (Ours) t=0 99.1 62.3 80.7 37.1t=1 61.9 99.5

Table 5. Experimental results on bFFHQ. We set Age to the tar-
get label and Gender to the sensitive attribute. Since the minority
groups have very few samples, comparable methods show poor
performances for the groups. The proposed method markedly im-
proves the worst group accuracy, resulting in an improvement in
fairness.

marginal improvements in fairness.

4.6. Comparison on bFFHQ

To validate the proposed method under extremely biased
scenarios, we conduct additional experiments on bFFHQ
[30], where the minority groups contain only 0.5% of the
entire sample. In Table 5, ViT and VPT correctly classify
almost all samples from the majority groups, i.e., {t=0/s=0}
and {t=1/s=1}, while they demonstrate poor classification
performance in the minority groups. Although VPT+AT
significantly improves the worst-group accuracy and fair-
ness, the proposed method achieves the highest worst-group
accuracy and the lowest equalized odds, which stands at
61.9 and 37.1, respectively. Moreover, it notably improves
balanced accuracy over VPT.

4.7. Ablation Study

Through an ablation study, we demonstrate the effective-
ness of each proposed component and justify the design of
the proposed method. In Table 6, we reported the results
for Attractive on CelebA and for Race on UTK Face. The
first row corresponds to our baseline, i.e., VPT, which is
the only one not employing categorized Prompt; categoriz-
ing prompts into the target prompts and cleaner prompts.
In addition, it encodes the class token only using standard
MSA into ẑ

(0)
L . In the second row, the prompts are catego-

rized, and the class token is parallelly encoded using stan-
dard MSA into ẑ

(0)
L and masked MSA for target prompts

into ẑ
∗(0)
L . Precisely, it corresponds to the proposed method

without Ldis and significantly improves fairness. It demon-
strates that the proposed framework based on categorized
Prompt and masked MSA is effective. The full model (i.e.,
the third row) further enhances fairness, achieving the best
balanced accuracy and equalized odds in all the results.
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CelebA UTK Face
Categorized Prompts Lcls Ldis Acc. (↑) BAcc. (↑) EO (↓) BAcc. (↑) EO (↓)

ẑ
(0)
L ẑ

∗(0)
L z

(0)
L

✓ 81.7 75.0 32.1 89.0 12.6
✓ ✓ ✓ 77.9 75.9 15.0 89.4 8.1
✓ ✓ ✓ ✓ 78.6 76.3 12.0 90.9 4.9

✓ ✓ ✓ 78.0 74.0 25.2 88.0 10.9
✓ ✓ ✓ 77.3 72.9 29.1 89.2 12.2
✓ ✓ ✓ ✓ 78.4 73.9 24.4 89.6 9.4

Table 6. Ablation study on CelebA and UTK Face. We set Attractive to the target label on CelebA. Catergotized Prompts represents
whether the prompts are categorized into the target and cleaner prompts. In addition, the second to fourth columns indicate whether the
encoded tokens are utilized for visual prompt tuning. We set VPT as the baseline (the first row) and the third row indicates the full proposed
model.

Method TL SA Acc. BAcc. EOs=0 s=1

ViT [14] t=0 99.7 77.8 85.1 80.5 31.3t=1 52.0 92.6

VPT [24] t=0 99.6 82.9 86.8 81.2 29.2t=1 50.3 92.0

VPT +AT [45] t=0 98.7 81.3 86.3 81.6 27.0t=1 54.8 91.5

Fair-VPT (Ours) t=0 93.9 70.9 83.3 84.3 18.7t=1 78.9 93.6

Table 7. Experimental results on Waterbirds. This experiment
is conducted to validate the effectiveness of the proposed method
in mitigating the background bias. Since the smallest group, i.e.,
{t=1/s=0} includes only 56 training samples, the worst-group ac-
curacy is notably low in the baselines. Nevertheless, the proposed
method significantly elevates the worst-group accuracy, reaching
78.9%.

When excluding the loss term l(Ĉ(ẑ
(0)
L ), y) in the pro-

posed method (i.e.,, the third row), classification perfor-
mance is declined, as anticipated. However, fairness is still
enhanced compared to the baseline. We believe that it
may be attributed to Lcls, which encourages the exclusion
of information related to sensitive attributes from the tar-
get prompts. In the fifth row, z(0)L and ẑ

∗(0)
L are encoded

by masking the sensitive and target prompts, respectively.
Since the tokens are encoded independently, it fails to sub-
stantially enhance fairness over the baseline. Lastly, when
incorporating Lcls into it, fairness is notably ameliorated
by excluding sensitive attribute information from the target
prompts.

4.8. Effectiveness in Addressing General Bias

To validate the effectiveness of the proposed method for a
more general bias, we conduct comparison experiments on

Waterbirds [48], including the background bias. Since the
smallest group contains only 56 training samples, both ViT
and VPT demonstrate significantly inferior worst-group ac-
curacy, and VPT+AT exhibits only marginal improvement
in fairness. Meanwhile, the proposed method notably in-
creases classification accuracy in the smallest group to
78.9%, resulting in the most superior balanced accuracy
and equalized odds. These results indicate that the proposed
method can be utilized not only to address facial attributes
but also to mitigate more general biases such as the back-
ground.

5. Conclusion
In this paper, we initially investigated the unfairness aris-
ing from Visual Prompt Tuning (VPT) and its underlying
causes. To address the unfairness problem in VPT, we pro-
posed a Fair Visual Prompt Tuning (Fair-VPT) which elimi-
nates biased information related to sensitive attributes in the
pre-trained ViT model while adapting it to downstream clas-
sification tasks. Specifically, we categorized the prompts
into the target and cleaner prompts, and encoded the class
token in dual parallel manners. Consequently, it encouraged
information related to the sensitive attribute and target label
to be included in the cleaner prompts and target prompts, re-
spectively. Moreover, we introduced a disentanglement loss
based on contrastive learning to further decorrelate them. In
the inference time, we excluded the cleaner prompts to ame-
liorate fairness. To validate the proposed method, we con-
ducted extensive experiments on multiple benchmarks. In
various scenarios, the proposed method achieved the most
superior generalization performance and fairness.

Acknowledge
This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government
(MSIT) (No. 2022R1A2B5B02001467).

12275



References
[1] J. Angwin, J. Larson, S. Mattu, and L. Kirchner. Machine

bias: There’s software used across the country to predict fu-
ture criminals. and it’s biased against blacks. ProPublica,
2016. 2

[2] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen
Sun, Mario Lucic, and Cordelia Schmid. Vivit: A video vi-
sion transformer. 2021 IEEE/CVF International Conference
on Computer Vision (ICCV), pages 6816–6826, 2021. 3

[3] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is
space-time attention all you need for video understanding?
In Proceedings of the 38th International Conference on Ma-
chine Learning, pages 813–824. PMLR, 2021. 3

[4] Tolga Bolukbasi, Kai-Wei Chang, James Zou, Venkatesh
Saligrama, and Adam Kalai. Man is to computer pro-
grammer as woman is to homemaker? debiasing word em-
beddings. In Proceedings of the 30th International Con-
ference on Neural Information Processing Systems, page
4356–4364, Red Hook, NY, USA, 2016. Curran Associates
Inc. 2

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners. In Advances in Neural Information Pro-
cessing Systems, pages 1877–1901. Curran Associates, Inc.,
2020. 1

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners. In Advances in Neural Information Pro-
cessing Systems, pages 1877–1901. Curran Associates, Inc.,
2020. 1

[7] Kaylee Burns, Lisa Anne Hendricks, Trevor Darrell, and
Anna Rohrbach. Women also snowboard: Overcoming bias
in captioning models. In ECCV, 2018. 2, 3

[8] Junyi Chai and Xiaoqian Wang. Self-supervised fair rep-
resentation learning without demographics. In Advances in
Neural Information Processing Systems, 2022. 2

[9] Junyi Chai, Taeuk Jang, and Xiaoqian Wang. Fairness with-
out demographics through knowledge distillation. In Ad-
vances in Neural Information Processing Systems, 2022. 2

[10] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedan-
tam, Saurabh Gupta, Piotr Dollár, and C. Lawrence Zit-
nick. Microsoft coco captions: Data collection and evalu-
ation server. CoRR, abs/1504.00325, 2015. 1

[11] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy,
Faisal Ahmed, Zhe Gan, Yu Cheng, and Jingjing Liu. Uniter:
Universal image-text representation learning. In Computer
Vision – ECCV 2020: 16th European Conference, Glas-
gow, UK, August 23–28, 2020, Proceedings, Part XXX, page
104–120, Berlin, Heidelberg, 2020. Springer-Verlag. 3

[12] Elliot Creager, David Madras, Joern-Henrik Jacobsen,
Marissa Weis, Kevin Swersky, Toniann Pitassi, and Richard
Zemel. Flexibly fair representation learning by disentangle-
ment. In Proceedings of the 36th International Conference
on Machine Learning, pages 1436–1445, Long Beach, Cali-
fornia, USA, 2019. PMLR. 2

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of
the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational Linguis-
tics, 2019. 1

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representa-
tions, 2021. 1, 3, 4, 5, 6, 7, 8

[15] Conor Dougherty. Google photos mistakenly labels black
people gorillas. Twitter, 2015. 2

[16] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Rein-
gold, and Richard Zemel. Fairness through awareness. In
Proceedings of the 3rd Innovations in Theoretical Computer
Science Conference, page 214–226, New York, NY, USA,
2012. Association for Computing Machinery. 2, 3, 6

[17] Rohit Girdhar, Joao Carreira, Carl Doersch, and Andrew Zis-
serman. Video action transformer network. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2019. 1, 3

[18] Sixue Gong, Xiaoming Liu, and Anil Jain. Jointly de-biasing
face recognition and demographic attribute estimation. In
In Proceeding of European Conference on Computer Vision,
Virtual, 2020. 3

[19] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances
in neural information processing systems, pages 2672–2680,
2014. 2

[20] Emily M. Hand and Rama Chellappa. Attributes for im-
proved attributes: A multi-task network utilizing implicit and
explicit relationships for facial attribute classification. In
Proceedings of the Thirty-First AAAI Conference on Artifi-
cial Intelligence, page 4068–4074. AAAI Press, 2017. 5

[21] Moritz Hardt, Eric Price, and Nathan Srebro. Equality of op-
portunity in supervised learning. In Proceedings of the 30th
International Conference on Neural Information Processing
Systems, page 3323–3331, Red Hook, NY, USA, 2016. Cur-
ran Associates Inc. 1, 2, 3, 6

12276



[22] Tatsunori Hashimoto, Megha Srivastava, Hongseok
Namkoong, and Percy Liang. Fairness without demo-
graphics in repeated loss minimization. In International
Conference on Machine Learning, pages 1929–1938. 3

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1

[24] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie,
Serge Belongie, Bharath Hariharan, and Ser-Nam Lim. Vi-
sual prompt tuning. In European Conference on Computer
Vision (ECCV), 2022. 1, 2, 3, 4, 5, 6, 7, 8

[25] Sangwon Jung, Donggyu Lee, Taeeon Park, and Taesup
Moon. Fair feature distillation for visual recognition. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 12115–12124,
2021. 2, 5

[26] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna,
Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and
Dilip Krishnan. Supervised contrastive learning. In Ad-
vances in Neural Information Processing Systems, pages
18661–18673. Curran Associates, Inc., 2020. 5

[27] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015. 6

[28] Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo
Silva. Counterfactual fairness. In Advances in Neural In-
formation Processing Systems 30, pages 4066–4076. Curran
Associates, Inc., 2017. 2

[29] Preethi Lahoti, Alex Beutel, Jilin Chen, Kang Lee, Flavien
Prost, Nithum Thain, Xuezhi Wang, and Ed H. Chi. Fair-
ness without demographics through adversarially reweighted
learning. Red Hook, NY, USA, 2020. Curran Associates Inc.
2, 3

[30] Jungsoo Lee, Eungyeup Kim, Juyoung Lee, Jihyeon Lee, and
Jaegul Choo. Learning debiased representation via disentan-
gled feature augmentation. In Advances in Neural Informa-
tion Processing Systems, 2021. 2, 5, 7

[31] Xiujun Li, Xi Yin, Chunyuan Li, Xiaowei Hu, Pengchuan
Zhang, Lei Zhang, Lijuan Wang, Houdong Hu, Li Dong,
Furu Wei, Yejin Choi, and Jianfeng Gao. Oscar: Object-
semantics aligned pre-training for vision-language tasks.
ECCV 2020, 2020. 3

[32] Jongin Lim, Youngdong Kim, Byungjai Kim, Chanho Ahn,
Jinwoo Shin, Eunho Yang, and Seungju Han. Biasadv: Bias-
adversarial augmentation for model debiasing. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3832–3841, 2023. 2

[33] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer Vision – ECCV 2014, pages 740–755, Cham,
2014. Springer International Publishing. 1

[34] Evan Zheran Liu, Behzad Haghgoo, Annie S. Chen, Aditi
Raghunathan, Pang Wei Koh, Shiori Sagawa, Percy Liang,
and Chelsea Finn. Just train twice: Improving group

robustness without training group information. CoRR,
abs/2107.09044, 2021. 3

[35] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In Proceedings of
International Conference on Computer Vision (ICCV), 2015.
1, 2, 5, 6

[36] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2021. 1, 3

[37] Vishnu Suresh Lokhande, Kihyuk Sohn, Jinsung Yoon,
Madeleine Udell, Chen-Yu Lee, and Tomas Pfister. Towards
group robustness in the presence of partial group labels. In
ICML 2022: Workshop on Spurious Correlations, Invariance
and Stability, 2022. 2

[38] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert:
Pretraining task-agnostic visiolinguistic representations for
vision-and-language tasks. In NeurIPS, pages 13–23, 2019.
3

[39] Thomas Mensink, Jakob Verbeek, Florent Perronnin, and
Gabriela Csurka. Distance-based image classification: Gen-
eralizing to new classes at near-zero cost. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 35(11):2624–
2637, 2013. 1, 2

[40] Junhyun Nam, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee, and
Jinwoo Shin. Learning from failure: De-biasing classifier
from biased classifier. In Advances in Neural Information
Processing Systems, pages 20673–20684. Curran Associates,
Inc., 2020. 2

[41] Sungho Park, Sunhee Hwang, Dohyung Kim, and Hyeran
Byun. Learning disentangled representation for fair facial at-
tribute classification via fairness-awareunbiased information
alignment. Proceedings of AAAI-2021, 2021. 2

[42] Sungho Park, Jewook Lee, Pilhyeon Lee, Sunhee Hwang,
Dohyung Kim, and Hyeran Byun. Fair contrastive learn-
ing for facial attribute classification. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10389–10398, 2022. 2, 5, 6, 7

[43] Yao Qiang, Chengyin Li, Prashant Khanduri, and Dongxiao
Zhu. Fairness-aware vision transformer via debiased self-
attention, 2023. 2

[44] Alec Radford, Jeff Wu, Rewon Child, D. Luan, Dario
Amodei, and Ilya Sutskever. Language models are unsuper-
vised multitask learners, 2019. 1

[45] Edward Raff and Jared Sylvester. Gradient reversal against
discrimination: A fair neural network learning approach. In
2018 IEEE 5th International Conference on Data Science
and Advanced Analytics (DSAA), pages 189–198, 2018. 2,
6, 7, 8

[46] Vikram V. Ramaswamy, Sunnie S. Y. Kim, and Olga Rus-
sakovsky. Fair attribute classification through latent space
de-biasing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
9301–9310, 2021. 2

[47] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

12277



Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015. 1, 5

[48] Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and
Percy Liang. Distributionally robust neural networks. In In-
ternational Conference on Learning Representations, 2020.
2, 5, 8

[49] Mhd Hasan Sarhan, Nassir Navab, Abouzar Eslami, and
Shadi Albarqouni. Fairness by learning orthogonal disentan-
gled representations. In Computer Vision - ECCV 2020 - 16th
European Conference, Glasgow, UK, August 23-28, 2020,
Proceedings, Part XXIX, pages 746–761. Springer, 2020. 2

[50] P. Sattigeri, S. C. Hoffman, V. Chenthamarakshan, and K. R.
Varshney. Fairness gan: Generating datasets with fairness
properties using a generative adversarial network. IBM Jour-
nal of Research and Development, 63(4/5):3:1–3:9, 2019. 2

[51] Seonguk Seo, Joon-Young Lee, and Bohyung Han. Unsu-
pervised learning of debiased representations with pseudo-
attributes. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
16742–16751, 2022. 3

[52] Sruthi Sudhakar, Viraj Prabhu, Arvindkumar Krishnakumar,
and Judy Hoffman. Mitigating bias in visual transformers via
targeted alignment. In British Machine Vision Conference,
2023. 2

[53] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Herve Jegou. Training
data-efficient image transformers; distillation through atten-
tion. In Proceedings of the 38th International Conference on
Machine Learning, pages 10347–10357. PMLR, 2021. 1, 3

[54] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in Neu-
ral Information Processing Systems. Curran Associates, Inc.,
2017. 1

[55] Christina Wadsworth, Francesca Vera, and Chris Piech.
Achieving fairness through adversarial learning: an ap-
plication to recidivism prediction. arXiv preprint
arXiv:1807.00199, 2018. 2

[56] Tianlu Wang, Jieyu Zhao, Mark Yatskar, Kai-Wei Chang, and
Vicente Ordonez. Balanced datasets are not enough: Estimat-
ing and mitigating gender bias in deep image representations.
2019 IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 5309–5318, 2019. 2, 3

[57] Yuqing Wang, Zhaoliang Xu, Xinlong Wang, Chunhua Shen,
Baoshan Cheng, Hao Shen, and Huaxia Xia. End-to-
end video instance segmentation with transformers. In
Proc. IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), 2021. 1, 3

[58] Depeng Xu, Shuhan Yuan, Lu Zhang, and Xintao Wu. Fair-
gan: Fairness-aware generative adversarial networks. In
2018 IEEE International Conference on Big Data (Big
Data), pages 570–575, 2018. 2

[59] Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell.
Mitigating unwanted biases with adversarial learning. In
Proceedings of the 2018 AAAI/ACM Conference on AI,

Ethics, and Society, page 335–340, New York, NY, USA,
2018. Association for Computing Machinery. 2

[60] Zhifei Zhang, Yang Song, and Hairong Qi. Age progres-
sion/regression by conditional adversarial autoencoder. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017. 2, 5, 7

[61] Tianxiang Zhao, Enyan Dai, Kai Shu, and Suhang Wang.
Towards fair classifiers without sensitive attributes: Explor-
ing biases in related features. In Proceedings of the Fif-
teenth ACM International Conference on Web Search and
Data Mining, page 1433–1442, New York, NY, USA, 2022.
Association for Computing Machinery. 2, 3

12278


