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Abstract
While recent depth completion methods have achieved

remarkable results filling in relatively dense depth maps
(e.g., projected 64-line LiDAR on KITTI or 500 sampled
points on NYUv2) with RGB guidance, their performance
on very sparse input (e.g., 4-line LiDAR or 32 depth point
measurements) is unverified. These sparser regimes present
new challenges, as a 4-line LiDAR increases the distance
between pixels without depth and their nearest depth point
sixfold from 5 pixels to 30 pixels compared to 64 lines. Ob-
serving that existing methods struggle with sparse and vari-
able distribution depth maps, we propose an Affinity-Based
Shift Correction (ASC) module that iteratively aligns depth
predictions to input depth based on predicted affinities be-
tween image pixels and depth points. Our framework en-
ables each depth point to adaptively influence and improve
predictions across the image, leading to largely improved
results for fewer-line, fewer-point, and variable sparsity set-
tings. Further, we show improved performance in domain
transfer from KITTI to nuScenes and from random sampling
to irregular point distributions. Our correction module can
easily be added to any depth completion or RGB-only depth
estimation model, notably allowing the latter to perform
both completion and estimation with a single model.

1. Introduction
Recent advances in depth completion have focused on den-
sifying depth maps created by projecting 64-line LiDAR
onto the RGB image in the KITTI dataset [14, 49] or by
randomly sampling 500 depth points from a Kinect RGBD
camera in the NYUv2 dataset [44]. While demonstrating
strong performance on dense input regimes, these methods
remain largely untested on sparser depth maps produced by
affordable, few-line LiDAR and by sparse valid points (∼
0.04% pixels) from SfM pipelines [41, 42]. To support vari-
ous sensors and applications, models must also be evaluated
on more difficult sparse and out-of-distribution settings.

Such sparser regimes pose new challenges. As shown
in Figure 1, while most image pixels are within 5 pixels of
input depth with projected 64-line LiDAR, this distance in-
creases sixfold with cheaper LiDAR sensors. In Figure 2,
we show that prediction error dramatically increases with
larger such pixel distances. Although this deterioration is
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Figure 1. The distance from each pixel to its nearest depth point is
less than 5 pixels for the 64-line LiDAR most commonly used for
depth completion on KITTI. When switching to a more affordable
and deployable 4-line LiDAR, this distance increases dramatically
to over 30 pixels, posing new difficulties for depth completion.

expected, some methods that perform well for dense input
are comparatively weaker for sparse input. For more reli-
able real-world deployment and wider applicability, com-
pletion models should demonstrate strong performance un-
der a wide range of input conditions.

In this regime, existing methods’ primarily convolutional
processing of depth points is not suitable for input of vari-
able sparsity and distributions [16, 25, 36, 47]. For sparse
depth maps with a larger variance in pixel-to-point distance,
each depth point must contribute to depth predictions for
large, or even global, regions of the image, adapting its re-
gion of influence based on the layout of input depth points
and its feature proximity to different locations in the im-
age. Towards this end, we develop a novel depth completion
framework that leverages predicted affinity between im-
age locations and depth points to iteratively improve depth
predictions. Our proposed Affinity-Based Shift Correction
(ASC) module determines the depth error of related regions
and shifts the depth predictions of these groups to align with
input depth points. Coupled with a correction confidence
weighting step, our module substantially improves depth
completion performance.

We extensively benchmark representative models and
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Figure 2. Performance of depth completion methods over increas-
ing distances to nearest depth point in KITTI. MAE↓ is in mm.

our pipeline on a battery of settings. To support other appli-
cations [41, 55] and datasets [3], completion models should
perform well over different scan-lines and sampling pat-
terns. For instance, using models trained on 64-line KITTI
to generate depth maps on 32-line nuScenes [3] results in
significant artifacts [55] and cannot directly be used for
NeRF applications [35, 55]. Similarly, models trained with
random points on NYUv2 fail when using SIFT [32] or SfM
keypoints [53]. As such, beyond training and evaluating
at individual sparsity levels (64 ∼ 1-line LiDAR, 500 ∼ 2
points), we also examine training a single model for variable
sparsity levels, evaluating on SIFT [32] keypoints, testing
on unseen point patterns, and cross-dataset transfer. Further,
our ASC module naturally enables joint depth estimation
and completion with a single model, and we demonstrate
wide applicability to various RGB-only estimation models.

Our main contributions are as follows:
• We propose a novel depth correction module that itera-

tively refines predictions using pixel-point affinity.
• We benchmark and outperform prior work on an exten-

sive suite of real-world settings.
• We verify that training with variable sparsity produces

transferable depth completion models by evaluating com-
pletion on nuScenes and on SIFT keypoints.

• Our correction module can easily be applied to any depth
completion or RGB-only estimation model.

2. Related Work
2.1. Depth Estimation and Completion
Depth estimation seeks to produce dense depth maps using
a single image [2, 13, 24, 37, 64], multiple views [1, 21, 60,
61], or additional modalities [7, 9, 15, 22, 33, 36, 38, 39].
Depth completion [10, 15, 19, 36, 47] uses an RGB im-
age and a sparse depth map from a LiDAR sensor, a depth
camera, or an SfM pipeline. The early work S2D [33]
uses an encoder-decoder CNN, and followup methods use
coarse-to-fine refinement [18, 25, 27] and multi-scale mod-
els [16, 25, 59]. Some methods use geometric constraints

such as surface normals [38, 58] or planes [23], while oth-
ers do processing in 3D space [5, 17, 20, 29, 56, 65]. To
generate more locally consistent depth, some works build
on spatial propagation networks [28] to predict the affinity
of each pixel with its local [7, 8, 16], deformable [26, 36], or
3D [29] neighbors. While these methods demonstrate good
performance for fixed, semi-dense input, their strong local
bias in propagating depth information hinders their appli-
cation to fewer-line, fewer-point, and variable sparsity set-
tings. Our module allows points to interact with regions
across the image and is applicable to any completion model,
making it complementary to these methods.

While SparseFormer [52] considers the relationship be-
tween points and pixels, they take a simple weighted sum
over input depths for each pixel. This results in low-quality
intermediate predictions and constrains the region that each
depth point can affect. In contrast, we propose a shift cor-
rection module using affinities between pixels and depth
points and demonstrate stronger performance in all settings.

Also relevant to our work is monocular depth estima-
tion [2, 13, 24, 40, 54]. As predicting depth from a single
image is fundamentally ambiguous, existing works predict
scale [13] or scale-shift invariant depth maps [40] and glob-
ally align predictions to ground truth depth maps for eval-
uation. One method [57] locally adjusts monocular predic-
tions using sparse points using a fixed gaussian kernel on
distance to compute affinities. Our method instead adapts
affinities based on semantic features and input point distri-
butions, making it more flexible without bandwidth tuning.

2.2. Depth Completion for Various Sparse Settings
While most depth completion methods evaluate on 64-line
KITTI [14, 48] and 500-point NYUv2 [43], some works
consider other settings. SparseSPN [53] proposes to train
on SIFT keypoints [42]. SpAgNet [10] develops a sparsity-
agnostic model, training on 500 points and testing on fewer
points. Our method outperforms these works under similar
conditions, and we further find that training on a variable
number of points transfers well even to unique point distri-
butions. A few methods [17, 18, 52] train and evaluate on
individual sparsity settings. We compare with these works
and improve the benchmark by carefully selecting the line
configuration for fewer lines on KITTI and by re-training
baselines on each setting. Another method considers devel-
oping domain-agnostic models [63] using monocular mod-
els trained on many datasets [40, 62]. Our model does not
use pretrained monocular models, and we also consider dif-
ferent LiDAR scan-lines and extremely sparse depth maps.

3. Method
3.1. Base Depth Estimation Architecture
Our Affinity-based Shift Correction (ASC) module can be
applied to any depth estimation method with an encoder and
decoder as shown in Figure 3(a-b). Deserving careful con-
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Figure 3. Overall Framework. (a) Our correction module can be applied to the decoder of any depth estimation model. (b) Each module
adaptively propagates depth information by refining initial depth predictions and fusing them back into decoder features. (c) The Affinity-
Based Shift Correction aligns predictions to input depth using depth errors of similar regions. (d) Correction Confidence Prediction enables
selection between context-based and input depth corrected predictions.

sideration are the input modalities to our encoder. Lead-
ing depth completion methods generally must input both
the RGB image and the sparse depth map into the encoder
[16, 25, 33, 36, 65] as they use this input-level fusion as
the main source of depth information. However, our mod-
ule fuses depth at the decoder stage, allowing the model to
perform completion even only with RGB input to the en-
coder. We find that while RGBD input outperforms RGB
input for denser inputs and matching train/test distributions,
RGB input is better at handling unseen sparsity levels and
distributions. In this work, we apply our ASC module to
a basic depth completion model, with or without NLSPN
[36], as well as two representative monocular depth estima-
tion architectures, BTS [24] and AdaBins [2] (Sec. 3.4).

3.2. Affinity-Based Shift Correction
Given a feature map of a decoder stage, our ASC module
shown in Figure 3(c) adaptively propagates depth informa-
tion from each input point to across the entire image. For a
single decoder stage, let F denote the image feature map of
shape H ′×W ′×C and let P = {(pj , dj)}Nj=1 denote the list
of N input depth points, where pj and dj are the 2D projec-
tion and the depth of the j-th input depth point, respectively.
We first predict an initial depth map Dinitial ∈ RH′×W ′×1

from F using an MLP. At a high level, our module will align
this initial prediction to the input depth points and fuse it
back into F for the next decoder stage.
Affinity Computation. Suppose we are given a depth point
on a cabinet as input. To align our depth predictions Dinitial

with the input depth points, we cannot merely correct our
prediction for that single pixel. Instead, we utilize the single

input point as a reference to which we align our depth pre-
dictions for the entire relevant region. To achieve this, we
identify the regions in the image for which each depth point
should act as a reference point. We compute the affinity
between each pair of image pixels and depth points, where
the affinity represents the extent to which each depth point
should contribute to the alignment of each image pixel.

We observe that the range of influence of each depth
point must also depend on the distribution and number of
input points. For example, between 64-line and 4-line Li-
DAR, the distance between each image pixel and its nearest
depth point varies from 5 to 30 pixels. To allow points to
calibrate their regions of influence similar to object queries
[4, 6, 30, 51], we generate features for each depth point by
adding 2D positional embeddings [12, 45, 50] to the image
features, denoted F ′, sampling image features at each depth
point projection, and leveraging a single transformer layer:

{fP
j }Nj=1 = TransformerEncoder

(
{[F ′[pj ], dj ]}

N

j=1

)
(1)

where F ′[pj ] indicates bilinearly sampling F ′ at position
pj and [·, ·] denotes concatenation. Then, employing the
cross-attention mechanism, the affinity between image pixel
feature f I

i and input depth point (pj , dj) is:

Aij =
exp((Wqf

I
i )

T (Wkf
P
j ))∑N

m=1 exp
(
(Wqf I

i )
T (WkfP

m)
) (2)

Shift Correction. Using these affinities, we create a shift-
corrected depth map Dshift, which corrects each pixel in
Dinitial using depth errors of similar pixels. Specifically,
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Figure 4. Evaluation of intermediate depth predictions through
decoder stages of the model. Using Correction Confidence and
Initial Feature-Only Fusion enables more consistent improvement.

we find the shift-corrected depth of pixel i:

Dshift
i = Dinitial

i +

N∑
j=1

Aij(dj −Dinitial
j ) (3)

The second term is the weighted average of depth errors
in the initial depth prediction for pixels j that have input
depth points, where the weights are each pixel j’s affinity,
to pixel i. Intuitively, if pixel i is in a region of the image
generally predicted to be too close, the depth prediction for
pixel i will be shifted accordingly. By supervising Dshift,
each depth point learns to adaptively influence regions for
which it can serve as an effective reference for alignment. In
addition to shift correction, we also use the affinities to take
a weighted sum over the point features [52] to get a feature
map Fpoint. This feature map and the shift corrected depth
map are fused with the initial decoder features and are used
as input to the next decoder stage.
Initial Feature-Only Fusion. Although applying the ASC
module to each decoder layer improves performance, the
shift-corrected predictions of the first, coarsest decoder
layer have poor quality when using RGB input. This is be-
cause the initial predictions for this coarsest decoder layer
are purely monocular and thus suffer from scale ambiguity.
Equation 3 can be re-written as:

Dshift
i =

N∑
j=1

Aij(Dinitial
i −Dinitial

j ) +

N∑
j=1

Aijdj (4)

The first term is the relative depth prediction of pixel i w.r.t
similar pixels j. This relative depth is applied to the actual
input depths of similar pixels j to get the depth prediction
for pixel i. Due to inherent scale ambiguity in the initial
depth predictions and thus these relative depths, the shift
correction yields poor results for the first decoder stage. In-
stead, just fusing the weighted sum of depth point features
for the first decoder stage improves results and yields scale-

consistent predictions for subsequent decoder stages, which
can then effectively do shift correction as shown in Fig. 4.

3.3. Correction Confidence Prediction
While the ASC module allows each depth point to adap-
tively rectify initial predictions, we find that with fewer
than five input depth points, shift-corrected predictions are
sometimes worse for certain regions than the initial predic-
tions. The causes are twofold. First, if the initial depth
predictions for the pixels with input depth are poor, their er-
rors are propagated to other regions as well. This problem is
more significant with fewer points, where each pixel cannot
reference many input depth points for correction. Second,
certain depth points cannot benefit depth prediction for the
entire image. For instance, although a point on a cabinet
may improve predictions for the cabinet, the wall behind it,
and the floor beneath it, it has little relationship to objects
in an adjacent room. For these regions, the initial depth pre-
diction based on surrounding context can be better.

Motivated by these observations, as shown in Figure
3(d), we combine the initial and corrected depth predictions
and fuse only the best from each depth map. Specifically,
the depth map fused into the decoder feature is:

Dfuse = (1− ωfuse) ◦ Dinitial + ωfuse ◦ Dshift (5)

ωfuse = σ(ϕθ([F ′,Fpoint,Dinitial,Dshift,Fdist])) (6)

where Fdist is the normalized distance of each pixel to its
nearest depth point, ϕθ is a lightweight CNN head, σ is
the sigmoid function, and ωfuse is a 1-channel confidence
map. This predicted confidence significantly improves per-
formance for few-point regimes as shown in Figure 4.

3.4. Joint Depth Estimation and Completion
As discussed in Section 3.1, the ASC module allows for
depth completion with an RGB-input encoder. Thus, our
method is easily applicable to monocular depth estimation
models, enabling a single model to flexibly do both monoc-
ular depth estimation and completion depending on avail-
ability of depth points. We train this unified model by sam-
pling from estimation and completion tasks and by bypass-
ing the ASC modules for the depth estimation task. The
final model demonstrates good performance on both tasks.

3.5. Losses
In total, our pipeline produces nine depth maps - four initial
predictions Dinitial, four fused predictions Dfuse, and one
final prediction Dfinal. The overall loss is:

L = Lfinal +

4∑
i=1

αi

(
Li
initial + Li

fuse

)
(7)

where for instance Lfinal denotes the depth loss on Dfinal

and αi weights the losses of each scale.
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4. Experiments
4.1. Datasets and Evaluation Metrics
We closely follow previous work [5, 34, 36, 47, 59] for gen-
eral dataset settings. We refer readers to Section B of the
supplementary for full details on the datasets.
KITTI. We simulate fewer-line LiDAR by subsampling 64-
line LiDAR. Notably, for 1 to 8-line LiDAR, the pitch of the
simulated sensor significantly impacts completion results.
Unlike prior work [18], we select the pitch maximizing per-
formance to mirror realistic scenarios where the sensor is
placed to maximize scene coverage. To avoid bias, a sepa-
rate MiDAS-like [40] RGBD model is used to select pitch.
NYUv2. By default, we randomly sample 2, 8, 32, 200, and
500 input points over the depth map. To further model real-
world point distributions, we also benchmark with SIFT
keypoints, which are often clustered around corners.
VOID. We use the official 150, 500, and 1500 depth points
tracked by a real-world EKF-based VIO SLAM system.
Evaluation. In the main paper, we focus on quantitative
results. Extensive visualizations and qualitative analysis are
in the supplementary. As in prior work [16, 20, 36, 59], for
KITTI & VOID, we report RMSE↓ and MAE↓ (in mm), and
for NYUv2, we report RMSE↓ (meters), REL↓, and δ1.25↑.

4.2. Overview of Experiments
We extensively benchmark on a suite of real-world settings:
• In Section 4.3, we ablate the components of our method.
• In Sections 4.4 and 4.5, we test on KITTI and NYUv2.

Notably, we consider two settings. In the “Fixed” spar-
sity setting, a separate model is trained & evaluated for
each input depth distribution. In the “Variable” sparsity
setting, a single model is jointly trained over all input dis-
tributions by randomly sampling # of lines for KITTI or
# of points for NYUv2 in each training iteration. By eval-
uating a single model on multiple input distributions, this
“Variable” setting models a realistic setup where depth
sparsities may vary during deployment.

• In Section 4.6, we test on real-world indoor distributions:
SIFT points on NYUv2 and SLAM-tracked points on
VOID. On VOID, we show that our method is more ro-
bust when testing on sparser inputs than during training.

• In Section 4.7, we focus on unseen sparsity levels and
patterns. We show that 1) our model is more robust un-
der input distribution shifts, and 2) training on “Variable”
sparsity is a simple training scheme that yields transfer-
able models, validating our main experimental setting.

• In Section 4.8, we apply our ASC module to various
RGB-only depth estimators for joint estimation & com-
pletion, and we also demonstrate a downstream applica-
tion for 3D detection on variable scan lines.

Implementation Details. We emphasize that, for fair
comparison, we carefully re-train all methods for sparser
regimes, instead of applying 64-line or 500-point check-
points. Due to the size of the KITTI dataset, we train on

Components
# of Sampled Points

2 8 32 200 500
Features (fP

j ) 0.106 0.076 0.050 0.024 0.017
Depths (dj) 0.136 0.099 0.064 0.039 0.033
Depth Errors (dj −Dinitial

j ) 0.130 0.084 0.050 0.023 0.016
Features + Depths 0.108 0.078 0.050 0.025 0.018
Features + Depth Errors 0.115 0.078 0.049 0.023 0.016

Table 1. Ablation on different uses of affinity. Metric is REL↓.

6x temporally sampled frames [18]. The partially scale-
invariant loss [13] is used for Dinitial. For Dfuse and
Dfinal, we use ℓ1 for NYUv2 and both ℓ1 and ℓ2 for KITTI
[36]. More details are in Section C of the supplementary.

4.3. Ablation Study
We first validate design choices in our Affinity-based Shift
Correction module. To verify how effectively the module
propagates depth information, the base model in the first
two ablations is an RGB-input encoder-decoder with an Ef-
ficientNetB5 [46] backbone. We train with variable sparsity,
and we evaluate on REL↓. Full tables with all metrics and
visualizations are in Section D.1 of the supplementary.
Different Uses of Affinity. In our final model, we use
affinities from Equation 2 to take a weighted sum over
features and depth errors for correction. We ablate each
component and also test a simpler weighted sum over just
depths. We start with a baseline encoder-decoder using our
module without correction confidence and initial feature-
only fusion and with ℓ1 + ℓ2 supervision. We then consider
fusion of an affinity-weighted sum of depth features, depths,
or depth errors. Results are in Table 1.

When using a single component, taking a weighted sum
over features is best for few points (2 & 8) while weighted
sum over the depth errors is best for more points (200 &
500). A simple weighted sum over input depths performs
poorly especially with more points as it blurs depth bound-
aries. With two components, using features with depth er-
rors is better for 32, 200, and 500 points and using features
with input depths is better for 2 points. As per analysis in
Section D.2 of the supplementary, when fusing weighted
sum over features and depths, the model just uses the low-
quality and blurry intermediate depth map as a vague depth
prior. On the other hand, fusing features and depth errors
causes the model to be over-confident in the corrected depth
map Dshift for fewer points as discussed in Section 3.3.
Correction Confidence and Initial Feature-Only Fusion.
To address this issue, in Table 2, we add confidence predic-
tion ωfuse and find that predicting ωfuse with knowledge
of the distance from each pixel to the nearest depth point
improves few-point regimes. This corroborates our analy-
sis in Section 3.3 that depth of some regions of the image
in the extreme sparsity setup are best predicted just by us-
ing contextual information. Supervising initial direct depth
predictions with the partially scale-invariant loss [13] for

21544



Components
# of Sampled Points

2 8 32 200 500
Features + Depth Errors 0.115 0.078 0.049 0.023 0.016
+ ωfuse w/o Fdist 0.113 0.078 0.049 0.023 0.016
+ Fdist 0.108 0.078 0.049 0.023 0.016
+ Partial SI-Loss for Dinitial 0.108 0.077 0.047 0.023 0.016
+ Initial Feature-only fusion 0.102 0.073 0.047 0.023 0.016
+ ℓ1 for Dfinal and Dfuse 0.098 0.069 0.044 0.022 0.015

Table 2. Ablation on correction confidence, initial feature-only
fusion, and loss functions. Metric is REL↓.

Backbone
w/ Depth

NLSPN
# of Sampled Points

Enc. Input 2 8 32 200 500
Res34 ✗ ✗ 0.110 0.078 0.047 0.022 0.015
Res34 ✓ ✗ 0.134 0.086 0.048 0.022 0.016
Res34 ✓ ✓ 0.132 0.084 0.047 0.021 0.014

Res34+ ✗ ✗ 0.131 0.086 0.049 0.023 0.017
Res34+ ✓ ✗ 0.133 0.081 0.044 0.020 0.014
Res34+ ✓ ✓ 0.127 0.078 0.043 0.019 0.013
Original NLSPN Model 0.132 0.084 0.044 0.019 0.013

Effb5 ✗ ✗ 0.098 0.069 0.044 0.022 0.015
Effb5 ✓ ✗ 0.101 0.071 0.045 0.023 0.017
Effb5 ✓ ✓ 0.098 0.069 0.043 0.021 0.014

Table 3. Ablating backbones, inputs, and NLSPN. Metric is REL↓.

easier optimization improves performance slightly. Then,
switching the first correction module to feature-only fusion
to address scale-ambiguity before correction improves per-
formance, supporting our analysis in Section 3.2. Finally,
using ℓ1 loss for supervising Dfinal and Dfuse on NYUv2
following NLSPN [36] further improves performance.
Backbone, Input Modalities, and NLSPN Head. In Ta-
ble 3, we ablate backbones, input modalities, and the NL-
SPN head. ResNet34+ is the backbone of NLSPN, without
the stem’s stride 2 convolution and max-pooling. Overall,
the high-res ResNet34+ is better for denser input but worse
for fewer points. Effb5 performs the best for few points,
supporting our intuition that with fewer points, contextual
information from the image is more important. RGB en-
coder input is best for few points, but is worse than RGBD
+ NLSPN for dense points. RGB input with NLSPN head
is excluded as it generally performs worse than just RGB.

Next, the results of the original NLSPN model are in row
7. Adding our module (row 6) significantly outperforms
the original NLSPN model for sparser settings. We exhaus-
tively further verify the improvement from our module in
more complex and realistic settings in the main results sec-
tions. Overall, our ASC module can be easily applied to
models with different backbones and input modalities. No-
tably, our module is the only source of depth information
for RGB-input settings, and they compare favorably even
against strong RGBD-input depth completion models that
run a deep CNN encoder on depth maps.
CSPN vs NLSPN Refinement. In Table 4, we show that
performance of our pipeline improves by adding the CSPN

Components
# of Sampled Points

2 8 32 200 500
R34+ RGBD 0.1327 0.0805 0.0435 0.0198 0.0140
w/ CSPN 0.1332 0.0802 0.0428 0.0193 0.0134
w/ NLSPN 0.1272 0.0783 0.0425 0.0190 0.0130

Table 4. Ablation on refinement head. Metric is REL↓.

[7] head, then further by adding the NLSPN head [36]. This
demonstrates that our proposed ASC module is comple-
mentary to improvements in spatial propagation refinement.

4.4. Evaluation on the KITTI Dataset
In Table 5, we compare methods in both “Fixed” and “Vari-
able” settings, as indicated on the left side of the table. Ours
(NLSPN Base) has the same architecture as NLSPN but
with our ASC modules. In the “Fixed” setting, our method
outperforms existing work in for all scan lines, especially
for fewer-line settings. The gap is even larger when training
a single model on variable scan lines, and switching from
Res34+ to Effb5 improves performance for sparser settings,
supporting our analysis from ablating backbones. Finally,
although not our focus, we include a full leaderboard com-
parison on the very dense 64-line LiDAR in the supplemen-
tary and find that our method performs competitively.

4.5. Evaluation on the NYUv2 Dataset
Results for NYUv2 are in Table 6. As in KITTI, we took
paper results whenever possible and re-trained baselines
[20, 25, 36, 52] on each setting otherwise. On NYUv2, we
compare across fixed and variable settings because perfor-
mance improves on sparser input (2, 8, 32 pts) when train-
ing a single model on variable # of points, and using a single
model for multiple sparsities imposes no additional costs.

Our method achieves state-of-the-art performance, with
especially notable improvements in sparser settings over
NLSPN, our base model, and prior work. We see a simi-
lar trade-off as in KITTI for sparse vs. dense performance
when switching from Res34+ to Effb5, which we explore
further in Section 4.8. A full leaderboard comparison for the
largely saturated 500-point setting is in the supplementary.
In all, we verify that our proposed ASC module improves
performance remarkably for more difficult fewer-point and
variable-sparsity settings.

4.6. Evaluation on Real-World Indoor Distributions
SIFT Keypoints. To evaluate our model on uneven dis-
tributions similar to SfM points [32, 42], we follow Spars-
eSPN settings in training and testing on SIFT keypoints on
NYUv2 as shown in Table 7. Our pipeline outperforms
CSPN and NLSPN and also achieves superior results to
SparseSPN without a surface normal ViT-B network.
SLAM Keypoints. In Table 8 we test with points tracked by
a VIO system. We verify 1) our ASC module improves NL-
SPN for uneven, real-world distributions, 2) our ASC mod-
ule also transfers better to unseen sparsity levels (e.g., 150,
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Method
1 Line 2 Line 4 Line 8 Line 16 Line 32 Line 64 Line

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Fi
xe

d
Sc

an
L

in
e MultiStack [25] 2505.9 1146.0 2456.2 1009.7 2180.0 766.6 1725.4 519.0 1363.3 377.5 1065.6 280.2 869.7 220.9

GuideNet [47] 2252.7 1007.9 2223.3 900.9 2038.7 752.0 1628.2 541.7 1293.1 411.7 1011.9 300.5 850.0 250.5
NLSPN [36] 2069.3 873.9 2020.1 782.5 1851.2 627.1 1496.9 446.7 1215.3 333.8 990.3 258.0 833.5 208.8
ENet [16] 2077.9 868.7 2023.5 773.8 1847.7 622.5 1522.0 452.7 1236.5 351.5 1004.7 303.3 846.9 229.3
SparseFormer [52]† 2065.9 900.2 2009.1 801.7 1836.8 639.6 1500.9 472.6 1228.0 365.4 1017.3 287.6 891.5 238.3
Ours (NLSPN Base) 2015.1 849.9 1954.4 738.6 1798.1 599.9 1458.3 435.2 1202.1 324.8 970.2 253.9 818.1 205.7

V
ar

ia
bl

e
Sc

an
L

in
es

MultiStack [25] 2547.3 1181.4 2487.3 1058.6 2224.7 806.7 1792.3 567.1 1440.9 419.9 1139.7 319.0 956.0 258.4
GuideNet [47] 2385.4 1099.8 2314.6 974.5 2205.3 876.0 1940.9 741.9 1634.6 622.7 1297.7 475.4 1027.9 346.6
NLSPN [36] 2195.5 968.0 2150.0 874.8 1963.3 690.2 1605.4 505.2 1319.9 387.4 1074.6 305.0 923.2 256.1
ENet [16] 2126.0 937.0 2084.6 831.6 1918.2 676.2 1589.8 514.2 1310.3 409.1 1074.4 337.2 931.7 300.2
SparseFormer [52]† 2128.6 988.8 2067.7 862.9 1893.2 691.5 1571.9 525.7 1297.4 420.9 1080.4 352.7 947.0 308.8
Ours (NLSPN Base) 2051.9 913.2 2015.7 788.4 1829.0 633.9 1529.2 475.1 1258.9 367.6 1033.2 290.6 884.8 237.1
Ours (NLSPN Effb5 Base) 2032.7 830.1 1997.3 750.9 1873.8 627.9 1611.5 481.6 1333.1 373.4 1090.4 295.2 932.3 244.5

Table 5. Evaluation on the KITTI dataset. For fixed scan lines, we train and test on same scan lines. For variable scan lines, we train
sampling from 1 to 64 line LiDAR. Best and second best results are emphasized. †Model re-implemented by us.

Method 2 Points 8 Points 32 Points 200 Points 500 Points
δ1.25 ↑ REL↓ RMSE↓ δ1.25 ↑ REL↓ RMSE↓ δ1.25 ↑ REL↓ RMSE↓ δ1.25 ↑ REL↓ RMSE↓ δ1.25 ↑ REL↓ RMSE↓

Fi
xe

d
#

of
Po

in
ts

S2D [34] - - - - - - - - - 0.971 0.044 0.230 - - -
GuideNet [47] - - - - - - - - - 0.988 0.024 0.142 0.995 0.015 0.101
MultiStack [25] 0.7451 0.1677 0.6014 0.8825 0.0997 0.4212 0.9578 0.0501 0.2626 0.9890 0.0200 0.1403 0.9949 0.0126 0.0972
NLSPN [36] 0.7736 0.1461 0.5572 0.9022 0.0892 0.3982 0.9658 0.0441 0.2469 0.9904 0.0185 0.1332 0.9955 0.0117 0.0924
PointFusion [17] 0.875 0.109 0.470 - - - 0.963 0.057 0.319 0.995 0.015 0.112 0.996 0.014 0.090
SparseFormer [52] 0.740 0.161 0.626 - - - 0.962 0.050 0.255 0.989 0.022 0.142 0.994 0.014 0.104
SparseFormer [52]† 0.7638 0.1549 0.5807 0.8918 0.0988 0.4109 0.9619 0.0500 0.2575 0.9898 0.0218 0.1371 0.9951 0.0151 0.0991
CostDCNet [20] 0.8042 0.1421 0.5454 0.9077 0.0884 0.3970 0.964 0.048 0.258 0.9889 0.0209 0.1429 0.995 0.013 0.096
Ours (NLSPN Base) 0.8080 0.1353 0.5232 0.9166 0.0811 0.3647 0.9680 0.0433 0.2407 0.9905 0.0182 0.1315 0.9956 0.0115 0.0917

V
ar

ia
bl

e
#

of
Po

in
ts MultiStack [25] 0.7253 0.1838 0.6395 0.8604 0.1140 0.4598 0.9531 0.0552 0.2772 0.9874 0.0222 0.1482 0.9934 0.0150 0.1093

NLSPN [36] 0.8220 0.1321 0.4973 0.9117 0.0844 0.3664 0.9668 0.0444 0.2399 0.9899 0.0194 0.1349 0.9949 0.0131 0.0980
SparseFormer [52]† 0.7716 0.1583 0.5610 0.8931 0.0966 0.3978 0.9632 0.0503 0.2545 0.9896 0.0230 0.1398 0.9946 0.0172 0.1052
CostDCNet [20] 0.8249 0.1300 0.5119 0.9101 0.0859 0.3810 0.9629 0.0482 0.2582 0.9884 0.0218 0.1469 0.9939 0.0150 0.1079
Ours (NLSPN Base) 0.8350 0.1272 0.4749 0.9215 0.0783 0.3473 0.9690 0.0425 0.2335 0.9903 0.0190 0.1325 0.9951 0.0130 0.0970
Ours (NLSPN Effb5 Base) 0.8934 0.0977 0.3994 0.9363 0.0687 0.3234 0.9679 0.0425 0.2386 0.9881 0.0208 0.1461 0.9939 0.0140 0.1062

Table 6. Evaluation on the NYUv2 dataset. †Model re-implemented by us. We compare across both fixed and variable # of training points
here because for some sparsities and models, variable training improves performance.

Method δ1.02 ↑ δ1.05 ↑ δ1.10 ↑ REL↓ RMSE↓
CSPN [7] 0.535 0.783 0.889 0.043 0.220
NLSPN [36] 0.603 0.808 0.909 0.036 0.179
SparseSPN [53] 0.648 0.844 0.929 0.031 0.159
SparseSPN [53]† 0.702 0.876 0.944 0.026 0.147
Ours (NLSPN Base) 0.671 0.862 0.939 0.028 0.148

Table 7. Methods are trained and evaluated on 800 SIFT keypoints
on NYUv2. †Additional ViT-B used for normals.

Method 150 Points 500 Points 1500 Points
RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓

NLSPN 217.0 104.5 146.9 59.2 79.2 26.3
Ours (NLSPN Base) 181.5 83.7 131.5 52.0 78.3 25.5
Ours (R34 RGB) 163.9 79.8 122.7 53.1 72.6 25.8

Table 8. Evaluation on VOID. Models are trained with 1500 points
without point-dropping augmentation. Metrics are in mm.

500 points), and 3) using an RGB input encoder with our
ASC module is best for such unevenly distributed points.

4.7. Inference on Unseen Depth Point Distributions
Here, we focus on point distributions unseen during training
to evaluate wide applicability to other tasks and datasets.

Method # of SIFT Points
8 Points 16 Points 32 Points 64 Points

2-
50

0 NLSPN 0.113 0.098 0.079 0.063
Ours (NLSPN Base) 0.110 0.094 0.075 0.060
Ours (R34 RGB) 0.102 0.091 0.078 0.064

8-
64

SI
FT NLSPN 0.125 0.109 0.090 0.074

Ours (NLSPN Base) 0.106 0.094 0.079 0.066
Ours (R34 RGB) 0.097 0.089 0.079 0.068

Table 9. Evaluation on sparse SIFT keypoints. Metric is REL↓.

Transfer to SIFT Keypoints. We consider SIFT key-
points as a realistic, uneven target distribution of input depth
points. We test models trained with variable random 2∼500
points and variable SIFT 8∼64 points in Table 9. The re-
sults confirm that our main evaluation setting of training on
a variable # of randomly sampled points yields transferable
models. Furthermore, we doubly verify that our ASC mod-
ule again improves over NLSPN for uneven input and that
RGB encoder variants are best for sparse and uneven input.
Comparison to Sparsity Agnostic Depth Completion.
SpAgNet [10] proposes a sparsity-agnostic completion
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Method 8 Lines 16 Lines 32 Lines
RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓

64

NLSPN 14099 9698 9542 5957 6371 3403
Ours (NLSPN Base) 11197 6652 7829 4296 5704 2784
Ours (R34 RGB) 10877 5666 6612 3015 4855 2058

1∼
64

NLSPN 7693 3982 5685 2880 4901 2393
Ours (NLSPN Base) 7423 3849 5475 2595 4774 2175
Ours (R34 RGB) 6538 3176 5409 2419 5072 2220

Table 10. Evaluation on nuScenes when training with 64-lines or
random 1 to 64 lines on KITTI. Metrics are in mm.

Method 0 Points 2 Points 32 Points 500 Points
REL↓ RMSE↓ REL↓ RMSE↓ REL↓ RMSE↓ REL↓ RMSE↓

BTS R50 Mono-only [24] 0.119 0.419 - - - - -
BTS R50 + Ours 0.117 0.411 0.095 0.365 0.043 0.215 0.017 0.108
AdaBins Mono-only [2] 0.103 0.364 - - - - -
AdaBins + Ours 0.107 0.368 0.087 0.328 0.044 0.206 0.026 0.133

Table 11. Joint depth estimation & completion with our module.

model trained on 500 points and tested on various point
patterns including Livox. The full comparison is in Sec-
tion G of the supplementary. When similarly trained on
500 points, our pipeline with an RGB-input encoder outper-
forms SpAgNet in almost all settings. Evaluating methods
trained with variable points, performance further improves,
even for unique shifted grid and Livox patterns. This fur-
ther demonstrates that simply training on a variable # of
randomly sampled points transfers to unseen distributions.
Transfer Performance on nuScenes. To test wider ap-
plicability of completion methods, we benchmark KITTI-
trained models on domain adaptation to nuScenes depth
completion. We evaluate using the dense depth maps gen-
erated by [31]. The default nuScenes LiDAR is 32 lines,
and we generate 16 and 8 lines by subsampling. The core
results are in Table 10, and extensive analyses and visual-
izations are in Section I of the supplementary. We note that
this is a very difficult setting with domain shift in capture
conditions, RGB resolution, and sparse depth. RGBD mod-
els trained on just 64-line LiDAR transfer poorly and gener-
ates artefacts as noted in previous work [55]. However, us-
ing our pipeline with RGB input generates cleaner results.
Training on variable lines improves performance, and in all
settings, our pipeline outperforms NLSPN.
4.8. More Applications of the ASC module
Application to Monocular Depth Estimation Models. As
our ASC module propagates depth information in the de-
coder stage, it can easily be applied to any RGB-only model
to yield a single model for both depth estimation and com-
pletion. We verify this with monocular architectures: BTS
[24] and AdaBins [2]. We train these models on the NYUv2
depth estimation split prepared by BTS for fair compari-
son. In Table 11, our pipeline maintains performance in
the 0 point regime while consistently improving with more
points. Interestingly, we find that AdaBins performs better
for fewer points and BTS for more points, and we hypoth-
esize AdaBins’ use of a transformer to predict global depth
distribution of the image may not be helpful when depth

Method Backbone Pre-train -D input 2points 32 points 500 points
NLSPN R34+ IN1k ✓ 0.1321 0.0444 0.0131
Ours (NLSPN) R34+ IN1k ✓ 0.1272 0.0425 0.0130
Ours R34 IN1k ✗ 0.1100 0.0470 0.0151
Ours BEiT-B MiDaS ✗ 0.0866 0.0416 0.0154
Ours BEiT-L MiDaS ✗ 0.0744 0.0385 0.0158

Table 12. NYUv2 completion w/ variable # of points. REL↓ used.

BTS [24] + Our ASC w/ 0 Points 2 Points 32 Points 500 Points
various RGB backbones REL↓ RMSE↓ REL↓ RMSE↓ REL↓ RMSE↓ REL↓ RMSE↓
ResNet50 (ImageNet1k) 0.117 0.411 0.095 0.365 0.043 0.215 0.017 0.108
BEiT-B (MiDaS pretrained) 0.106 0.369 0.081 0.317 0.037 0.201 0.016 0.115
BEiT-L (MiDaS pretrained) 0.088 0.317 0.063 0.264 0.030 0.170 0.016 0.115

Table 13. Joint depth estimation & completion with standard
mono-depth settings (416x544 resolution). RMSE is in meters.

distribution is known with many input depths. Our module
allows any depth estimation method to also perform com-
pletion, connecting two largely separated lines of work.
Scaling Monocular Depth Estimation Models. As our
ASC module can easily be applied to any mono-depth ar-
chitecture, we demonstrate that it is complementary to ad-
vancements in mono-depth results. We show completion-
only variants in Table 12 and joint estimation & completion
in Table 13. Using a mono-depth MiDaS [40] backbone
improves results for 0-32 points. However, there are trade-
offs at very dense (500-point) settings, where a simple R34+
backbone with RGBD input performs better. A more exten-
sive discussion is in Section J of the supplementary.
Single Pipeline for 3D Detection on Variable Scan Lines.
Other than domain adaptation, another advantage of a single
completion model for variable scan lines is ease of deploy-
ment to different sensors and settings. To test our model for
downstream tasks, we train 3D detection on point clouds
out-projected from completed depth maps. The full results
are in Section K of the supplementary. First, our comple-
tion model consistently improves 3D detection [11], espe-
cially in few-line settings where the LiDAR-only model col-
lapses. Our completion-then-detection pipeline also outper-
forms LiDAR-only for both “Fixed” 64-line and “Variable”
1-64 line settings. In all, we confirm that our pipeline is ef-
fective for downstream 3D detection and can be used for a
completion-then-detection pipeline on variable sparsities.

5. Conclusion
In this work, we proposed a novel depth completion
framework that leverages predicted affinity between image
locations and depth points to enable each depth point to
adaptively influence and improve depth predictions across
the image. Our method improves performance for both
sparser and variable distribution regimes on the KITTI and
NYUv2 datasets, as well as for when transferred to the
nuScenes dataset and to SIFT keypoints. Further, our pro-
posed shift-correction module can be applied to any monoc-
ular depth estimation model. We believe our work bridges
the gap between monocular estimation and depth comple-
tion and will enable the development of depth completion
methods applicable to various sensors and applications.
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Janne Heikkilä. Boosting monocular depth estimation with
lightweight 3d point fusion. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 12767–
12776, 2021. 2, 7

[18] Saif Imran, Xiaoming Liu, and Daniel Morris. Depth com-
pletion with twin surface extrapolation at occlusion bound-
aries. In CVPR, pages 2583–2592, 2021. 2, 5

[19] Maximilian Jaritz, Raoul De Charette, Emilie Wirbel, Xavier
Perrotton, and Fawzi Nashashibi. Sparse and dense data with
cnns: Depth completion and semantic segmentation. In 2018
International Conference on 3D Vision (3DV), pages 52–60.
IEEE, 2018. 2

[20] Jaewon Kam, Jungeon Kim, Soongjin Kim, Jaesik Park, and
Seungyong Lee. Costdcnet: Cost volume based depth com-
pletion for a single rgb-d image. In Computer Vision–ECCV
2022: 17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part II, pages 257–274. Springer,
2022. 2, 5, 6, 7
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