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Abstract

To alleviate the utility degradation of deep learning im-
age classification with differential privacy (DP), employing
extra public data or pre-trained models has been widely ex-
plored. Recently, the use of in-distribution public data has
been investigated, where tiny subsets of datasets are re-
leased publicly. In this paper, we investigate a framework
that leverages recent diffusion models to amplify the infor-
mation of public data. Subsequently, we identify data di-
versity and generalization gap between public and private
data as critical factors addressing the limited public data.
While assuming 4% of training data as public, our method
achieves 85.48% on CIFAR-10 with a privacy budget of
€ = 2, without employing extra public data for training.

1. Introduction

Differential privacy (DP) [18, 19] establishes a mathemat-
ical framework to ensure the privacy of training data. In
deep learning, differentially private SGD (DP-SGD) [1]
has become the de facto standard method to guarantee the
models’ privacy. However, differentially private training in-
evitably degrades performance compared to standard (non-
DP) training [6, 45]. As a practical solution, leveraging pub-
lic pre-trained models or public data has been explored to
enhance utility [12, 39, 59, 65-67]. As using public data
raises no privacy concerns, fine-tuning pre-trained models
on private data can make use of learned features for free.
Nevertheless, their effectiveness might be diminished when
addressing out-of-distribution (OOD) public data of small
shared characteristics with private data [59].

As an alternative, researchers have investigated the use
of in-distribution (ID) public data, indicating that a small
portion of in-distribution data is made public [38]. For ex-
ample, some data owners decide to share their data publicly
in exchange for economic incentives or public interest. This
setup allows us to leverage public data with a distribution
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Figure 1. Illustration of (Top) existing optimization-based meth-
ods and (Bottom) proposed training procedure for amplifying in-
distribution public data and utilizing the synthetic data.

similar to private data. In contrast to previous approaches,
such as utilizing extra OOD data or distribution shift, we
need to assume a limited amount of ID public data since the
public data might contain more sensitive information. How-
ever, the repeated use of limited-sized public data can raise
critical issues related to memorization and overfitting [43].
To mitigate the aforementioned problems, previous studies
mainly have focused on utilizing side information from the
little public data to enhance the optimization of differen-
tially private deep learning [2, 4, 38, 43].

Recently, Ganesh et al. [21] pointed out that warm-up
training with public data plays a crucial in private optimiza-
tion to find a good basin with a small loss, whereas DP-SGD
from a random initial point faces a high loss and poor op-
timization. From this viewpoint, we suggest that enlarging
the public dataset could improve the performance of private
learning. By using the recent diffusion models [28, 30], we
aim to enrich the contextual information of public data. We
further identify that data diversity and generalization gap
between public and private data act as critical factors, par-
ticularly addressing the limited size of public data.

The proposed framework is illustrated in Figure 1. ' We
summarize our approaches and their performance gains in

10ur code is available at
https://github.com/JinseongP/DPTrainer.
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Table 1. Ablation study on the impact of various techniques, in-
cluding synthesis, augmentation, and optimization, to enhance
classification performance using in-distribution public data from
CIFAR-10 under (2, 107°)-DP. Refer to Section 3.1 for the details
of setups and the relevant sections for the details of each method.

Setup ‘ Training Settings ‘ Test Acc
Baselines including previous SOTA methods (Sec. 3.1)

Cold Cold Baseline (WRN16-4) [12] 64.02%

Warm Warm-up on public data 68.09%
WarmSyn | Warm-up on DDPM synthesis [43] 72.0%
WarmSE | WarmSyn (DDPM) + DOPE-SGD [43] 75.1%

In-distribution public data synthesis (Sec. 4.1) & Diversity (Sec. 4.2)

WarmSyn | Warm-up on EDM synthesis 75.13 %
WarmSyn | EDM synthesis + generation diversity 77.66 %
WarmSyn | EDM synthesis + augmentation diversity 84.88%

Generalization for public-private datasets (Sec. 4.3)

WarmSyn ‘ Well-generalizing minimum during warm-up ‘ 85.48%

Table 1, assuming 4% of public data with a privacy budget
of e = 2 and § = 1075, The results outperform the exist-
ing state-of-the-art (SOTA) methods, i.e., boosting the ac-
curacy from the previous 75.1% [43] to 85.48% on CIFAR-
10. We emphasize that our approaches for dissecting warm-
up training for DP are distinguishable from transfer tasks
in non-DP setups, addressing data scarcity and improving
underperforming DP-SGD optimization. Table 2 shows the
gain and privacy cost of methods with public data usage
compared to the training without public data, as in [21].
The results show higher gain and privacy costs with stronger
privacy (lower ), whereas ours shows the highest gain and
smallest costs. Notably, we observe tiny improvements in
non-private settings, highlighting the distinctiveness of DP
scenarios and the unique strengths of our tailored approach.

Table 2. Gain (1) in performance and the corresponding cost of pri-
vacy (|, in parentheses) for each method compared to not exploit-
ing public data. Refer to Section 3.1 for the details of the setups.

Methods Non-priv. e=6 e=2
Warm [43]  0.05% (-) 0.10% (18.80%)  3.20% (27.80%)
WarmSE [43]  0.13% (-)  3.00% (15.98%)  5.60% (25.48%)
Ours 0.13% (-)  10.06% (8.92%) 20.58% (10.50%)

2. Background and Related Work
2.1. Differentially Private Deep Learning

Differential privacy (DP) [19] can guarantee the privacy of
training data as follows:

Definition 2.1 (Differential privacy) For two adjacent in-
puts d,d’ € D, a randomized mechanism M : D — R satis-
fies (&,0)-differential privacy for any set of possible outputs
ScRif

Pr{M(d) e S] <e*Pr{M(d") e S]+6. )

The privacy budget € > 0 controls the level of privacy guar-
antee with the broken probability § > 0. In deep learning,
differentially private SGD (DP-SGD) [1] is widely used
with the following steps: (i) average the clipped per-sample
gradient V/;(w) = V{(w; x;) for weight w with respect to
each individual private data sample x; € X}" and (ii) add
Gaussian noise to the averaged gradient as follows:

1
t pr Z clip (vfi(wt)ao)a
X o X )

g =g +N(O70202I).

pr

The weight is updated as w1 = w; — ngY" with a learning
rate n and c1ip(wu,C) projects u to the Lo-ball of radius
C. The noise level o is determined by the privacy budget
(e, 9), the number of training steps, and the sampling prob-
ability (refer to Appendix C for details).

To guarantee privacy with clipping and noise addition,
DP-SGD inevitably degrades the performance during opti-
mization. Therefore, various studies explored DP-friendly
properties, including architecture [9, 59], loss and activa-
tion functions [44, 54], or smoothness [46, 55, 60]. No-
tably, De et al. [12] introduced a new era in utilizing large
models for DP-SGD tasks by introducing the averaged loss
of various augmentations called augmentation multiplicity,
weight standardization [49], and optimization tricks. Note
that adaptive clipping [3, 8] could improve our results.

2.2, Private Learning with Public Information

The benefits of massive OOD public data have been ex-
plored in the context of the pre-trained models in vision
[7, 12] and language [39, 65—67] models. Additionally, the
transfer learning with similar distribution, such as CIFAR-
100 for CIFAR-10, was under investigated [58, 59].

ID public data XP“® requires different approaches from
the massive OOD public data due to its limited size and
similar distributional properties. Hence, prior studies [2, 4,
38, 43], categorized as extended methods in Section 3.1,
have focused on mitigating errors in the optimization of DP-
SGD by utilizing the gradients of public data as a proxy
for true gradients. These methods update the weight with
Wiy = we =1 fg, for fo(wy; Xf“b, X?F") such as normaliz-
ing the private gradient with the public gradient norm [38],
employing a linear combination of private and public gradi-
ents [2], or estimating low-rank approximation with public
data (even unlabelled) to reduce noise levels [48, 65].

Nasr et al. [43] firstly introduced training a generative
model as an augmentation technique. However, their pri-
mary focus is the optimization called DOPE-SGD, which
updates towards the public gradient g”*” (without clipping
and noise addition) and makes g’ — g"" private as follows:

w1 = wy — (gl + clip(gh*’ - g’ ,C) + N), (3)
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with the same noise level A in Equation (2). To the best of
our knowledge, none of the prior studies deeply investigated
the ID public data as a perspective of the data synthesis.

2.3. Diffusion Synthesis

The integration of generative models in classification tasks
has been widely explored to enhance generalization per-
formance without extra data samples [5, 22, 25]. In recent
years, diffusion models [28, 56, 57] have shown promising
results in image generation. Notably, Xiao et al. [62] argued
that diffusion models can generate high-quality and diverse
images. Subsequently, various studies have focused on en-
hancing the quality of generation [30, 32], conditioning
sampling [15, 27], and text-to-image generation [50, 52].

Due to the significance of privacy concerns during image
synthesis, differentially private diffusion synthesis is one of
the actively investigated research topics [17, 41]. Given the
effectiveness of private fine-tuning upon pre-trained diffu-
sion models for generation and classification tasks [23], uti-
lizing privacy-preserving diffusion models presents oppor-
tunities for our future works.

Measures To measure the quality of generated images,
various measures are proposed: Inception Score (IS) [53]
and Precision [36] to measure fidelity, Recall [36] to mea-
sure diversity, and Fréchet Inception Distance (FID) [26] to
measure the distributional quality for mean and variance.

To assess the impact of synthetic data on classification
tasks, Ravuri and Vinyals [51] proposed the Classification
Accuracy Score (CAS), which evaluates the classification
performance on a test set using a model trained on synthetic
data. Thus, we use CAS to validate the performance of syn-
thetic public data on test data. However, since our main
focus is on improving classification performance including
private learning, all of the previous measures cannot be per-
fectly aligned with our goals.

3. Framework
3.1. Training Procedure

Our objective is to investigate the potential of diffusion
models with ID public data, departing from conventional
approaches that focus on guiding optimization with the pub-
lic data [2, 4, 38, 43, 48, 64]. Our work aligns closely with
[43], but we specifically concentrate on synthesizing data
from the public and examining the important properties of
private learning. We summarize the training scenarios using
ID public data as follows [43]:
¢ Cold: Conduct DP training (e.g., DP-SGD) on the private
dataset without using public data.
* Warm: Train models through (i) non-DP warm-up train-
ing phase on the public dataset (e.g., SGD) and (ii) private
training phase on the private dataset with DP methods.

+ Generated data x

« Original data x

« Original data y Generated data y

(a) Original and Synthetic
data from Sufficient
data samples

(b-2) Synthetic data
from Insufficient
data samples

(b-1) Original data
from Insufficient
data samples

Figure 2. Toy experiment on diffusion synthesis and its effect on
decision boundaries while varying the training sample size.

* WarmExt: During the private training (after warm-up
training), leverage the public side information, such as
gradients [2, 4, 38, 43], or low-rank approximation [48,
64], as extended methods of DP optimization.

* WarmSyn (Ours, [43]): Amplify the sparse information
of public data using generative models or augmentation
methods. Optionally, WarmSE indicates employing ex-
tended optimization with synthetic public data.

In terms of privacy, since utilizing public data does not pose

any privacy concerns to the private data, we can leverage the

public data multiple times, e.g., training warm-up classifica-
tion models, diffusion models, or guiding private training.

From now on, we denote in-distribution (ID) public data as

public data unless otherwise specified.

3.2. Public Data Synthesis with Diffusion Models

For amplifying the sparse information in the WarmSyn set-
ting, we first investigate amplifying the number of data sam-
ples using diffusion models. Recent studies [5, 22, 25, 61]
have demonstrated the performance gain in complicated
classification problems by training diffusion models to ex-
pand the size of training data samples within the data man-
ifold, e.g., amplifying 50K CIFAR-10 training data into a
50M synthetic dataset improves adversarial training [61].
To analyze public data synthesis with limited data sam-
ples, we conduct an experiment using a spiral dataset as a
toy example (detailed in Appendix C), as shown in Figure 2.
We consider two settings: (a) with a sufficient and (b) with
an insufficient number of original data samples. For each
setting, we train a simple diffusion model to generate new
data samples. Then, we train two-layer classifiers until con-
vergence using the original and synthetic data, respectively.
With a large number of samples in (a), both diffusion
and classification models demonstrate well-trained results.
However, when the original data size is limited as in (b-
1), the classification model tends to overfit individual data.
Thus, despite correctly classifying almost all data samples,
the model fails to discover the proper decision boundary. In
contrast, in (b-2) where the diffusion model effectively ap-
proximates the data manifold, the classifier achieves a supe-
rior decision boundary compared to (b-1). Nevertheless, we
should be aware that diffusion models can be apt to over-
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Table 3. Quality comparison of synthetic data trained with 4% of public data on CIFAR-10.

Sampling Fidelity Diversity ~ Quality | CAS (1) || Test Acc
IS (1) Precision (1) Recall (1) FID ({) (%) (%)
EDM (wq=0) 11.008 0.964 0.157 7.799 62.82 75.13
EDM + DG (wg=3) | 10.815 0.964 0.153 7.786 62.47 75.31
EDM + DG (wg=10) | 10.796 0.946 0.170 8.274 64.61 75.98 Figure 3. Selected synthetic data sam-
EDM + DG (wgq=20) | 10.157 0.873 0.191 11.497 67.61 77.66 ples from (Top) EDM and (Bottom)
EDM + DG (wg=30) | 9.113 0.785 0211  19.748 66.53 7722 EDM + DG (wq = 30) synthesis.

and underestimate the data distribution, as shown in (b-2).

To push further, we mathematically analyze how the rate
of data samples affects synthesis. The ability of a generative
model # to approximate the ‘entire’ data can be determined
by the ratio of ‘seen’ (observed during training) and the
‘unseen’ (not observed during training). Specifically, with
a limited number of seen data, the model is required to esti-
mate the unseen data to approximate the entire data.

Theorem 3.1 For a finite number of ‘entire’ data sam-
ples Sqata = {x1,, &N}, split the data samples into
‘seen’ data S5 = {x1,,x,}, and ‘unseen’ data S, =
{Zps1, -, TN}, without loss of generality. Let pyata,Ps,
and p,, be the probability distribution of each corresponding
dataset. For any generative model 6 trained on ‘seen’ data,
Py represents the data distribution generated by 0. Then,

1 - N
log — + pj log 79 < Drer,(pol|paata) = Drcr.(pa|ps)
1 2

< logl +ﬁglogi,
1 T2
where pg = ¥ ,cs, po(x) < 1indicates the capacity of the
model 0 to generate ‘unseen’ data. For discrete probabil-
ity distributions p and q, D1, (p|q) indicates the relaxed
Kullback—Leibler (KL) divergence, excluding the case when
q=0.r1=F andry = N=n denote the ratios of ‘seen’ to
‘entire’, and ‘unseen’ to ‘seen’ data, respectively.

The detailed proof is presented in Appendix A. The above
theorem indicates that the ratios r; and r9 affect how the
model 6 can approximate the pgqtq. As 71 — 1 with suffi-
cient seen data, then ro — 0 and S, - &, so that py — 0
and the upper and lower bounds converge to zero. Thus, en-
suring py is close to ps ensures proximity of pg to Pyata-
However, when considering a small 1, which is equiv-
alent to a limited number of public data setups, the bounds
depend on py. For ry < i the lower and upper bounds are
decreasing functions with respect to py. This implies that
as the model’s capacity to generate unseen data increases,
the differences in divergences decrease. Thus, approximat-
ing the distribution of seen data is not enough to learn the
whole data distribution for small 7. Rather, it is important
for the model to learn the data manifold effectively to better
approximate the data distribution including the unseen data.

4. Generated Data for Private Learning

We now investigate how the aforementioned diffusion syn-
thesis can be utilized in the context of public data and an-
alyze how it can be further leveraged to enhance perfor-
mance. For experiments, we primarily focus on the CIFAR-
10 dataset with a privacy budget of (2,107°), utilizing
WRN-16-4> with 16 augmentation multiplicity and the
techniques proposed in [12]. Within the training set, we ran-
domly select 2K instances (4%) for the public samples, as
suggested in [43]. These samples are uniformly drawn from
each class. All the measures for evaluating the generated
data in this section are calculated with the entire training set
(50K) as a reference. Additional experimental details are
provided in Section 5.1 and Appendix B.

4.1. Better Diffusion Synthesis with Public Data

Theorem 3.1 demonstrates that well-approximating the dis-
tribution of seen public data ps enables the synthetic data
distribution py mimic the entire data distribution pgaa,
which is essential to obtain good decision boundary as in
Figure 2. Thus, we initially replace the Denoising Diffusion
Probabilistic Model (DDPM) [28], previously investigated
by Nasr et al. [43] for public synthesis, with the Elucidating
Diffusion Model (EDM) [30]. EDM is known to generate
better images (e.g., lower FID scores) than DDPM by us-
ing a higher-order sampling process. Then, we train EDM
on 2K public data samples without using external datasets
and employ class-conditional sampling to match the origi-
nal distribution. With the trained EDM, we calculate vari-
ous measures in Table 3. The FID of EDM synthesis at 7.80
(correspondingly 7.89 on 40K) outperforms the reported
FID of 12.8 of DDPM on 40K images [43], which also im-
proves the classification performance as shown in Table 1.
However, the generation quality using public data is no-
tably worse than the FID of 1.79 achieved with the entire
set [30]. Within a limited public data, the model struggles
to capture diversity, resulting in a recall of 0.16, even though
precision remains high at 0.96. Note that repeating each
public sample 25 times (thus 50K samples) results in a pre-
cision of 1.00, recall of 0.04, and FID of 13.64. The gen-
erated images and their memorization are illustrated in Ap-

2WRN-40-4 requires excessive GPU considering its performance [43].
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Table 4. CAS (%), test accuracy (%), and their difference (%) with
different augmentation methods during warm-up phase.

Augmentation CAS(%) Test Acc (%) Diff (%)
No Aug (EDM) 62.82 75.13 13.31
Common 77.99 83.97 5.98
Common + Cutout 80.72 84.88 4.16
Common + Cutmix 65.73 82.20 16.47
AutoAugment 77.21 83.45 6.24

Table 5. Geometric measures of the models trained with SGD and
SAM after warm-up phase.

Synthetic Data Private Data

Opt - 2

P Amaz  Amaz/As Tr(Vzl(’w)) Amaz  Amaz/As Tr(Vzé(w))
SGD  1.38 10.62 71.98 112.82 1.58 -2527.78
SAM 044 2.63 53.21 58.32 1.50 333.03

pendix E. No privacy concern occurs in diffusion synthesis
since the diffusion model is solely trained with public data.

4.2. Data Diversity Matters for Public Data

With limited private data, the model’s capacity to generate
unseen data is required in Theorem 3.1. The lack of diver-
sity in the generated data can lead to misclassification due
to distorted decision boundaries, as described in Figure 2.
Given the challenge of DP-SGD in identifying a good basin
[21], the key to successful warm-up lies in finding a well-
generalizing minimum with a high CAS. As observed in
[25, 51], data diversity can play an important role in improv-
ing CAS. We hypothesize that the importance of diversity is
more pronounced in the warm-up phase of private learning,
where the generated images exhibit low recall values.

Diversity for generation To validate our hypothesis, we
first investigate enforcing data diversity in the generation
process. Obtaining diversity in generations solely through a
diffusion model is a challenging task. Thus, to enhance the
data diversity during generation, we can use variants of dif-
fusion models for guidance [27, 32] or editing [10, 40, 42].
Among them, discriminator guidance (DG) [32] introduces
a discriminator to judge whether the sampling is from the
true data or synthesis, controlling the trade-off between fi-
delity and diversity of the generated images by adjusting the
weight wy of the discriminator. Higher wy yields diversity.
Refer to Appendix C for the details of DG.

As shown in Table 3, a higher weight of guidance en-
sures greater data diversity without any augmentation, but
sacristies the fidelity. The best FID score is obtained with
wq = 3 while the best CAS is obtained at a bigger weight
wq = 20. Interestingly, we need a larger weight value to
achieve a similar gain of diversity than standard training
(wq = 1.5 for best FID [32]). Figure 3 represents selected

examples from two extreme cases, with wy = 0 and wy = 30
to visualize the difference. Despite the quality degradation
of detailed features with wgy = 30, the CAS is higher due
to the increased data diversity in features. Thus, we need to
enhance diversity while maintaining quality for better clas-
sification. Similar to the EDM model trained with public
data, no privacy concerns occur since the discriminator re-
quires only original public and synthetic data from EDM.

Diversity with augmentation Nonetheless, training an
additional discriminator for DG can pose a bottleneck in
terms of time and computational efficiency. Thus, to ex-
plicitly enhance the diversity of EDM synthetic data dur-
ing the warm-up training, we employ various data augmen-
tation techniques designed for classification tasks. Wang
et al. [61] argued that utilizing appropriate augmentation
in diffusion-based generated images can further improve
the classification performance. Common augmentation [24]
uses padding and random crop to the original size and hor-
izontal flipping for the images. Cutmix [68] randomly re-
places a part of the image with another and Cutout [14]
randomly pad images. AutoAugment [11] chooses the best
combination of augmentations such as color, rotation, or
cutout. We set a baseline with no augmentation for synthetic
images of EDM and compare these augmentations.

The results are summarized in Table 4. Adding cutout
augmentation to common augmentation demonstrates the
best performance in terms of CAS and test accuracy. How-
ever, the two measures are not always aligned. Rather, the
best performance gain with private data, noted as Diff (%)
= Test Acc—CAS, is obtained from Cutmix, which is known
as one of the most diversified augmentations. This indicates
that robust decision boundaries achieved through diversity
facilitate easier private learning. Interestingly, the perfor-
mance gain of augmentation surpasses the benefits of gen-
eration diversity, as illustrated in Appendix C.

4.3. Optimization with Synthetic Data

As the clipping of DP-SGD significantly lowers the perfor-
mance, it is known that a smaller gradient norm ensures
high performance in private training [44, 46, 54]. In Fig-
ure 4a, we illustrate the gradient norms during private train-
ing with different training setups. The norm of synthetic
data is calculated without clipping, whereas the private data
used for DP-SGD is summed over individually clipped gra-
dients, each with a clipping value of C' = 1. The results
indicate that utilizing a synthetic dataset reduces the gradi-
ent norm, even in a private dataset where constraining the
gradient norm is crucial to mitigate the effect of clipping.
However, even though training with diversified synthetic
public data and augmentation, the models face the risk of
being overfitted to public data. As public samples are se-
lected from in-distribution data, the problem of the public-
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Figure 4. Learning dynamics of private training with different
datasets and optimization methods.

private generalization gap is analogous to the training-test
generalization gap in standard training. In Figure 4b, we il-
lustrate the accuracy and loss for each public, synthetic, pri-
vate, and test dataset during private training after the warm-
up phase. The model consistently achieves near-zero loss
and 100% accuracy on synthetic data (as well as on public
data) but struggles with private data (as well as on test data).
To alleviate the generalization gap in standard training,
various studies [16, 31, 33, 34, 37, 47] explored the geomet-
ric properties of the loss function in the weight space. The
prominent optimization methods are designed to uncover
flat minima, such as sharpness-aware minimization (SAM)
[20] or stochastic weight averaging (SWA) [29]. Therefore,
we apply SAM during the warm-up training and calcu-
late geometric generalization measures, including metrics
such as the top Hessian value )\, the ratio of Hessian
Amaz /A5, and the trace of the Hessian matrix Tr(V2((w)),
for both synthetic and private data. Table 5 indicates that uti-
lizing SAM results in lower (better) metric values, not only
for synthetic data but also for private data. Note that SGD
even demonstrates a negative trace value on private data.
Moreover, in Figure 4a, as the flat minimum of SAM
leads to a decreased gradient norm on synthetic data, it also
maintains similar results concerning private data. These re-
sults indicate that relieving overfitting to synthetic data can
help the generalization of private data. Thus, the aforemen-
tioned approaches find suitable initial point of DP-SGD.

5. Experiments
5.1. Experimental setup

We assess the effectiveness of our proposed methods us-
ing public data primarily in two datasets: CIFAR-10 and
CIFAR-100. For the public dataset, we randomly sample
4% of the training data (2K samples) uniformly drawn from
each class, while the remaining data are used as private
samples following [43]. We then train the EDM [30] mod-
els with the 2K public data samples and build S0K syn-
thetic datasets with EDM sampling. To address the compu-
tational burden of training diffusion and sampling, we gen-

erate datasets once and reuse them for classifiers as in [43].

For classification models, we adopt WRN-16-4, follow-
ing the techniques in [12] with 16 augmentations, and use
pre-trained vision transformer models following [7]. Our
experiments are conducted using PyTorch libraries [63] on
eight NVIDIA GeForce RTX 3090 GPUs, partially on a
cloud server with four NVIDIA A100 40GB GPUs. We re-
port the mean and standard deviation for each experiment.
For the detailed settings, refer to Appendix B.

5.2. Classification Performance with Public Data

Effects of individual techniques We first revisit Ta-
ble 1, the ablation study of sequentially employing our ap-
proaches, with a privacy budget (2,1075)-DP on CIFAR-
10. By only using better EDM synthesis without extra op-
timization techniques, we achieve the previous SOTA per-
formance of 75.1% [43]. Additionally, recognizing the sig-
nificance of diversity in data generation, we employ cutout
augmentation techniques for diversity in classification, re-
sulting in a performance of 84.88%. To mitigate potential
overfitting to public information, we make use of general-
ization techniques. All these efforts collectively lead to an
accuracy of 85.48% under (2,107°)-DP.

Despite achieving the best performance of 85.93% when
combined with DG, we exclude DG in this section due to its
marginal performance enhancement (0.45%p) considering
its extended training time, as detailed in Appendix C.

CIFAR-10 with public data We report the performance
comparison for our method with various previous ap-
proaches on a wide range of € € {1,2,3,4,6} with § = 107°
in Table 6. Our approach, which incorporates EDM synthe-
sis, augmentation, and optimization for the public data, ex-
hibits superior classification performance when compared
to existing methods including DDPM-based augmentation
and extended optimizations. The accuracies of € = 0 (after
warm-up, without private data) and € = oo (not private, with
clipping) are 80.72% and 88.52%, respectively.

CIFAR-100 with public data We then explore the
CIFAR-100 dataset for DP, which is not actively investi-
gated without pre-trained models due to its complexity. We
first train the EDM model with 2K images and generate
50K images, similar to CIFAR-10. Given the 100 classes
in CIFAR-100, only 20 public samples are available per
class, significantly fewer than in CIFAR-10. The FID on
50K images with EDM synthesis is 11.28, which reduces
the original FID of 15.58 for replicating each public image
25 times. After the warm-up, the accuracy of synthetic im-
ages on € = 0 is 38.04% (46.74% on £ = oo), while the
test accuracy of using 2K public samples without synthe-
sis on € = 0 is only 16.79%. In Table 7, we report the ac-
curacies by sequentially adopting the aforementioned tech-
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Table 6. Test accuracy (%) of private training on CIFAR-10 with privacy budgets of € € {1,2,3,4,6}. The public and synthesis columns
denote the Warm and WarmSyn setups, respectively. Ours employs all the techniques in Table 1, i.e., synthesis, augmentation, and opti-

mization. We highlight the best accuracy in bold.

Datasets  Architecture Public  Synthesis Method e=1 =2 =3 e=4 e=6
CNN-Tanh (0.55M) X X [44] 45.8 58.3 63.5 - -
ScatterNet (0.16M) X X [59] 60.3 67.2 69.3 - -
DPNAS [9] (0.53M) X X [46] 60.13+£0.34  67.23+0.12  69.86+0.49 - -
WRN-16-4 (2.74M) X X [12] 56.8+0.6 64.9+0.5 69.2+0.3 71.9+£0.3 77.0£0.8

CIFAR WRN-40-4 (8.94M) X X [IZJ 56.4£0.6 65.9+£0.5 70.7£0.2 73.5+£0.6 78.8+0.4
10 v X 27 i - 68.7 - 73.1 77.2
v X [38] - 68.7 - 73.5 77.9
v v 21 - 70.5 - 74.5 78.2
WRN-16-4 (2.74M) v v (381 - 69.1 - 74.1 78.1
v/ v (431 - 75.1 - 77.9 80.0
v v Ours 84.30+0.11 85.48+0.12 86.03+0.09 86.49+0.13 87.06+0.24

TWe note the results reported in [43] to set the architecture same. All other baseline results are adopted from the original paper.

Table 7. Test accuracy (%) of private classification on CIFAR-100 on the privacy budget of € € {1,2,6,10}. The public and synthesis
columns indicate Warm and WarmSyn settings, respectively. We employ the techniques in Table 1 sequentially, i.e., synthesis, augmenta-

tion, and optimization. We highlight the best accuracy in bold.

Datasets ~ Architecture Public Synthesis Methods e=1 =2 €=6 e=10
Resnet-9 X X 357 18.1 24.9 - 40.8
Resnet-9 (6.62M) X X Cold" 8.35 14.42 29.89 35.11
CIFAR  WRN-16-4 (2.74M) X X Cold 9.28 18.19 33.61 39.09
-100 v X Warm 20.84 25.15 33.47 38.89
v 4 WarmSyn 26.13£0.20 31.53+0.04 35.53+0.11 40.82+0.10
WRN-16-4 (2.74M) v v +Augmentation  40.96+0.30 44.52+0.01 50.47+£0.04 54.29+0.05
v v +Optimization ~ 45.93+0.06 48.61+0.59 54.36+0.52 56.56+0.11

TUnfortunately, their DP-SGD results are not reproducible, even when using the same hyperparameters as in the original paper.

niques, where each of the approaches matters. As a result,
we obtain 48.61% on ¢ = 2 without pre-trained models.

CIFAR-100 with pre-trained on ImageNet To push fur-
ther, we demonstrate the effectiveness of our procedures
when combined with pre-trained models with ID public
data. We adopt the vision transformers following [7] pre-
trained on ImageNet [13]. Upon the pre-trained models, we
sequentially perform the warm-up training with ID public
data and private learning. The results in Table 8 indicate that
the synthesis can boost classification performance. Within
a wide range of models and privacy budgets, our methods
outperform the warm settings.

Distribution shift (CIFAR-100 — CIFAR-10) The dis-
tribution shifts from similar but not ID public data [59] can
be combined with our methods. We consider 4% of CIFAR-
100 data as public to enhance the performance of CIFAR-10
as a substitute for CIFAR-10 ID public data. In Table 9, we
present the classification results for both the warm and our
settings, where both models are trained on the public data
and synthetic data from 4% of CIFAR-100, respectively.
The experimental results show that the differences in accu-

racies exceed 20%, even though neither model has observed
CIFAR-10 datasets before private training with DP-SGD.
This indicates that amplifying public information is mean-
ingful in distribution shifts. Additional sensitivity analysis
and ablation studies can be found in Appendix D.

Pre-trained diffusion models Our main idea to use syn-
thesis for public data is flexible in practical scenarios and
diverse datasets. To mitigate the drawbacks of training dif-
fusion on each dataset, we investigated using the pre-trained
diffusion models, which are trained on OOD public data.
Specifically, we make use of pre-trained Stable Diffusion
(SD) [52] and Boomerang sampling [40]. We fed 4% of
public data to Boomerang editing with SD backbone for
generation diversity and generated 20 images per sample
for classifier training. The similar experiments are shown
in Appendix D.We maintain the other training procedures
the same as ‘Ours’, which we call ‘Ours-SD’. Table 10 in-
dicates that our framework is straightforward and effective
for real-world data, and generalizable without depending on
specific diffusion models. We conclude that data diversity
can enhance performance when the model is not trained on
specific ID public data.
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Table 8. Test accuracy (%) of private classification on CIFAR-100 using pre-trained models on the privacy budget of ¢ € {0.5,2}. The bold

indicates results within the standard deviation of the top mean score.

Datasets Privacy budget =05 =2
Architecture Cold Warm Ours Cold Warm Ours
CrossViT small 240 (26.3M) 60.50£1.70 73.17£0.24 77.43+0.13 71.36£0.52 77.00£0.27 80.25+0.57
CIFAR  CrossViT 18 240 (42.6M) 67.03£0.46 77.19+£0.44 79.96+0.10 74.28+0.22 80.30+0.02 82.85+0.08
-100 DeiT base patch16 224 (85.8M) 49.34+1.49 79.56+0.74 79.28+0.76 69.09+0.10 82.98+0.04 83.06+0.01
CrossViT base 240 (103.9M) 66.24+0.47 75.59+0.21 78.06+0.05 75.15£0.03 79.25+0.05 81.14+0.15

Table 9. Comparison of distribution shift performance on CIFAR-
10 with the warm and our models trained on 4% of CIFAR-100.

Table 11. Performance and computational time of different ex-
tended optimization methods.

CIFAR-100 Test Acc (%)

- CIFAR-10 =2 e=4 e=6
Warm 50.65+0.37 56.54+0.20 59.49+1.39
Ours 73.46+0.28 78.60+0.13 80.12+0.04

Table 10. Classification results on real-world datasets.

Data Method e=2 e€=4 €=6
Warm (w/ Aug, Opt) 83.67 85.52 86.07
WarmExt [43] 84.37 8578 86.07

EuroSAT

(Land use) Ours-SD 90.37 91.74 92.52
Warm (w/ Aug, Opt) 89.23 89.39 89.54
PathMNIST WarmExt [43] 89.04 89.25 89.28 - A
(Biomedical) Ours-SD 91.64 9194 92.10 ;
. Warm (w/ Aug, Opt) 53.00 5455 54.83 !
FairFace WarmExt [43] 5333 5474 54.84 bu |
(w.r.t. Race) Ours-SD 5490 56.19 5637 |

5.3. Revisit Extended Optimization

On top of our method, we reevaluate the effectiveness of ex-
isting extended methods (thus WarmSE) in Table 11, partic-
ularly mirror GD [2] and DOPE-SGD [43]. These methods
are trained after our synthesis, augmentation, and warm-up
optimization on ¢ € {2,4,6}. Remarkably, the performance
of the extended methods falls within the standard deviation
range of DP-SGD. This implies that, as the models have
already extracted substantial side information from public
data before private training, extended optimization does not
further improve DP optimization. Note that the computa-
tional time of the public batch is marginal to DP-SGD.
However, extended methods sometimes exhibit poorer
training stability than DP-SGD. Due to their reliance on
public gradients, these methods are sensitive to the hyperpa-
rameter settings and easily encounter exploding gradients.
In Figure 5, under the same setting as Figure 4a, we ob-
serve a gradual decrease in the private gradient norm, while
the public gradient norm consistently increases. When the
public norm increases to a certain level, the norm of both
public and private data with extended methods may diverge
after updating toward public gradients. For further insights
about the learning dynamics in terms of the loss function

Privacy budget ¢ - Optimization
(6 =10-%) DP-SGD er.ror GD [?] DORE-SGD [43]
Median Min  Median Min
e=2 85.48+0.17 85.52 10.00 85.53 10.00
e=4 86.49+0.13  86.31 10.00  86.69 10.00
=6 87.06+0.24  86.73 10.00  86.84 10.00
Time (ms/image) 12.70 12.80 12.86

Synthetic Data Private Data

DP-SGD Loz
—— Mirror GD
ro.2o —e— DOPE-SGD
—e— DOPE-SGD (Overfit) [ 010

Gradient Norm
o
o
®
Gradient Norm

o
o
=

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Epochs Epochs

Figure 5. The norm of gradients with (Left) synthetic dataset and
(Right) private dataset with clipping during private training with
different optimization methods.

and private gradient norm without clipping, please refer to
Appendix C. However, we believe that undiscovered ex-
tended methods can be beneficial for the WarmSyn settings.

6. Conclusion

In this paper, we investigate the potential of diffusion mod-
els for in-distribution public data to enhance private clas-
sification performance. We demonstrate the importance of
synthetic data diversity, augmentation techniques, and the
importance of well-generalizing minima for private opti-
mization. As a limitation, we leave the experiments on more
extensive and sensitive datasets and the efficient implemen-
tation of our method. We hope that this work helps leverage
diffusion models to address utility-privacy trade-offs.
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