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Abstract

Test-time adaptation (TTA) has emerged as a promising

solution to address performance decay due to unforeseen dis-

tribution shifts between training and test data. While recent

TTA methods excel in adapting to test data variations, such

adaptability exposes a model to vulnerability against ma-

licious examples. Indeed, previous studies have uncovered

security vulnerabilities within TTA even when a small propor-

tion of the test batch is maliciously manipulated. In response

to the emerging threat, we propose median batch normal-

ization (MedBN), leveraging the robustness of the median

for statistics estimation within the batch normalization layer

during test-time inference. Our method is algorithm-agnostic,

thus allowing seamless integration with existing TTA frame-

works. Our experimental results on benchmark datasets, in-

cluding CIFAR10-C, CIFAR100-C, and ImageNet-C, con-

sistently demonstrate that MedBN outperforms existing ap-

proaches in maintaining robust performance across different

attack scenarios, encompassing both instant and cumulative

attacks. Through extensive experiments, we show that our

approach sustains the performance even in the absence of at-

tacks, achieving a practical balance between robustness and

performance. Our code is available at https://github.com/ml-

postech/MedBN-robust-test-time-adaptation.

1. Introduction
Deep neural networks (DNNs) have shown noticeable

advances in benchmarks across diverse recognition tasks,
assuming virtually no distribution shift between training and
test data. However, distribution shifts are inevitable in prac-
tice mainly due to time-varying environments (e.g., lighting
variations and changing weather conditions), and severely
degenerate the model performance [25, 31]. It is infeasible
to forecast and prepare for every potential test domain in
advance. In response, test-time adaptation (TTA) has been
extensively studied [6, 14, 20, 21, 40, 51, 53], where TTA
aims at adapting a pre-trained model to test data, which is
unlabeled and from latent domain, in an online manner.
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Figure 1. An illustrative example of the vulnerability of mean in
a batch normalization layer to manipulation by malicious sample
(left), contrasted with the robustness of median such manipulation
(right), when dealing with malicious samples within the batch.

The major advantage of TTA stems from leveraging the
statistics of the test batch. A prominent technique is to use
test batch statistics in each batch normalization (BN) layer
[37, 44] before adjusting model parameters. Hence, it is
crucial to reliably estimate the test batch statistics and make
necessary adjustments. Most of the recent advances have
focused on robust estimations of the test batch statistics
in a variety of scenarios, including continual distribution
shifts [53], small test batches [30, 31], temporally correlated
stream of test data [19], and out-of-distribution test data [20],
where the exponential moving averaging (EMA) [20, 59]
or interpolating source and test statistics [29, 34, 54] are
proposed for robust statistics estimation.

Despite such efforts to build robust TTA methods, re-
cent works [11, 54] have revealed the vulnerability of TTA
methods that use the test batch statistics. By injecting small
portions of malicious samples into the test batch, an adver-
sary can easily manipulate the test batch statistics and also
predictions on other (benign) samples, constituting a data
poisoning attack. As we cannot presume the distribution of
test samples in the real world, verifying the robustness of
TTA methods against the data poisoning attack is essential
since it can be considered as a worst-case study. Although the
initial studies have proposed heuristics to partially address
the vulnerability, it still remains a potential threat, posing a
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challenge even to state-of-the-art TTA methods.
This paper examines the potential vulnerabilities of ex-

isting TTA methods to data poisoning attacks through both
theoretical (Section 5.2) and empirical (Section 6) investiga-
tions, including the state-of-the-art techniques [20,39,40,52].
Our theoretical analysis reveals that relying on the mean of
test batch statistics creates a loophole that adversaries can
exploit. This arises because the mean can be easily manipu-
lated by even a single malicious sample, whereas the median
proves to be robust against manipulation by a number of
malicious samples, as illustrated in Figure 1. Furthermore,
despite the integration of various modules for enhancing
TTA robustness, our experiments show that state-of-the-art
methods exhibit notable vulnerabilities to malicious samples.

Consequently, to address the adversarial risks in BN up-
dates, we propose Median Batch Normalization (MedBN)
method that uses the median for estimating test batch statis-
tics. Our approach stands out compared to existing defenses
[11,54], as the model not only maintains model performance
but also successfully defends against data poisoning attacks.
Given the substantial vulnerability of state-of-the-art TTA
methods [20, 39, 40, 52] to malicious samples, we demon-
strate that integrating MedBN into each method consistently
improves robustness against malicious samples.

Our main contributions are summarized as follows:
• Inspired by a theoretical analysis comparing mean and

median, we propose MedBN, a simple and effective
robust batch normalization method, which uses the me-
dian instead of the mean to estimate the batch statistics.
We note that our method effortlessly integrates into
existing TTA methods without additional training.

• Our experiments show that even sophisticated TTA
methods are susceptible to data poisoning attacks, de-
spite extensive efforts to enhance the robustness of
TTA. This vulnerability arises from relying on the mean
for estimation, which creates a potential loophole ex-
ploitable by adversaries.

• The robustness of the proposed MedBN is empirically
justified by evaluating it over three standard bench-
marks for TTA, seven TTA methods, and four different
attack scenarios. Notably, MedBN outperforms compar-
ing methods in robustness under attacks by a significant
margin in all considered cases.

2. Related Works
Robust test-time adaptation methods. TTA methods have
evolved to ensure robust performance under various scenar-
ios in practice, including a single distribution shift in data
distribution [52], continual distribution shifts [53], small
batches of test data [30, 31], test data with temporal correla-
tions [19], and out-of-distribution test data [20]. While sig-
nificant efforts have been devoted to robustifying TTA meth-

ods, their robustness against malicious samples at test time
has been relatively under-explored. Recent works [11, 54]
have introduced data poisoning attack methods that generate
malicious samples to sabotage TTA and demonstrated the
vulnerability of a few TTA baselines [21, 33, 37, 43, 52]. In
this work, we properly investigate the robustness of various
state-of-the-art TTA methods against data poisoning attacks
and also present a simple yet effective defense mechanism,
which can be effortlessly added to most TTA methods.
Data poisoning attacks and defense mechanisms. There
has been an extensive line of work on data poisoning at-
tacks and defenses, but existing defense mechanisms are not
applicable to TTA scenarios. For instance, adversarial train-
ing [18], a representative method, necessitates access to the
training process, making it impractical for TTA where such
access is unavailable. While some studies have proposed de-
fense mechanisms specifically for data poisoning attacks in
TTA [54], our experiments in Section 6 demonstrate that their
effectiveness is limited. In contrast, our proposed method
not only outperforms these defenses but also seamlessly in-
tegrates with any prior TTA methods. Additional discussion
on related works is presented in Appendix D.

3. Preliminary
Let X be a sample space, and Y be a label space. Let

Dsrc := {(xi, yi)}i2[Nsrc] ✓ X ⇥ Y be the training dataset
of Nsrc labeled samples and Xtest = {x0

i
}i2[Ntest] ✓ X be the

test dataset of Ntest unlabeled test samples. A model f(·; ✓)
of parameters ✓ is pre-trained on Dsrc, while it predicts a
label y 2 Y given a test sample x 2 Xtest in the presence of
unknown domain shift. Depending on the context, a model
f can output a distribution over labels.

TTA adjusts parameters while processing test data batch
by batch where a test batch at time t is denoted by Bt ✓ Xtest.
To address the domain shift, TTA methods that involve the
adaptation of BN layers focus on adjusting BN layers, e.g.,
statistics and affine parameters of BN layers.
Batch normalization layers [28]. Noting that adapting pa-
rameters of BN layers is effective for TTA [20, 21, 40, 51],
we describe the procedure of a BN layer converting input
z 2 RB⇥C⇥H⇥W to normalized z

0 2 RB⇥C⇥H⇥W , where
B,C,H, and W are the dimensions of batch, channel, height,
and width, respectively. The normalization is performed
channel-wisely with estimated BN statistics (µ̂c, �̂

2
c
) and

learnable affine parameters (�c, �c) as follows:

z
0
bchw

= �c ·
zbchw � µ̂cp

�̂2
c
+ "

+ �c , (1)

where " is a small positive constant to avoid divided-by-zero.
In the training, the BN statistics (µ̂c, �̂

2
c
) are typically esti-

mated by the EMA of the mean and variance of batches from
source dataset Dsrc, denoted by µsrc and �

2
src, respectively.
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Then, for every test batch Bt, a traditional BN layer uses the
same statistics µsrc and �

2
src for µ̂c and �̂

2
c
.

TTA with batch normalization. To tackle distribution shifts
of test samples, a standard approach is TeBN [37] that esti-
mates the test BN statistics (µc,�

2
c
) for (µ̂c, �̂

2
c
) as follows:

µc = mean {zbchw}bhw , and (2)

�
2
c
= mean

�
(zbchw � µc)

2
 
bhw

, (3)

where z is the input to the BN layer given test batch Bt and
we denote mean{zi}i2I := 1

|I|
P

i2I zi is the average of
zi’s over i 2 I. TENT [52] modulates the affine parame-
ters (�c,�c) in the BN layer (1) using TeBN by minimizing
the entropy of model predictions on test samples. This sim-
ple strategy achieves excellent performance for distribution
shifts and is commonly employed in TTA with adapted BN
layers [20, 21, 40, 51]. However, it poses an adversarial risk
because it adapts the test samples before making predictions,
potentially including malicious samples. Section 4 describes
our problem on TTA with malicious samples, followed by
our method in Section 5. A detailed explanation of the vul-
nerability of TeBN is provided in Section 5.2, and a compre-
hensive analysis of the vulnerabilities in the state-of-the-art
TTA methods with BN is presented in Section 6.

4. Problem Formulation
We have a batch Bt ✓ Xtest at time t, part of which can

be maliciously manipulated. We denote the malicious set by
Bt

mal and the benign set by Bt

ben such that Bt = Bt

mal [ Bt

ben.
We denote a tuple of labels of Bt as Yt ✓ Y (and Yt

ben
is similarly defined). For simplicity, we denote a batch of
labeled samples by Zt, i.e., Zt is Bt with corresponding
labels in Yt (and Zt

ben is similarly defined).
Our objective is to find a performant TTA method that is

robust to malicious samples B̂t

mal, which can be maliciously
generated by solving the following bi-level optimization:

B̂t

mal = argmax
Bt

mal

Lattack(f(· ; ✓̂(Bt)),Yt) , (4)

where ✓̂(Bt) is updated parameters via the TTA method, i.e.,
✓̂(Bt) = argmin

✓
LTTA(Bt; ✓), and Lattack is an attack ob-

jective function. For the attack objective, we consider both
targeted attacks and indiscriminate attacks, as used in [54].
Solving bi-level optimization exactly is computationally ex-
pensive. However, TTA methods only perform a single-step
update on ✓ for each Bt, so we can approximate ✓̂ as ✓, as
done in [54]. A detailed description of the attack algorithm
and examples of malicious samples are presented in Ap-
pendix A and M, respectively. We confirm that TTA methods
are vulnerable to these attacks. The detailed vulnerability of
TTA methods can be found in Section 6. In the following,
we consider two different attack types used to find B̂t

mal.

Batch Normalization
!" 	← mean )  
!*! ← mean ) − !" !  

MedBN (Ours)
!" 	← med z  
!*! ← mean ) − !" !  

) − !"
!*! + / ! ⋅ $̂ + &$ $̂ $′

Normalization Transformation

Figure 2. An overview of MedBN. (Top) TTA methods adapted
with BN layers normalize the features (z) by estimating normaliza-
tion statistics µ̂ and �̂2, and optimize transformation parameters �
and �. (Bottom) In contrast to conventional BN, which computes
the statistics based on the mean of inputs, our proposed MedBN
utilizes the median value for estimating the statistics, µ̂ and �̂2.

Targeted attack. The goal of a targeted attack is to manip-
ulate Bt

mal fed into the TTA method such that the adapted
model predicts a targeted label yttarget on a targeted sample
x
t

target 2 Bt

ben as follows:

B̂t

mal = argmax
Bt

mal

�LCE(f(x
t

target; ✓̂(Bt)), yttarget) , (5)

where LCE is the cross-entropy loss.
Indiscriminate attack. The objective of an indiscriminate
attack is to degrade the performance of benign samples Bt

ben
by manipulating Bt

mal as follows:

B̂t

mal = argmax
Bt

mal

X

(x,y)2Zt
ben

LCE(f(x; ✓̂(Bt)), y) . (6)

Adversary’s knowledge. We mainly consider a white box
attack scenario where an adversary possesses knowledge of
a pre-trained model, a TTA algorithm (including defense
mechanism), a batch, and even the labels of samples in the
batch. Our study against such a mighty adversary can be
interpreted as a worst-case analysis, while we also consider
more practicable (yet milder) attack scenarios with limited
adversaries’ knowledge and adaptive attack which obfuscates
defense mechanisms in Appendix B.

5. Methodology
We propose our robust TTA method, Median Batch Nor-

malization (MedBN), followed by its robustness analysis.

5.1. Median Batch Normalization (MedBN)
Test statistics calculated by mean can be contaminated

by data poisoning attacks, as demonstrated by Theorem 1
in the following section, which in turn, disrupt the model’s
adaptation and lead to incorrect predictions. To mitigate the
effect of malicious samples, we propose a simple approach,
called Median Batch Normalization (MedBN). MedBN uses
the median instead of the mean for the standardization (1) as
follows, i.e., (⌘c, ⇢2c) instead of (µc,�

2
c
) for (µ̂c, �̂

2
c
):

⌘c = med {zbchw}bhw , and (7)

⇢
2
c
= mean{(zbchw � ⌘c)

2}bhw , (8)
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where med{A} := min{a 2 A : |{x 2 A : a > x}| � |A|
2 }

for a set A ✓ R. Here, MedBN standardizes an input z
using (⌘c, ⇢2c). Our method is surprisingly effective for the
defense against attacks with negligible degradation of model
performance. Also, its simplicity allows for easy integration
within any existing TTA methods that adjust BN layers.

Note that ⇢c takes the mean of the squared deviations
(zbchw � ⌘c)2’s, we can instead take the median of the devi-
ations, which corresponds to the median absolute deviation
(MAD), as a part of further robustifying the estimation of
BN statistics. According to our study, the use of MAD shows
strong defense but a substantial performance drop. Hence,
we choose the mean of the squared deviations (zbchw�⌘c)2’s
for our method, see Appendix G for results using MAD.

5.2. Illustrative analysis: mean vs. median
The main idea of our method is to replace the use of

means with that of medians when computing BN statistics.
We provide an illustrative analysis comparing the robustness
of using median instead of mean.

Theorem 1 Consider a set of n numbers B = {xi 2 R : i 2
[n]} and 1  m  n where the first m numbers are possibly

manipulated by adversaries. Let Bmal = {xi : i 2 [m]}, and

Bben = B \ Bmal.

(i) The mean can be arbitrarily manipulated by a single

malicious sample, i.e., for any 1  m  n,

sup
Bmal

|mean(Bmal [ Bben)� mean(Bben)| = 1 . (9)

(ii) The median is robust against malicious samples unless

they are not the majority, i.e., for any 1  m < n/2,

sup
Bmal

|med(Bmal [ Bben)� med(Bben)| < 1 , and (10)

sup
Bmal

|med(Bmal [ Bben)� mean(Bben)| < 1 . (11)

The first part of Theorem 1 implies the risk of using mean
in the presence of malicious samples. In particular, it says
that just a single malicious sample can arbitrarily manipulate
the estimation of mean statistics. However, as the second
part of Theorem 1 suggests, such an arbitrary manipulation
by malicious samples is not possible unless the attacker
modifies more than half of the batch. It is noteworthy that
the robustness of the median for scalars in Theorem 1 can
be extended for coordinate-wise or geometric median for
vectors as well. We provide this extension in Appendix H.
Proof of Theorem 1. For the first part of the vulnerability
of mean (9), we consider a specific choice of B0

mal consisting
of m-many (mean(Bben) + L)’s for L 2 R. Then, we have

sup
Bmal

|mean(Bmal [ Bben)� mean(Bben)|

� |mean(B0
mal [ Bben)� mean(Bben)| =

m

n
L , (12)

where the last equality is from the choice of B0
mal such that

n · mean(B0
mal [ Bben)

= (n�m) · mean(Bben) +m · mean(Bben) +mL . (13)

This directly leads to (9) as the choice of L is arbitrary.
For the second part on the robustness of median, we focus

on (10) as the proof of (11) follows similarly. For (10), let
k = med(Bmal [ Bben). If k 2 Bben, it is trivial. If k 2 Bmal,
given that 1  m < n/2, it follows that min(Bben) 
k  max(Bben). Then, |med(Bmal [ Bben) � med(Bben)| 
maxx,x02Bben |x� x

0| < 1. Therefore, this shows (10) and
completes the proof of Theorem 1.

6. Vulnerability of Existing TTA Methods
against Attacks

In this section, we delve into the effectiveness of TTA
methods against malicious samples. For stabilizing adap-
tation to test data, many TTA methods propose a variety
of modules, including screening out samples to remove
noisy ones, optimizing model weights to resist large and
noisy gradients, and employing exponential moving averages
(EMA) for stable updates of batch normalization statistics.
Hence, we study the influence of these TTA modules against
malicious samples across three schemes: (i) filtering, (ii)
sharpness-aware learning, and (iii) EMA.

Filtering scheme. Several research works [20, 39, 40] have
proposed the use of filtering modules. The purpose of these
modules is to eliminate noisy samples from the adaptation
process, based on evaluating the entropy or softmax predic-
tions of model outputs, e.g., screening out samples with high
entropy [39,40] or low confidence [20]. By filtering out these
potentially problematic samples, the model can be more sta-
bly adapted to test data. To identify the malicious samples
filtered out by the module using entropy or softmax confi-
dence, we observe the distribution of malicious samples in
the entropy-gradient space in two attack scenarios: targeted
and indiscriminate attacks with 100 attack steps, a batch size
of 200, and 40 malicious samples in each batch. As illus-
trated in Figure 3a and Figure 3b, malicious samples tend to
be clustered with low entropy values, making it challenging
to exclude the malicious samples. To verify this finding, we
investigate the proportion of malicious samples actually fil-
tered out by ETA [39] and SoTTA [20]. ETA filters samples
with high entropy, i.e., f(x; ✓t) log f(x; ✓t), while SoTTA
screens out samples with low softmax confidence of model
outputs, i.e., maxi2[c](e

f(x;✓t)
/
P

c

j=1 e
f(x;✓t)), where c de-

notes the number of classes. As shown in Figure 3c, we ob-
serve that malicious samples still exist in the filtered batch (at
least 15% of the filtered batch are malicious samples). Con-
sidering that malicious samples constitute 20% of the batch,
these results demonstrate that entropy or softmax confidence-
based filtering mechanisms are unable to completely remove
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(a) Sample entropy and gradient norm distribu-
tion under targeted attack.

(b) Sample entropy and gradient norm distribu-
tion under indiscriminate attack.

(c) The ratio of malicious samples Bt
mal in filter-

ing over corruptions.

Figure 3. Analysis of vulnerability of existing TTA Methods against attacks. Figure 3a and Figure 3b represent the relation between entropy
and gradient norm of benign and malicious samples in targeted attack and indiscriminate attack, respectively. Figure 3c illustrates the
proportion of malicious samples Bmal among the total remaining samples after filtering over the type of corruption, considering an initial
condition where 20% of the samples in the batch were malicious. All experiments are performed on CIFAR10-C dataset with Gaussian noise,
using a ResNet26, at the highest severity of distribution shift, i.e., level 5.

all malicious samples and allow a high percentage of mali-
cious samples to pass through.
Sharpness-aware learning scheme. Sharpness-aware learn-
ing [40], following Sharpness-Aware Minimization (SAM)
[17], focuses on the stability of model parameters by guid-
ing them towards a flat minimum in the loss surface. This
approach is based on the understanding that a flat minimum
is more desirable for model robustness, especially in the
presence of noisy or large gradients. However, as shown in
Figure 3a and Figure 3b, the gradient norm of the malicious
samples, indicated by the x-axis, is concentrated in regions
with small gradients. This indicates that the SAM does not
make the model to be robust against malicious samples.
Exponential moving averages (EMA) scheme. Exponential
Moving Averages (EMA) scheme controls the statistics of
BN layers, starting with the source statistics (µsrc and �

2
src)

from the training phase [46,50]. This differs from approaches
like TeBN, which solely rely on test batch statistics. The
EMA scheme is defined as follows:

µ̂t = ↵µ̂t�1 + (1� ↵)µt , (14)

�̂
2
t
= ↵�̂

2
t�1 + (1� ↵)�2

t
, (15)

where µ0 = µsrc, �2
0 = �

2
src, and ↵ 2 [0, 1] is a momen-

tum parameter. Leveraging a larger proportion (↵ > 0.5)
of previous statistics (t � 1) can mitigate the influence of
malicious samples but there exists potential performance
degradation of the model to target distribution. Conversely,
utilizing a larger proportion (↵ < 0.5) of current statistics
(t) allows for adaptation to the target distribution, but it
compromises the robustness against malicious samples. This
presents that there is a trade-off requiring strategic consider-
ation for choosing ↵.

7. Experiments
In this section, we provide the results of experimental

evaluations of MedBN. A detailed description of the exper-
imental setup is presented in Section 7.1. The results on

various attack scenarios for both image classification and
semantic segmentation are presented in Section 7.2 and 7.3,
respectively. We investigate the reasons behind the robust-
ness of MedBN against in Section 7.4. Lastly, Section 7.5
presents an ablation study of hyper-parameters such as the
number of malicious samples and the test batch size. More
details of the experiments are provided in Appendix C.

7.1. Experimental setup

Datasets and model architectures. We evaluate our
approach using three major benchmarks for TTA [25]:
CIFAR10-C, CIFAR100-C, and ImageNet-C, which repre-
sent perturbed versions of the original CIFAR10, CIFAR100,
and ImageNet datasets, respectively. We use ResNet-26 [24]
for CIFAR10-C and CIFAR100-C experiments, and ResNet-
50 [24] for ImageNet-C experiments. The models are pre-
trained on clean CIFAR10, CIFAR100, and ImageNet train-
ing sets from [13], respectively, and then evaluated on the
aforementioned corrupted test sets. We additionally demon-
strate the effectiveness of MedBN for various model archi-
tectures in Appendix E.

Test-time adaptation baselines. We consider seven TTA
methods as baselines, that update batch statistics or the affine
parameters of BN layers. Test-time normalization (TeBN)
[37] updates BN statistics for each test batch. TENT [52]
updates the affine parameters in BN layers using entropy
minimization. Efficient anti-forgetting test-time adaptation
(EATA) [39] improves a sample-efficient entropy minimiza-
tion and Fisher regularizer to prevent knowledge loss from
pre-trained model. ETA denotes EATA without Fisher regu-
larization. Sharpness-aware and reliable optimization (SAR)
[40] with BN layers and screening-out test-time adaptation
(SoTTA) [20] leverage sample filtering and sharpness-aware
minimization [17] to reduce the negative effects caused by
large gradients. Source-initialized exponential moving aver-
age (sEMA) [20, 46, 50, 59] manages BN layers’ statistics
using EMA with the source statistics from the training phase
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Table 1. Attack Success Rate (%) of the targeted and instant attack scenario. See Table 15 in Appendix J for a comprehensive comparison in
ASRs over different corruptions. The rightmost column refer the error rates for TeBN without attacks. See Table 19 in Appendix L for the
error rates without attacks of all methods.

Method m = 0
Dataset B / m Normalization TeBN TENT ETA SAR SoTTA sEMA mDIA TeBN (ER %)

BatchNorm 83.91 72.36 75.07 77.42 21.47 18.18 33.91 14.92CIFAR10-C 200 / 40
(20%) MedBN (Ours) 19.16 18.36 18.00 18.04 7.82 8.67 8.76 15.19

BatchNorm 91.78 79.29 79.96 81.64 7.60 8.71 16.62 40.08CIFAR100-C 200 / 40
(20%) MedBN (Ours) 2.80 4.18 3.02 3.02 2.58 1.60 2.00 40.77

BatchNorm 97.78 91.47 94.49 64.53 15.29 11.02 32.18 66.62ImageNet-C 200 / 20
(10%) MedBN (Ours) 0.36 0.44 0.44 0.44 0.80 0.27 1.07 69.55

Table 2. Error Rate (%) of the indiscriminate and instant attack scenario. See Table 16 in Appendix J for a comprehensive comparison in ERs
over different corruptions. The rightmost column refer the error rates for TeBN without attacks. See Table 19 in Appendix L for the error
rates without attacks of all methods.

Method m = 0
Dataset B / m Normalization TeBN TENT ETA SAR SoTTA sEMA mDIA TeBN (ER %)

BatchNorm 31.02 28.13 27.42 27.56 20.40 21.65 27.96 14.92CIFAR10-C 200 / 40
(20%) MedBN (Ours) 22.34 20.30 19.81 19.60 16.49 17.77 19.06 15.19

BatchNorm 59.80 55.10 54.45 56.40 48.33 46.89 55.43 40.08CIFAR100-C 200 / 40
(20%) MedBN (Ours) 48.55 46.96 46.59 48.00 45.38 43.35 47.84 40.77

BatchNorm 81.46 72.82 74.15 77.74 66.05 73.21 77.28 66.62ImageNet-C 200 / 20
(10%) MedBN (Ours) 69.74 68.01 68.47 69.54 64.22 70.22 69.24 69.55

Table 3. Attack Success Rate (%) of the targeted and cumulative attack scenario on CIFAR10-C and Error Rate (%) of the indiscriminate and
cumulative attack scenario on CIFAR10-C. See Table 17 and Table 18 in Appendix K over different corruptions and other TTA benchmarks.

Method m = 0
Objective Dataset B / m Normalization TeBN TENT EATA SAR SoTTA sEMA mDIA TeBN (ER %)

BatchNorm 84.04 74.18 75.73 76.80 21.16 16.13 34.09 14.92Targeted

Attack
CIFAR10-C 200 / 40

(20%) MedBN (Ours) 19.20 18.80 21.02 8.76 8.13 8.89 19.06 15.19

BatchNorm 35.30 35.70 35.30 31.25 26.10 28.79 32.05 14.92Indisctiminate

Attack
CIFAR10-C 200 / 40

(20%) MedBN (Ours) 27.22 25.84 26.84 24.29 22.52 25.62 23.96 15.19

as the initial value in (14) and (15). We use ↵ = 0.8 for sta-
ble update. Lastly, mitigating Distribution Invading Attacks
(mDIA) [54] interpolates source statistics and test batch
statistics in BN layers, except terminal BN layers.
Attack scenarios. We consider four different attack scenar-
ios over two purposes of attacks and two frequencies of
attacks. In particular, targeted and indiscriminate attacks
are two purposes of attacks as outlined in Section 4. For
each purpose of attack, we additionally consider two types
of attack: an instant attack and a cumulative attack. In the

instant attack scenario, the attacker injects a set of malicious
data into the t-th batch after adapting to the previous (t� 1)
benign batches [54]. On the other hand, the cumulative at-

tack scenario involves an attack across all batches, from the
first batch up to T -th batch, where T is the total number of
batches. For the number of malicious samples m per batch,
we use 40, 40, and 20 for CIFAR10-C, CIFAR100-C, and
ImageNet-C, respectively, out of 200 samples in a batch.
Evaluation metrics. For the evaluation of targeted at-

tacks, we utilize the metric of Attack Success Rate
(ASR), i.e., 1

T

P
T

t=1 (f(xt

target; ✓̂t) = y
t

target). The perfor-
mance of indiscriminate attacks is assessed through the
Error Rate (ER) on benign samples after the attack, i.e.,
1
T

P
T

t=1
1

|Zt
ben|

P
(x,y)2Zt

ben
(f(x; ✓̂t) 6= y). For each pur-

pose of attack, f(·; ✓̂t) is an adapted model after each attack
using Zt. Note that in the instant attack scenario at time t,
the model f(·, ✓̂t�1) is updated until (t�1) via TTA without
any attacks. Finally, to measure the model’s performance
under a normal TTA setup, we use the standard TTA metric,
i.e., the ER on benign samples without attacks (i.e., m = 0).

7.2. Main results

We demonstrate the efficacy of our method used with
seven different TTA algorithms and evaluate three TTA
benchmarks under four different attack scenarios.

The instant attack scenario. Table 1 and Table 2 demon-
strate the effectiveness of MedBN for targeted attacks and
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(a) t-SNE visualization of representative BN layers in each block.

(b) t-SNE visualization of representative MedBN layers in each block.

Figure 4. t-SNE visualizations in representative layers of BN and MedBN, across ResNet26 blocks, with benign samples (blue dots) and
malicious samples (red crosses).

(a) Comparison of kµ�µbenk1 and k⌘�⌘benk1 across different layers. (b) Comparison of k���benk1 and k⇢�⇢benk1 across different layers.

Figure 5. L1 distance for measuring the amount of perturbation by malicious samples.

indiscriminate attacks, respectively, under the instant attack
scenario. By simply integrating MedBN into TTA methods
with BN layers, it demonstrates significant robustness against
malicious samples, i.e., the lower attack success rates under
targeted attacks and lower error rates under indiscriminate at-
tacks over all cases, but also achieves minimal performance
degradation without attacks.

In Table 1 for targeted attacks, the ASRs of all TTA meth-
ods are consistently less than 20% for CIFAR10-C, 10%
for CIFAR100-C, and 1% for ImageNet-C. While SoTTA
and EMA inherently possess defensive capabilities with the
use of batch statistics EMA, integrating MedBN further en-
hances the robustness, yielding the lowest ASRs compared
to other methods assessed in this study. In Table 2 for indis-
criminate attacks, the results across all TTA methods indicate
that MedBN shows reduced error rates as high as approxi-
mately 9% in CIFAR10-C, 11% in CIFAR100-C, and 12%
in ImageNet-C. As in targeted attacks, it is noteworthy that
while SoTTA and sEMA naturally provide some defense
with standard BN layers, incorporating MedBN substantially
enhances this protection, leading to the lowest error rates
observed in all studied methods.

The cumulative attack scenario. The efficiency of MedBN
is indicated in Table 3 under the cumulative attack sce-
nario including targeted attacks and indiscriminate attacks
on CIFAR10-C. The results on other datasets can be found in
Appendix K. Unlike an instant attack, which involves inject-
ing malicious data into a single batch after adapting to previ-
ous benign batches, a cumulative attack spreads across all
batches. Integrating malicious samples consistently through-
out the entire dataset can significantly degrade the model,
depending on the attacker’s goals. Particularly, cumulative
attacks have a more pronounced impact in indiscriminate
scenarios, where the performance reductions from earlier at-
tacks can accumulate. Even in the cumulative attack scenario,
MedBN shows lower ASRs in the targeted attack scenario
and lower ERs in the indiscriminate attack scenario.

7.3. Experiments on semantic segmentation
We expand our experiments to incorporate a semantic

segmentation task, examining two instant attack objectives:
a targeted attack on segmentation, which aims to manip-
ulate the prediction for a targeted pixel within an image,
and an indiscriminate attack on segmentation, intending to
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disturb predictions on all the benign samples. Each batch
comprises one malicious image and the others benign image
with a batch size of 3. Table 4 shows that MedBN effectively
defends against both attack scenarios while preserving the
mean Intersection over Union (mIoU) on benign images.
Additional experimental details are provided in Appendix C.

Table 4. Attack Sucess Rate (%) in instant targeted attack on seg-
mentation and mIoU (%) on the benign images in instant indiscrim-
inate attack on segmentation using TeBN to adapt the model trained
on Cityscapes [12] for SYNTHIA [42].

Objective Normalization TeBN mIoU (%) (m = 0)

Targeted Attack BatchNorm 69.17 25.43
(ASR #) MedBN (Ours) 0.00 24.24

Indiscriminate Attack BatchNorm 17.11 25.43
(mIoU ") MedBN (Ours) 21.55 24.24

7.4. Why is MedBN robust against attacks?
We investigate how MedBN counteracts the effects of

malicious samples. First, we plot the t-SNE of features for
each block before going through BN layers during the adap-
tation using TeBN on Gaussian corruptions in CIFAR10-C.
The t-SNE for all BN layers can be found in Appendix I.
In Figure 4a, except for the early layers, malicious sam-
ples become outliers compared to benign ones. Therefore,
as demonstrated in Theorem 1, the mean is exposed to be
contaminated by these malicious samples and results in the
misbehavior of the model. However, when we plot the same
t-SNE for MedBN layers, we observe that the malicious
samples are closed from the benign samples as shown in Fig-
ure 4b, i.e., the effect of malicious samples is significantly
mitigated. For the early layers that capture low-level fea-
tures [3, 41, 60], the features of malicious samples are close
to those of benign samples, since the malicious samples are
generated by adding the imperceptible noise, making them
similar to the benign samples. However, for deeper layers,
the malicious samples tend to go distant from the benign
samples to mislead the model. Secondly, to verify the robust-
ness of MedBN, we measure the L1 distance kµ � µbenk1
and k⌘ � ⌘benk1, k� � �benk1 and k⇢� ⇢benk1. As shown in
Figure 5, as the layer gets deeper, the influence of perturba-
tion by malicious samples is smaller for MedBN statistics
than BN statistics. These results align with Theorem 1 and
the results of t-SNE for BN and MedBN.

7.5. Ablation studies
We perform ablation studies on four distint cases, using

CIFAR10-C and CIFAR100-C datasets in targeted and indis-
criminate attack scenarios, varying malicious samples and
test batch size. Our focus is on evaluating the TeBN method,
as it addresses the vulnerabilities related to robustly estimat-
ing BN statistics while excluding learnable parameters.

The number of malicious samples. We investigate the ro-
bustness of the MedBN against various ratios of malicious
samples with batch size of 200. Across various malicious
ratios, MedBN is consistently robust under targeted attacks
in CIFAR10-C (Table 5). The remaining three cases with
results are provided in Appendix F.
Table 5. Attack Success Rate (%) of targeted and instant attack for
different numbers of malicious samples with batch size of 200.

# of Malicious Samples (m)
Dataset Normalization 10 20 40 60 80

CIFAR10-C BatchNorm 21.60 42.00 84.00 96.67 99.47
MedBN (Ours) 7.07 10.27 19.20 26.80 38.27

Test batch size. We explore the effect of different batch sizes.
In all cases, the ratio of malicious samples is about 20%. For
targeted attacks in CIFAR10-C (Table 6), MedBN achieves
significantly lower ASR than BN at all batch sizes. Note that
as the batch size gets smaller, a successful attack gets more
difficult because there is less malicious data. The results for
the remaining three cases are included in Appendix F.
Table 6. Attack Success Rate (%) of targeted and instant attack for
different batch size B with a consistent 20% of malicious samples.

Batch-size (B)
Dataset Normalization 200 128 64 32 16

CIFAR10-C BatchNorm 83.91 87.76 84.84 83.87 84.60
MedBN (Ours) 19.16 20.51 17.83 20.19 29.14

8. Conclusion
We provide a comprehensive study disclosing potential

threats of existing TTA methods mainly due to their vul-
nerable estimation of BN statistics despite the remarkable
advances in TTA. Hence, we propose MedBN, an simple yet
effective robust batch normalization method against mali-
cious samples, which can be effortlessly combined with most
of the existing TTA methods if BN layers are being adapted.
Our comprehensive experiments demonstrate the robustness
and general applicability of MedBN. In particular, we show
that applying MedBN to other methods results in significant
performance improvements, implying that MedBN helps at-
tain outstanding robustness. For example, applying MedBN
to SoTTA (one of the state-of-the-art) shows the best robust-
ness across all benchmarks. We believe that our work can
provide a general robust batch normalization for future work.
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[22] Rachid Guerraoui, Sébastien Rouault, et al. The hidden

vulnerability of distributed learning in byzantium. In
International Conference on Machine Learning, pages
3521–3530. PMLR, 2018. 14

[23] Nirupam Gupta, Shuo Liu, and Nitin Vaidya. Byzan-
tine fault-tolerant distributed machine learning with
norm-based comparative gradient elimination. In 2021

51st Annual IEEE/IFIP International Conference on

Dependable Systems and Networks Workshops (DSN-

W), pages 175–181. IEEE, 2021. 14
[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 770–778,
2016. 5

[25] Dan Hendrycks and Thomas Dietterich. Benchmarking
neural network robustness to common corruptions and
perturbations. In International Conference on Learning

Representations, 2018. 1, 5, 13
[26] Dan Hendrycks, Norman Mu, Ekin Dogus Cubuk, Bar-

ret Zoph, Justin Gilmer, and Balaji Lakshminarayanan.
Augmix: A simple data processing method to improve
robustness and uncertainty. In International Confer-

ence on Learning Representations, 2019. 14
[27] Junyuan Hong, Lingjuan Lyu, Jiayu Zhou, and Michael

Spranger. Mecta: Memory-economic continual test-
time model adaptation. In International Conference on

Learning Representations, 2023. 13
[28] Sergey Ioffe and Christian Szegedy. Batch normaliza-

tion: Accelerating deep network training by reducing
internal covariate shift. In International Conference on

Machine Learning, pages 448–456. PMLR, 2015. 2,
13

[29] Juwon Kang, Nayeong Kim, Donghyeon Kwon,
Jungseul Ok, and Suha Kwak. Leveraging proxy of
training data for test-time adaptation. In International

Conference on Machine Learning, pages 15737–15752.
PMLR, 2023. 1

[30] Ansh Khurana, Sujoy Paul, Piyush Rai, Soma Biswas,
and Gaurav Aggarwal. Sita: Single image test-time
adaptation. arXiv preprint arXiv:2112.02355, 2021. 1,
2

[31] Pang Wei Koh, Shiori Sagawa, Henrik Marklund,
Sang Michael Xie, Marvin Zhang, Akshay Balsubra-

mani, Weihua Hu, Michihiro Yasunaga, Richard Lanas
Phillips, Irena Gao, et al. Wilds: A benchmark of in-the-
wild distribution shifts. In International Conference on

Machine Learning, pages 5637–5664. PMLR, 2021. 1,
2

[32] Leslie Lamport, Robert Shostak, and Marshall Pease.
The byzantine generals problem. In Concurrency: the

works of leslie lamport, pages 203–226. 2019. 14
[33] Dong-Hyun Lee et al. Pseudo-label: The simple and

efficient semi-supervised learning method for deep neu-
ral networks. In Workshop on challenges in represen-

tation learning, ICML, volume 3, page 896. Atlanta,
2013. 2

[34] Hyesu Lim, Byeonggeun Kim, Jaegul Choo, and
Sungha Choi. Ttn: A domain-shift aware batch nor-
malization in test-time adaptation. In International

Conference on Learning Representations, 2022. 1, 13
[35] Yuejiang Liu, Parth Kothari, Bastien Van Delft, Bap-

tiste Bellot-Gurlet, Taylor Mordan, and Alexandre
Alahi. Ttt++: When does self-supervised test-time
training fail or thrive? Advances in Neural Information

Processing Systems, 34:21808–21820, 2021. 13
[36] Aleksander Madry, Aleksandar Makelov, Ludwig

Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. In
International Conference on Learning Representations,
2018. 12

[37] Zachary Nado, Shreyas Padhy, D Sculley, Alexan-
der D’Amour, Balaji Lakshminarayanan, and Jasper
Snoek. Evaluating prediction-time batch normalization
for robustness under covariate shift. arXiv preprint

arXiv:2006.10963, 2020. 1, 2, 3, 5, 13
[38] Blaine Nelson, Marco Barreno, Fuching Jack Chi, An-

thony D Joseph, Benjamin IP Rubinstein, Udam Saini,
Charles Sutton, JD Tygar, and Kai Xia. Exploiting
machine learning to subvert your spam filter. In Pro-

ceedings of the 1st Usenix Workshop on Large-Scale

Exploits and Emergent Threats, pages 1–9, 2008. 13
[39] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo

Chen, Shijian Zheng, Peilin Zhao, and Mingkui Tan. Ef-
ficient test-time model adaptation without forgetting. In
International Conference on Machine Learning, pages
16888–16905. PMLR, 2022. 2, 4, 5, 13

[40] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan
Wen, Yaofo Chen, Peilin Zhao, and Mingkui Tan. To-
wards stable test-time adaptation in dynamic wild
world. In International Conference on Learning Repre-

sentations, 2022. 1, 2, 3, 4, 5, 13
[41] Chris Olah, Alexander Mordvintsev, and Ludwig Schu-

bert. Feature visualization. Distill, 2(11):e7, 2017.
8

6006



[42] German Ros, Laura Sellart, Joanna Materzynska,
David Vazquez, and Antonio M Lopez. The synthia
dataset: A large collection of synthetic images for se-
mantic segmentation of urban scenes. In Proceedings

of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 3234–3243, 2016. 8, 13
[43] Evgenia Rusak, Steffen Schneider, George Pachitariu,

Luisa Eck, Peter Gehler, Oliver Bringmann, Wieland
Brendel, and Matthias Bethge. If your data dis-
tribution shifts, use self-learning. arXiv preprint

arXiv:2104.12928, 2021. 2
[44] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver

Bringmann, Wieland Brendel, and Matthias Bethge.
Improving robustness against common corruptions by
covariate shift adaptation. Advances in Neural Infor-

mation Processing Systems, 33:11539–11551, 2020. 1,
13

[45] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octa-
vian Suciu, Christoph Studer, Tudor Dumitras, and
Tom Goldstein. Poison frogs! targeted clean-label poi-
soning attacks on neural networks. Advances in Neural

Information Processing Systems, 31:6106–6116, 2018.
13

[46] Saurabh Singh and Abhinav Shrivastava. Evalnorm:
Estimating batch normalization statistics for evaluation.
In Proceedings of the IEEE/CVF International Con-

ference on Computer Vision, pages 3633–3641, 2019.
5

[47] Junha Song, Jungsoo Lee, In So Kweon, and Sungha
Choi. Ecotta: Memory-efficient continual test-time
adaptation via self-distilled regularization. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 11920–11929, 2023.
13

[48] Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang.
Certified defenses for data poisoning attacks. Advances

in Neural Information Processing Systems, 30:3520–
3532, 2017. 13

[49] Lili Su and Nitin H Vaidya. Fault-tolerant multi-agent
optimization: optimal iterative distributed algorithms.
In Proceedings of the 2016 ACM Symposium on Prin-

ciples of Distributed Computing, pages 425–434, 2016.
14

[50] Cecilia Summers and Michael J Dinneen. Four things
everyone should know to improve batch normalization.
In International Conference on Learning Representa-

tions, 2019. 5
[51] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller,

Alexei Efros, and Moritz Hardt. Test-time training
with self-supervision for generalization under distribu-
tion shifts. In International Conference on Machine

Learning, pages 9229–9248. PMLR, 2020. 1, 2, 3

[52] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno
Olshausen, and Trevor Darrell. Tent: Fully test-time
adaptation by entropy minimization. In International

Conference on Learning Representations, 2020. 2, 3,
5, 13

[53] Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai.
Continual test-time domain adaptation. In Proceedings

of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 7201–7211, 2022. 1, 2, 13
[54] Tong Wu, Feiran Jia, Xiangyu Qi, Jiachen T Wang,

Vikash Sehwag, Saeed Mahloujifar, and Prateek Mittal.
Uncovering adversarial risks of test-time adaptation. In
International Conference on Machine Learning, pages
37456–37495. PMLR, 2023. 1, 2, 3, 6, 12, 13

[55] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta.
Generalized byzantine-tolerant sgd. arXiv preprint

arXiv:1802.10116, 2018. 14
[56] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta.

Fall of empires: Breaking byzantine-tolerant sgd by
inner product manipulation. In Uncertainty in Artificial

Intelligence, pages 261–270. PMLR, 2020. 14
[57] Li Yang, Adnan Siraj Rakin, and Deliang Fan. Rep-

net: Efficient on-device learning via feature reprogram-
ming. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages
12277–12286, 2022. 13

[58] Dong Yin, Yudong Chen, Ramchandran Kannan, and
Peter Bartlett. Byzantine-robust distributed learning:
Towards optimal statistical rates. In International

Conference on Machine Learning, pages 5650–5659.
PMLR, 2018. 14

[59] Longhui Yuan, Binhui Xie, and Shuang Li. Robust test-
time adaptation in dynamic scenarios. In Proceedings

of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 15922–15932, 2023. 1, 5
[60] Matthew D Zeiler and Rob Fergus. Visualizing and un-

derstanding convolutional networks. In Proceedings of

the European Conference on Computer Vision (ECCV),
pages 818–833. Springer, 2014. 8

[61] Marvin Zhang, Sergey Levine, and Chelsea Finn.
Memo: Test time robustness via adaptation and aug-
mentation. Advances in Neural Information Processing

Systems, 35:38629–38642, 2022. 13

6007


