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Abstract

The consistency training (CT)-based semi-supervised
learning (SSL) bites state-of-the-art performance on SSL-
based image classification. However, the existing CT-based
SSL methods do not highlight the non-Euclidean charac-
teristics and class-wise varieties of embedding spaces in
an SSL model, thus they cannot fully utilize the effective-
ness of CT. Thus, we propose a metric tensor-based consis-
tency regularization, exploiting the class-variant geometri-
cal structure of embeddings on the high-dimensional feature
space. The proposed method not only minimizes the predic-
tion discrepancy between different views of a given image
but also estimates the intrinsic geometric curvature of em-
bedding spaces by employing the global and local metric
tensors. The global metric tensor is used to globally es-
timate the class-invariant embeddings from the whole data
distribution while the local metric tensor is exploited to esti-
mate the class-variant embeddings of each cluster. The two
metric tensors are optimized by the consistency regulariza-
tion based on the weak and strong augmentation strategy.
The proposed method provides the highest classification ac-
curacy on average compared to the existing state-of-the-art
SSL methods on conventional datasets.

1. Introduction
Most semi-supervised learning (SSL) methods [2, 7, 8, 13–
15, 20, 30, 38] on image classification make extensive use
of the equality of multiple views of the input. Specifically,
they encourage the consistency of the model’s prediction
vectors for two different versions of the input image de-
rived from the same input image. FixMatch [30] which
utilizes pseudo labeling on weakly and strongly augmented
images is the most famous consistency training technique
and it suggests the research direction of numerous SSL
studies based on consistency training [37]. Furthermore,
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Figure 1. The performance of benchmarks on a broad range of
conventional datasets compared with existing SSL. The numerical
values under the dataset name (CIFAR-10, CIFAR-100, SVHN,
STL-10) with bracket represent the scenarios of the SSL.

this multi-view strategy is used for contrastive learning and
contributes to greatly improving classification accuracy. In
contrastive learning, positive and negative pairs are made
from the input anchor image and its augmented versions,
the input anchor image and other images in a batch, respec-
tively. SimCLR [7, 8] achieved excellent classification per-
formance by initializing the backbone network with a pre-
text stage that learns the similarity or dissimilarity relation-
ship in positive or negative pairs.

Most of these SSL techniques strongly adopt the man-
ifold hypothesis [18, 26] that assumes the original high-
dimensional data in the real world can be expressed on
the relatively low-dimensional latent manifold (embedding
space). In this manifold hypothesis, it is believed that the
overall structure of the manifold (non-Euclidean space) can
be found by clustering the positive pairs in a local region
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Figure 2. Conceptual illustrations of class invariant and class-variant consistency training on embedding spaces.

(analogous Euclidean space). However, this consistency
training still does not fully utilize both global and local ge-
ometric information of the manifold space. We highlight
the importance of the distance measurement considering
the geometrical curvature of the embedding space. In ad-
dition, to maximize the effectiveness of consistency train-
ing, the distance measurement must be adaptively applied
to each class. To deal with this, we proposed a novel consis-
tency regularization based on the metric tensor representing
an intrinsic geometry on embedding spaces. The proposed
method minimizes the prediction discrepancy between dif-
ferent views of positive pairs based on the estimated ge-
ometric structure. The proposed method aims to find the
geometric structure of an embedding space based on two
metric tensors: global (overall distribution) and local (class-
wise) metric tensors. The global metric tensor introduces
the metric function to estimate the geometric structure of
embedding space from the whole data distribution. In addi-
tion, the local metric tensor, representing the class-wise ge-
ometric structure, is estimated with a pseudo-labeling tech-
nique. By estimating the geometric structure of the man-
ifold, the proposed method can estimate the semantic dis-
tance in the manifold space more accurately and provide the
highest classification accuracy for the conventional datasets
as shown in Fig. 1. The main contributions of the proposed
method are summarized as follows:

• Estimation of intrinsic geometric structure in the em-
bedding space via metric tensor: We represent the in-
trinsic geometric structure of embedding space as the
global and local metric tensors. The two metric tensors
are employed for consistency regularization to precisely
measure the discrepancy of the multi-view in the embed-
ding space.

• Novel consistency regularization with global and local
metric tensors: We propose a new consistency regular-
ization technique for SSL that estimates the metric ten-

sors in a high-dimensional embedding space and simul-
taneously induces consistent prediction of multi-view of
the unlabeled data.

2. Preliminary
Consistency training leads to the consistent prediction of
different views of the same input image. Early consistency
training methods [18, 21, 34, 37] generate different views
through stochastic perturbation such as dropout, Gaussian
noise, and random cropping. Virtual adversarial training
(VAT) [21] employs a novel data augmentation technique
using an adversarial noise that is aggressive to the model
optimization as the perturbation. In FixMatch [30], the dis-
crepancy of predictions for weakly and strongly augmented
inputs is minimized based on pseudo-labeling. Further-
more, in recent consistency training-based pseudo labeling,
adaptive thresholding depending on the learning status of
the model is being studied actively [6, 16, 34, 37, 41].
Metric tensor is a matrix representing the intrinsic geom-
etry on a multi-dimensional manifold [35]. It addresses the
curvature of space for difference measurement in the non-
Euclidean space. Specifically, the shortest distance between
any two vectors in a two-dimensional Euclidean space can
be expressed as follows:

s2 = (p1 − q1)
2 + (p2 − q2)

2,

= (p− q)(p− q)⊤,

= uu⊤,

(1)

where p = (p1, p2) and q = (q1, q2) are two-dimensional
vectors. u = p − q is a difference vector. Eq. 1 can be
generalized in d-dimensional manifold space as follows:

s2 = uMu⊤, (2)

where u ∈ R1×d is a difference vector between two vec-
tors {p,q} ∈ R1×d. M ∈ Rd×d is the metric tensor. M is
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Figure 3. Overall architecture of the proposed metric-tensor-based consistency regularization.

the identity matrix (I) in flatten Euclidean space. Therefore,
Eq. 1 is the unique case that can be derived when the met-
ric tensor M is I. Here, we note that the shortest distance
between two points in a high-dimensional manifold can be
derived through linear transformation by the metric tensor
M. By estimating the metric tensor of the manifold space,
we further boost the existing consistency training effect.

3. Proposed Method

Motivations. Existing consistency regularization assumes
that the semantic distance of neighbors (same class or dif-
ferent views) can be approximated by the Euclidean dis-
tance in the local region. However, in practice, most em-
bedding spaces used in the SSL do not follow the Euclidean
space properties. Thus, the distance calculated by following
the surface of the embedding space can represent a more
accurate semantic distance. The proposed method induces
the attractive relation between the manifold hypothesis and
consistency regularization as a form of the metric tensor. In
addition, we attached a new trial to estimate class-wise met-
ric tensors. Figure 2 depicts the motivation of the proposed
method using four example classes. Here, in the class-
invariant consistency training, distances between different
views (circles with the same color) are regarded as the same
in the embedding space (gray grid) even if they are differ-
ent classes. However, as shown in class-variant consistency
training, the distances between different views can be esti-
mated differently due to the different geometric structures
on embedding space (color region) depending on the class.
Problem settings. We build a convolutional encoder g and

two linear modules (classifier f and projector P). In addi-
tion, we define the two metric tensor sets, the global metric
tensor MG ∈ Rd×d and local metric tensor set ML. ML is
a set of metric tensors ML

c ∈ Rd×d for a class index c. d is
the number of feature dimensions.

The class predictions of the labeled and unlabeled sam-
ples are extracted as follows:

ŷ = f(g(x)), (3)

where the x represents an input image. The classifica-
tion model f ◦ g maps x into a C-dimensional prediction
vector, ŷ ∈ R1×C . x can be samples among the weakly
augmented labeled samples α(xl), weakly augmented un-
labeled samples a(xu), and strongly augmented unlabeled
samples A(xu). a and A represent the weak and strong
augmentations, respectively. To be more specific, the pre-
dictions of the α(xl), α(xu), and A(xu) are denoted as ŷl,
ŷα, and ŷA, respectively. Note that, all the training images
are regarded as the unlabeled data (xu), i.e., consistency
regularization will be applied for all the training labeled and
unlabeled images.
Overview of the proposed method. Figure 3 shows the
overall architecture of the proposed method. First, we gen-
erate the differently augmented views (A(xu), α(xu)) of
xu. The difference vector (u) between the A(xu) and
α(xu) on the embedding space is then used for the opti-
mization of MG (the dashed green arrows). In addition, the
embedding vectors (outputs by g) are projected to a new
feature space via the P module. The difference vector (v)
between projected embeddings of A(xu) and α(xu) is ex-
tracted. Then, class-wise ML

c is optimized based on the
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pseudo labeling using ŷα. Finally, consistency loss is ap-
plied for parallelism of the optimization trajectories of MG

and ML
c .

3.1. Supervised Learning on the Labeled Set

The supervised learning with the labeled data is conducted
as follows:

Lsup =
1

N

N∑
n=1

C∑
c=1

−yLS(i, c) log ŷl(i, c), (4)

where N and C are the numbers of labeled samples and
classes, respectively. yLS is a label smoothed supervision of
a one-hot-encoded ground-truth vector y. This supervised
learning plays an important role as an indicator that maps
the unlabeled data into its latent class. Thus, we applied
label smoothing [22] to alleviate the overfitting and over-
confident problems, that often occur in supervised learning
with a small amount of labeled data, as follows:

yLS(c) = y(c)(1− α) + α/C, (5)

where y(c) is the ground-truth value of the c-th class. yLS

depicts the smoothed ground-truth with smoothing factor α.
The parameters are introduced in the implementation details
section.

With supervised learning on the labeled data, we will
apply the metric tensor-based consistency training in this
work. The details of the proposed method will be described
in the following subsections.

3.2. Global Metric Tensor

Global metric tensor, MG, is introduced to estimate the ge-
ometric structure of the manifold space from the entire dis-
tribution of embedding vectors extracted through g. That
is, we estimate the class-invariant embedding space that
shares a common geometry structure for all classes. We
utilize the consistency regularization technique to estimate
MG in high-dimensional feature space. Specifically, weak
and strong augmentations are applied on unlabeled samples
to generate different views of those samples as follows:

za = g(α(xu)),

zA = g(A(xu)),

u = zα − zA,
(6)

where {zα, zA} ∈ R1×d represents the d-dimensional em-
bedding vectors. Then, the loss function of the trainable ma-
trix module MG for the difference vector (u) of two views
is calculated as follows:

LMT−G =
1

µB

µB∑
i=1

uiMGu⊤
i , (7)

where µB is the batch size of the unlabeled samples.
LMT−G depicts the shortest distance between two differ-
ent views on the embedding space. MG is then optimized
by the Eq. 7. This allows the consistency regularization be-
tween weakly and strongly augmented views in addition to
the optimization of the MG. By this, we incorporate the in-
trinsic geometry of class-invariant embedding space by the
MG during consistency regularization and this can provide
the precise distance on the calibrated embedding space.

3.3. Local Metric Tensor

We mainly deal with class-variant embedding estimation in
this work. Therefore, we access the adaptive consistency
regularization that can reflect the geometric structure of dif-
ferent clusters via the class-wise metric tensor. The loss
function for estimating ML

c is derived as follows:

v = P(zα)− P(zA),
v̂1 = v1ML

1 v⊤
1 ,

v̂2 = v2ML
2 v⊤

2 ,

...

v̂C = vCML
Cv⊤C ,

LMT−L =
1

C × µBc

C∑
c=1

µBc∑
i=1

v̂c(i),

(8)

where P is the projection module consisting of three lin-
ear layers. Projector P allows the model to capture a more
precise representation of the unlabeled data than global ge-
ometry for structuring the class-wise ML

c . v ∈ Rn×d rep-
resents the difference between elaborated embeddings via
the projection module P . ML

c=[1,2,...,C] and vc=[1,2,...,C] are
the metric tensor and difference vectors of the c-th class,
respectively. v̂c=[1,2,...,C] represents the class-wise distance
value between the two projected embeddings. µBc is the
number of samples predicted to the c-th class and not spec-
ified. To obtain the class prediction for the unlabeled sam-
ples, we utilize the output ŷα of the classification network
for the unlabeled data as follows:

ŷmax
α = argmax

c∗
ŷα(c),

vc = I[ŷmax
α =c] ⊙ v,

(9)

where ŷmax
α represents the pseudo class having the largest

probability value from ŷα. I[·] is the indicator function, ⊙
means element-wise multiplication. Thus, vc is the class-
wise difference between the predictions of weakly aug-
mented unlabeled samples having the class c. With the
pseudo labeling, the local metric loss (LMT−L) in Eq. 7 is
used to minimize the distance between two projected data
depending on the intrinsic geometric characteristics of the
manifold of each class. Therefore, by applying LMT−G,
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we can apply consistency regularization between projected
points, and also find the optimal metric tensor for each class.

3.4. Consistency between Global and Local Metric
Tensors

The proposed method aims to derive class-variant embed-
dings by the local metric tensor while maintaining the
global geometric structure in manifold space by the global
metric tensor. Therefore, to prevent the two metric tensors
from being optimized in different directions, consistency
loss is applied as follows:

LMT−C =
1

Cd2

C∑
c=1

d2∑
i=1

(
MG(i)−ML

c (i)
)2
, (10)

where d is the number of feature dimensions, thus, d2 is the
number of elements of one metric tensor. Consistency loss
is calculated as mean squared errors (MSE) of MG and ML

c .

3.5. Informative Local Metric Tensor

As shown in Sec. 3.3, to establish the discriminative class-
wise metric tensor, we made the local metric tensor, ML

c

depending on the class. When the local metric tensor ML
c is

estimated, the importance of geometric information of each
axis in the original manifold space should be considered be-
cause the curvature information of the axis itself generally
has a greater impact on distance measurement than the cur-
vature related to the relationship between any two axes. In
other words, the diagonal elements in the metric tensor in-
clude the important properties of the embedding space since
they indicate whether the space lies on the Euclidean or not.
Thus, by the following loss function, we regularize the ML

c

so that the proposed model can consider the curvature infor-
mation of each axis more importantly, rather than the rela-
tionship between different axes:

LMT−N = − 1

C

C∑
c=1

tr(ML
c ). (11)

By this, each axis of embeddings is emphasized to pre-
vent excessive axis adjustment by the relationship between
different axes. When Eqs. 10 and 11 are utilized together,
synergistically contribute to the enhancement of SSL per-
formance (provided in Table 3 of Subsection 4.3).

3.6. Optimization

With the supervised training on the labeled data, the cost
of the consistency regularization for the unlabeled data is
conducted as follows:

Ltotal = Lsup + λGLMT−G + λNLMT−L

+ λLLMT−C + λLLMT−N ,
(12)

where Ltotal is the total training loss on a batch. λG, λL,
λC , and λN represent the constant parameters that manage
the strength of LMT−G, LMT−L, LMT−C , and LMT−N ,
respectively. The values of these hyper-parameters will be
described in Subsection. 3.

The proposed method estimates the intrinsic geometrical
diversity of each class of the embedding space through a
class-wise metric tensor and derives the consistency train-
ing of unlabeled data based on this. By this, the proposed
method can provide more accurate and consistent predic-
tions for different views.

3.7. Exponential Moving Average

We build an ensemble model according to the training steps
by applying the exponential moving average (EMA) tech-
niques [13, 14, 31], which has recently been frequently
adopted as a baseline for inference stages. The EMA is an
ensemble model that applies a relatively higher weight to
the model parameters of the previous step than the parame-
ters of the model currently being trained as follows:

θt+1 ← mθt−1 + (1−m)θt, (13)

where t is the training step. θ represents the trainable pa-
rameters in the model. m is the momentum factor to scale
the graduality of ensembling. The trainable parameters of
the model are exponentially ensembled at every training
step by Eq. 13. We only used the EMA model for the infer-
ence stage.

4. Experiments

4.1. Experimental Setup

Datasets. We evaluated the SSL performance of the pro-
posed method on the four conventional datasets: CIFAR-10,
CIFAR-100 [17], SVHN [24], and STL-10 [9]. We chose
the three SSL scenarios depending on the amounts of the
available labeled data. All the SSL scenarios are based on
a unified semi-supervised learning benchmark (USB) [33]
which is an open-source SSL library implementing the 14
algorithms and comprehensive modules.
Benchmark methods. We used the Pseudo-Labeling
[19], mean teacher (MT) [31], VAT [21], ReMixMatch
[3], FixMatch [30], UDA [36], DASH [37], FlexMatch
[41], SoftMatch [6], ConMatch [16], SimMatch [43], and
ShrinkMatch [39] as the benchmark methods. We carefully
addressed the performance of the SSL methods based on the
mean and standardization values of classification error rates
by repeating the experiments three times.
Implementation details. We implemented the proposed
method in Pytorch [28]. Stochastic gradient descent (SGD)
[4] was used as an optimizer. To establish the encoder g, we
used the trunk of the Wide-ResNet [40], a wide backbone
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Dataset CIFAR-10 CIFAR-100
Method 40 250 4,000 Avg. 400 2,500 10,000 Avg.

Fully-supervised *4.91±0.33 - *19.27±0.05 -
Pseudo-Labeling [19] 74.61±0.26 46.49±2.20 15.08±0.19 45.39±0.88 87.45±0.85 57.74±0.28 36.55±0.24 60.58±0.45
Mean Teacher [31] 70.09±1.60 37.46±3.30 8.10±0.21 38.55±1.70 81.11±1.44 45.17±1.06 31.75±0.23 52.67±0.91
VAT [21] 74.66±2.12 41.03±1.79 10.51±0.12 42.07±1.34 85.20±1.40 46.84±0.79 32.14±0.19 54.73±0.79
UDA [36] 10.62±3.75 5.15±0.06 4.29±0.07 6.69±1.29 46.39±1.59 27.73±0.21 22.49±0.23 32.20±0.67
DASH [37] 9.16±4.31 4.56±0.13 4.08±0.06 5.93±1.50 44.76±0.96 27.18±0.21 21.97±0.14 31.30±0.43
FixMatch [30] 7.47±0.28 *5.07±0.65 *4.26±0.05 5.60±0.33 *48.85±1.75 *28.29±0.11 *22.60±0.12 33.25±0.66
ReMixMatch [3] 9.88±1.03 6.30±0.05 4.84±0.01 7.01±0.36 42.75±1.05 26.03±0.35 20.02±0.27 29.60±0.56
FlexMatch [41] 4.97±0.06 4.98±0.09 4.19±0.01 4.71±0.05 39.94±1.62 26.49±0.20 21.90±0.15 29.44±0.65
SimMatch [43] 5.60±1.37 4.84±0.39 3.96±0.01 4.80±0.59 37.81±2.21 25.07±0.32 20.58±0.11 27.82±0.87
ConMatch [16] 4.43±0.13 4.70±0.25 3.92±0.08 4.34±0.15 38.89±2.18 25.39±0.20 - -
SoftMatch [6] 4.91±0.12 4.82±0.09 4.04±0.02 4.59±0.07 37.10±0.77 26.66±0.25 22.03±0.03 28.60±0.35
ShrinkMatch [39] 5.08±0.18 4.74±0.25 - - 35.36±1.04 25.17±0.20 - -

Proposed 4.37±0.21 4.71±0.06 3.92±0.09 4.33±0.12 37.49±1.92 25.43±0.07 20.18±0.25 27.70±0.74

Table 1. Top-1 classification error rates (%). The smaller value indicates the more accurate. Avg. is the average value of the error rates
depending on the method.

Dataset SVHN STL-10
Method 40 250 1,000 Avg. 40 250 1,000 Avg.

Fully-supervised *2.13±0.01 - None -
Pseudo-Labeling [19] 64.61±5.60 15.59±0.95 9.40±0.32 29.87±2.29 74.68±0.99 55.45±2.43 32.64±0.71 54.26±1.37
Mean Teacher [31] 36.09±3.98 3.45±0.03 3.27±0.05 14.27±1.35 71.72±1.45 56.49±2.75 33.90±1.37 54.04±1.85
VAT [21] 74.75±3.38 4.33±0.12 4.11±0.20 27.73±1.23 74.74±0.38 56.42±1.97 37.95±1.12 56.37±1.15
UDA [36] 5.12±4.27 1.92±0.05 1.89±0.01 2.98±1.44 37.42±8.44 9.72±1.15 6.64±0.17 17.93±3.25
DASH [37] 3.03±1.59 2.17±0.10 2.03±0.06 2.41±0.58 - - 3.96±0.25 -
FixMatch [30] *3.96±2.17 *2.48±0.38 *2.28±0.11 2.91±0.89 35.97±4.14 9.81±1.04 6.25±0.33 17.34±1.83
ReMixMatch [3] 24.04±9.13 6.36±0.22 5.16±0.31 11.85±3.22 32.12±6.24 12.49±1.28 6.74±0.14 17.12±2.55
FlexMatch [41] 8.19±3.20 6.59±2.29 6.72±0.30 7.17±1.93 29.15±4.16 8.23±0.39 5.77±0.18 14.38±1.57
ConMatch [16] 3.14±0.57 3.13±0.72 - - - - 5.26±0.04 -
SoftMatch [6] 2.33±0.25 *2.21±0.00 2.01±0.01 2.18±0.08 21.42±3.48 *9.22±0.01 5.73±0.24 12.12±1.24
ShrinkMatch [39] 2.51±0.56 1.96±0.04 - - 14.02±0.41 8.45±0.62 - -

Proposed 2.13±0.26 2.14±0.06 2.04±0.04 2.10±0.12 20.47±5.44 8.45±0.30 5.27±0.11 11.39±1.95

Table 2. Top-1 classification error rates (%). The smaller value indicates the more accurate. Avg. is the average value of the error rates
depending on the method.

for the SSL benchmarks. Specifically, we used a Wide-
ResNet-24-w2 as the encoder for CIFAR-10, SVHN, and
STL-10 datasets. Wide-ResNet-24-w8, a deeper channel-
depth version of Wide-ResNet-24-w2, was used for the
CIFAR-100 experiments. The metric tensors were invented
by the trainable array. We used RandAug [10] to generate
the strongly augmented version of the unlabeled data. The
smoothing factor (α) in Eq. 5 was set to 0.1. All the exten-
sive experiments were conducted in the NVIDIA GeForce
RTX 3090 GPU without the distributed learning on the mul-
tiple GPUs. The details of network architecture and hyper-
parameters were described in Supplementary.

4.2. Comparison Results on Semi-supervised
Benchmarks

Results on the classification performance. Tables 1 and 2
showed the average of the classification error rates depend-
ing on the dataset. The numerical numbers in the second
row of the table represent the number of labeled data used
for training. The asterisk symbol (∗) in the table indicated
that we extracted results by ourselves using the released
code based on the well-crafted SSL libraries [41]. We pro-
vided the five iterated experimental results on the same sce-
nario under the different random seeds. The bold letter in
red color indicates the highest classification performance
and the bold letter is the secondary highest classification
performance. As shown in this table, the proposed method
achieved the lowest classification error rates compared to
the benchmark methods. Furthermore, in the CIFAR-10
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Losses CIFAR-10 CIFAR-100 SVHN STL-10
LMT−G LMT−L LMT−C LMT−N 40 250 4,000 400 2,500 10,000 40 250 1,000 400 250 1,000

✓ 7.87 7.11 6.32 51.44 40.19 38.36 3.28 2.75 2.31 28.10 11.85 10.99
✓ ✓ 5.19 5.02 4.72 42.81 34.27 28.41 2.67 2.63 2.17 23.61 9.89 6.02
✓ ✓ ✓ 4.88 4.96 4.25 40.54 29.38 24.33 2.38 2.47 2.17 22.63 9.00 5.97
✓ ✓ ✓ 4.34 4.85 4.01 39.10 24.99 21.44 2.33 2.29 2.11 21.69 8.74 5.88
✓ ✓ ✓ ✓ 4.37 4.71 3.92 37.49 25.43 20.18 2.13 2.14 2.04 20.47 8.45 5.27

Table 3. Top-1 classification error rates (%) on the benchmark datasets.

Hyper-parameters CIFAR-10 CIFAR-100 SVHN STL-10
λG λL λC λN 40 250 4,000 40 250 10,000 40 250 1,000 40 250 1,000

1.0 1.0 1.0 1.0 4.68 4.82 4.06 40.19 25.87 21.05 2.38 3.11 2.21 22.35 10.85 5.43
1.0 1.0 0.1 0.1 4.49 4.79 3.98 38.25 25.67 20.40 2.29 2.38 2.07 23.90 9.03 5.33
1.0 1.0 0.3 0.1 4.45 4.80 4.02 37.66 25.71 20.29 2.11 2.16 2.09 21.85 8.72 5.37
1.0 0.7 0.3 0.1 4.51 4.84 4.08 37.61 25.73 20.33 2.12 2.14 2.08 17.87 8.76 5.22
0.7 0.7 0.1 0.1 5.00 4.93 4.12 37.26 26.24 20.67 2.24 2.25 2.19 21.53 9.05 5.69
0.8 0.7 0.1 0.3 4.80 4.96 4.43 38.74 26.17 20.86 2.15 2.19 2.09 23.11 8.92 5.81
1.0 0.7 0.3 0.3 4.37 4.71 3.92 37.49 25.43 20.18 2.13 2.14 2.04 20.47 8.45 5.27

Average 4.61 4.84 4.13 38.17 25.83 20.54 2.20 2.34 2.11 21.01 9.11 5.45

Standard Deviation 0.21 0.08 0.19 0.95 0.27 0.30 0.10 0.32 0.06 1.54 0.74 0.20

Table 4. Top-1 classification error rates (%) depending on the coefficient values of losses.

experiment with the 40 labeled data, the proposed method
achieved a lower error rate of up to 1.4% compared to that
of previous state-of-the-art SSL methods.

4.3. Analysis and Ablation

Contribution of the investigated component. Table 3 pro-
vided the extensive ablation experiments to provide the ef-
fectiveness of the modules invested in the proposed method.
LMT−G, LMT−L, LMT−C , and LMT−N indicate the
losses in Eqs. 7, 8, 10 and 11, respectively. As shown in
this table, we observed that all the investigations collabora-
tively improved the classification performance. In particu-
lar, when the MG is only used (LMT−G), it provided poor
classification performance. However, the classification per-
formance is significantly improved when the ML

c is used to
training together (LMT−G + LMT−L). Thus, consistency
regularization across the class-variant embeddings can acti-
vate the precise distance measurement.
Variations depending on the loss weighting. Table 4
showed the classification results of extensive experiments
depending on the coefficients of losses in Eq. 12. In ad-
dition, this table explains the decision of hyper-parameter
setting in the proposed method. We started the experiments
with the same values (1.0) for all losses. We seek the op-
timal setting to provide the best classification performance
of the proposed method. As shown in the table, no sin-
gle parameter setting gives the highest performance for all
datasets. That is, the parameter dependency of the proposed
method is low thus adaptation for other tasks can be conve-
nient. Consequently, the λG, λL, λC , and λN were set to

Dataset Class-(c)
0 1 2 3 4 5 6 7 8 9 Avg.

w/o ML
c 6.72 10.27 8.37 4.97 2.13 5.32 2.47 3.68 7.19 7.23 5.84CIFAR-10

(40) w/ ML
c 8.94 9.31 9.65 4.72 2.85 6.07 3.39 3.76 6.45 6.29 6.14

w/o ML
c 8.43 9.76 12.65 16.90 7.33 9.47 11.77 6.61 12.28 3.85 9.91SVHN

(40) w/ ML
c 8.75 9.77 12.78 19.41 9.54 10.61 12.01 8.73 12.27 4.92 10.88

w/o ML
c 2.86 4.54 11.24 9.18 3.73 7.67 8.20 4.59 9.94 10.30 7.23STL10

(40) w/ ML
c 3.38 5.12 10.37 8.48 5.47 7.21 10.42 5.32 11.15 10.32 7.72

Table 5. Ratio between inter-and intra-class distance depending on
the ML

c usage for distance measurement.

1.0, 0.7, 0.3, and 0.3, respectively. The decision of hyper-
parameters can be further developed by the hyper-parameter
optimization techniques [1, 11].
Effectiveness of local metric tensors. We conducted ex-
tensive experiments to provide the effectiveness of the pro-
posed ML

c with a reliable evaluation metric. Here, Table 5
showed the ratio (rc) of the average distance between sam-
ples of the target (c-th) class and samples of different classes
(inter-class distance) to the average distance between sam-
ples of the same class (intra-class distance) in embedding
space. rc is defined as follows:

rc =
1

NM

∑N
i=1

∑M
m=1 d(zi, zm)

1
N(N−1)

∑N
i=1

∑N−1
j=1 d(zi, zj)

, where i ̸= j,m

(14)
where d, z, N , and M are the distance measure, embed-
dings, the number of samples in the c-th class (c ∈[0,9]),
and the total number of samples in other classes, respec-
tively. As shown in this table, the ratios were increased
when the ML

c was used in distance measurement. This de-
picts that the proposed ML

c can measure the better seman-
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m CIFAR-10 (40) CIFAR-100 (400) SVHN (40) STL-10 (40)

0.99 4.37 37.49 2.14 20.47
0.97 4.42 37.89 2.10 19.27
0.95 4.61 38.21 2.17 23.58

Table 6. Top-1 classification error rates (%) depending on the mo-
mentum in EMA.

tic distances between data points than the Euclidean dis-
tance by understanding the intrinsic geometry on embed-
ding spaces depending on the classes.
Evaluation depending on EMA momentum. Following
the conventional evaluation trend [13, 14, 31], we employed
the EMA evaluation described in Subsection 3.7. Table 6
showed the classification error rates depending on the EMA
momentum (m) for the specific SSL scenarios. To com-
pose the different ensembled model, we conducted training
on the proposed method with three momentums 0.99, 0.97,
and 0.95. Experimental results showed the proposed setting
(m = 0.99) can be optimal for the overall datasets.

5. Discussion and Conclusion

We introduced the metric-tensor-based consistency regular-
ization inducing the class-variant embedding space for the
consistency training of unlabeled data. The main contri-
butions are the usage of global and local metric tensors
representing the intrinsic geometry structure on the high-
dimensional embedding space for the SSL. Moreover, we
designed a simple framework and architecture for the SSL
scenarios. We strongly believe that the proposed method
can be available for various practical applications such as
autonomous manufacturing systems and future work. Ex-
tensive experiments on various datasets showed stable and
high-performance results without the explosion of training
parameters.
Limitations. We briefly listed the limitations of this work
to discuss the direction of future work. First, it is difficult
to introduce the metric tensor for the analysis of manifold
space due to the heuristic property of the manifold hypothe-
sis. Second, the pseudo-labeling in the proposed method is
quite simple and it’s not far from the naive techniques.
Future work. Previous works [12, 23, 27, 32] for the analy-
sis of feature space are well-designed and still remain attrac-
tive research topics such as diffusion [29], representation
learning [2, 8, 13], and multi-modal large language model
[5, 42]. We hope this work can be extended to those foun-
dation models. In addition, the proposed method can be ap-
plied to other SSL frameworks such as object detection and
semantic segmentation in the future. Moreover, the met-
ric tensor-based consistency regularization can be further
developed for domain adaptation [25] due to its powerful
capability of extracting geometry on the embedding space.
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