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Abstract

Pre-trained vision-language models have shown impres-
sive success on various computer vision tasks with their
zero-shot generalizability. Recently, prompt learning ap-
proaches have been explored to efficiently and effectively
adapt the vision-language models to a variety of down-
stream tasks. However, most existing prompt learning meth-
ods suffer from task overfitting since the general knowl-
edge of the pre-trained vision language models is forgot-
ten while the prompts are finetuned on a small data set
from a specific target task. To address this issue, we pro-
pose a Prompt Meta-Regularization (ProMetaR) to im-
prove the generalizability of prompt learning for vision-
language models. Specifically, ProMetaR meta-learns both
the regularizer and the soft prompts to harness the task-
specific knowledge from the downstream tasks and task-
agnostic general knowledge from the vision-language mod-
els. Further, ProMetaR augments the task to gener-
ate multiple virtual tasks to alleviate the meta-overfitting.
In addition, we provide the analysis to comprehend how
ProMetaR improves the generalizability of prompt tuning
in the perspective of the gradient alignment. Our exten-
sive experiments demonstrate that our ProMetaR improves
the generalizability of conventional prompt learning meth-
ods under base-to-base/base-to-new and domain general-
ization settings. The code of ProMetaR is available at
https://github.com/mlvlab/ProMetaR.

1. Introduction
Foundational vision-language models (VLMs) have estab-
lished their precedence in various computer vision appli-
cations such as object detection [10, 12, 15, 76], image
classification [52, 57, 72], segmentation [42], and cap-
tioning [37, 45, 75]. Represented by CLIP [52] and
ALIGN [24], these models are pre-trained on millions of
image-text pairs with contrastive loss, creating a shared,
well-aligned joint embedding space for vision and lan-
guage. They have demonstrated their generalization abili-
ties in zero-shot image recognition and object detection.
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Figure 1. Performance comparison of ProMetaR with prompt
learning methods (Zero-shot CLIP, CoOp, CoCoOp, IVLP (base
method), and ProMetaR (Ours)) under the base-to-base/base-to-
new setting. We measure average accuracy on the base classes (a)
and new classes (b) over 11 datasets. The red dotted line indicates
the performance of the zero-shot CLIP.

Despite the effectiveness of VLMs on zero-shot image
recognition, they suffer from time-consuming manual text
prompting for each task, which is inefficient and requires
human efforts and prior knowledge. Prompt tuning meth-
ods such as Context Optimization (CoOp) [78] have arisen
as a new paradigm that uses a small number of learnable
vectors (soft prompts) instead of manual prompting. They
efficiently and effectively adapt models to downstream tasks
by optimizing only a small number of learnable vectors (soft
prompts) while keeping VLMs frozen. In recent, some
works [26, 32] further enhance the performance by applying
prompt tuning to both image and text modalities. Prompt
tuning methods enhance traditional generalization capabil-
ities showing good performance on trained tasks with only
a few samples. However, as the soft prompts tend to prior-
itize task-specific knowledge, they easily overfit the target
task and show poor task generalization abilities. In other
words, they have difficulty in generalizing on new tasks, re-
sulting in worse performance than CLIP in data-deficient
settings. From Figure 1, standard prompt learning meth-
ods (CoOp, CoCoOp, and IVLP) show worse performance
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than zero-shot CLIP on the unseen (new) classes during the
training, while they perform well on the seen (base) classes.

One remedy to alleviate the task overfitting is learn-
ing the learnable prompts with the regularizer. However,
the regularizers are not always beneficial for all the tasks,
and it is nontrivial to manually balance the strength of
the downstream loss (i.e., contrastive loss) and regular-
izer for each task. So, we propose a framework named
ProMetaR (Prompt learning via Meta Regularization) that
jointly meta-learns the regularizer and soft prompts to im-
prove the generalizability of the prompt tuning. Specif-
ically, ProMetaR learns to modulate the gradients of the
regularizer to automatically learn effective regularization
with a learnable gradient modulation function. This can be
viewed as a bi-level optimization, which can be solved with
the meta-learning algorithm. The representations learned
through the meta-learning algorithms are at a high risk
of suffering from meta-overfitting, meaning that the meta-
parameters are overfitted to a small set of validation data
(also referred to as meta-data). To address this issue, we
present task augmentation to generate diverse virtual tasks
by augmenting the validation set. We also show how
ProMetaR improves the generalizability of existing prompt-
ing methods from the perspective of gradient alignments.

Our extensive experiments validate the effectiveness
of ProMetaR under the base-to-base/base-to-new gener-
alization and domain generalization settings over 11 im-
age recognition datasets and four variants of Imagenet
datasets. In the base-to-base/base-to-new generalization
settings (Figure 1), our ProMetaR outperforms existing
prompt learning methods on 11 image recognition datasets
on the both base classes and new classes. It also outper-
forms CLIP on the new classes while improving the perfor-
mance on the base classes. These indicate that ProMetaR
is effective in both traditional generalization and task gen-
eralization. Further, ProMetaR demonstrates its competi-
tive performance under the domain generalization setting.
We also show that our ProMetaR is applicable to various
prompting methods as a general training scheme.

The contribution of our work can be summarized as:
• We propose ProMetaR, a prompt learning framework for

improving the generalizability of the prompt optimization
methods. ProMetaR meta-learns both the regularizer and
learnable prompts, incorporating task augmentation for
more effective meta-learning.

• We provide the theoretical analysis of how our ProMetaR
improves the generalizability of prompt learning ap-
proaches.

• Our experiments demonstrate the effectiveness and ro-
bustness of ProMetaR under the base-to-base/base-to-
new settings and domain generalization. Our ProMetaR
significantly improves the base prompting methods on the
seen (base) and unseen (new) tasks.

2. Related works

Meta-Learning. The goal of meta-learning, as known as
learning to learn, is to efficiently and effectively adapt
to new tasks by leveraging past learning experiences [20].
Applications of learning to learn include learning loss
functions [2, 3, 56], learning initialization for task adap-
tation [13], and few-shot learning [30, 58, 61]. Meta-
learning algorithms are typically categorized into three
types: metric-based methods [33, 58, 61, 64], memory-
based methods [19, 44, 46, 47, 55], and gradient-based
methods [14, 35, 48, 53]. After Model-agnostic meta-
learning (MAML) [13] has been proposed, gradient-based
approaches have been actively explored. But, the gradient-
based approaches are often prone to meta-overfitting due to
insufficient meta-training tasks [1, 21, 22, 29, 69, 80]. In-
spired by these works, ProMetaR automatically learns the
effective regularization in a meta-learning manner for the
generalizability of the prompting methods and address the
meta-overfitting via task augmentation.

Regularization. Regularization is a conventional technique
to prevent neural networks from overfitting and enhance
the generalization. Conventional regularization meth-
ods include constraint-based approaches like weight de-
cay [40, 73], and input-dependent or parameter-dependent
approaches such as ensembling [23, 66], dropout [60], and
data augmentation [6, 28, 50, 62, 63, 70, 74]. In this work,
we present learning to regularize the soft prompts and task
augmentation to improve the traditional generalization and
task generalization abilities.

Prompt Learning in Vision-Language Models. Prompt
learning has proven to be an effective technique in vari-
ous natural language processing tasks [34, 38, 39]. Inspired
by this success, prompt learning in vision-language models
has also been explored [41, 77]. Specifically, CoOp [78]
introduces learnable prompts, or soft prompting, which
enables efficient finetuning and adaptation of CLIP [52]
text encoder. VPT [25] proposes to optimize the prompts
in the Vision Transformer (ViT) [9]. Recently, a line of
works [5, 26, 71] presents multimodal prompt tuning meth-
ods by combining the vision and language prompts. How-
ever, many prompt learning approaches in VLMs suffer
from the over-fitting issue. Some works have been pro-
posed to address it. For example, ProGrad [79] regular-
izes the learning process by aligning the update of the soft
prompts to the the task-agnostic general knowledge of the
VLMs with the gradient alignment. UNIGRAM [36] meta-
learns the prompt initialization with a large scale of external
data to alleviate the generalizability degradation. Prompt-
SRC [27] regulates the prompt with mutual agreement max-
imization and self-ensemble. Our ProMetaR meta-learns
both learnable prompts and regularization to improve the
generalizability without using any external data.
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3. Method

We present our ProMetaR (Prompt learning via Meta
Regularization) to address the limitations of prompt learn-
ing in small data regimes. Our novel framework automati-
cally learns effective regularization via meta-learning. We
will refer to it as Meta Regularization. Remarkably, the
proposed method effectively improves the performance in
not only base tasks (traditional generalization) but also new
tasks (task generalization) to address the task overfitting
problem. We first introduce the background of prompt tun-
ing methods for the vision-language models and the meta-
learning. Second, we propose a prompt learning mechanism
via meta-regularization to address the over-fitting problems
of the prompting approaches. Finally, we provide the theo-
retical analysis of our ProMetaR to demonstrate how it en-
hances the prompt tuning methods.

3.1. Preliminaries

Prompt tuning for VLMs. CLIP [52] provides a well-
aligned image-text joint embedding space. The pre-
trained CLIP image encoder f and text encoder g can
be used for zero-shot visual recognition by construct-
ing the hard prompt. Specifically, CLIP employs text
prompts py generated by hand-crafted templates (e.g.,
“A photo of a [CLASS]”). Then, the prediction
probability can be calculated using the visual embeddings
z = f(x) and textual embeddings wy = g(py). Given Nc

classes, the predicted probability of image x to be class y is
given as:

p (y|x) = exp (sim (z,wy) /τ)∑Nc

j=1 exp (sim (z,wj) /τ)
, (1)

where sim (·, ·) denotes the cosine similarity, wy is the tex-
tual embedding of the class y, and τ is the temperature.
Even though hard prompts considerably improve CLIP’s
performance, this technique requires manual efforts to find
effective hand-crafted templates for each task, namely,
‘prompt engineering’. Instead of manually optimizing hard
prompts, ‘prompt tuning’, also known as ‘prompt learn-
ing’, approaches have been proposed to learn context vec-
tors for the textual and/or visual prompts, namely soft
prompts [25, 78]. Concretely, by inserting Nt learnable tex-
tual prompts θtxt =

{
θtxt
1 , · · · , θtxt

Nt

}
and Nv visual prompts

θvis =
{
θvis
1 , · · · , θvis

Nv

}
, the textual embedding w̃y for class

y and visual embedding z̃ are obtained as follows:

w̃y = f
([
θtxt
1 , . . . , θtxt

Nt
, cy

])
, (2)

z̃ = g
([
CLS, θvis

1 , . . . , θvis
Nv

,E
])

, (3)

where cy is the word embedding of class y, CLS denotes the
class token, and E is the image patch embeddings. With the

weights of the visual encoder f and text encoder g frozen,
the prompts are optimized with the contrastive loss:

L = −
∑
i

yi log
exp (sim (z̃i, w̃i) /τ)∑Nc

j=1 exp (sim (z̃i, w̃j) /τ)
, (4)

where yi denotes the one-hot vector for the class of the in-
put xi. With the soft prompts, prompt tuning minimizes
manual efforts, and it improves CLIP’s performance in the
downstream tasks. However, since existing prompt tuning
methods tend to focus on task-specific knowledge, they of-
ten suffer from the overfitting problem, necessitating proper
regularization, especially in small data regimes.
Meta-learning. The goal of meta-learning, commonly re-
ferred to as ‘learning-to-learn,’ is to design models that can
quickly adapt to new tasks with small data by leveraging
past learning experiences across multiple tasks [20]. Let
D denote a meta-training set that consists of training and
validation sets across tasks T , i.e., D = {{Dtr

i , D
val
i }}i∈T ,

where Dtr
i , and Dvalid

i are the traditional training and valida-
tion sets of i-th task. Then, meta-learning can be formulated
as a bi-level optimization problem given as:

min
ϕ

∑
i∈T
Lvalid(θ

∗
i (ϕ);D

val
i ) (5)

s.t. θ∗i (ϕ) = argmin
θi

Ltrain(θi;ϕ,D
tr
i ),∀i ∈ T , (6)

where Lvalid and Ltrain denote the losses for the upper-
and lower-level optimization problems, and ϕi, θi are task-
specific parameters for i-th task and meta-parameters, re-
spectively. The lower-level optimization in Eq. (6) does
the task-specific adaption/training leveraging learning ex-
periences encoded in the meta-parameters ϕ and training
set Dtr

i . The upper-level optimization in Eq. (5) searches
for meta-parameters ϕ that improve the overall validation
losses of trained task-specific parameters θ∗i (ϕ).

A seminal work, MAML [13], can be derived from the
formulation above. MAML aims at learning good initializa-
tion that is efficiently adaptable to new tasks. Let ϕ denote
the initialization of model parameters. With task-specific
loss function Li and the approximation of lower optimiza-
tion by one-step update (Eq. (8)), the meta-learning formu-
lation in (Eq. (5)) is converted into MAML’s formulation
given as:

min
ϕ

∑
i

Li(θ̂i(ϕ);D
val
i ) (7)

s.t. θ̂i(ϕ) = ϕ− α∇ϕLi(ϕ;D
tr
i ),∀i ∈ T , (8)

where α denotes the step size to adapt the initialization ϕ to
i-th task. The approximation by one-step update in Eq. (8)
enables efficient optimization without the necessity of iter-
ative optimization for lower optimization.
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Figure 2. ProMetaR learns the soft prompts Θ =
{
θvis,θtxt} with meta-regularization to generalize well on the new tasks without losing

the generalizability of the pretrained VLMs (e.g., CLIP). In the inner-loop (Eq. (19)), we adapt the soft prompts Θ with the gradients g of
the loss L and modulated gradients greg = Mϕ

(
greg; g

)
. In the outer-loop (Eq. (20), (21)), the soft prompts Θ and the gradient modulation

function ϕ are updated on the augmented validation set Dval. The image encoder f and text encoder g of the pretrained vision-language
models are frozen during the training phase.

3.2. Prompt learning via meta-regularization

We propose a novel framework named Prompt Learning via
Meta-Regularization (ProMetaR) to improve the generaliz-
ability of existing prompt tuning methods. Our framework
adopts meta-learning approaches to learn both soft prompts
and regularizers. In addition, we incorporate task augmen-
tation into our framework to generate diverse tasks to alle-
viate the meta-overfitting. Figure 2 delineates the overall
meta-learning pipeline of the proposed method.

Prompt tuning optimizes prompts to adapt pre-trained
models, e.g., a Vision-Language Models (VLMs), to the
specific tasks by minimizing a loss:

min
Θ
L
(
Θ;Dtr) , (9)

where Θ = {θtxt,θvis} denotes the learnable prompts and
Dtr is the training set of the target downstream task. Since
the goal of prompt tuning is the sample-efficient adaptation
of the pre-trained models, the training set for prompt tun-
ing is usually small. Thus, prompt tuning methods often
suffer from overfitting, showing inferior performance com-
pared to even zero-shot VLMs. To address this problem,
we introduce a regularizer R that penalizes large changes
in representations as

Rvis =
∑
i

|z̃i − zi| , Rtxt =
∑
j

|w̃j −wj | , (10)

where z,w denote original visual and textual embeddings,
while z̃, w̃ represent corresponding embeddings obtained
with prompts Θ. Then, we have:

min
Θ
L
(
Θ;Dtr)+ λR(Θ;Dtr), (11)

where λ ∈ R+ is the regularization strength and R unifies
Rvis, andRtxt.

However, the regularizer may not always be helpful and
manually adjusting the strength of the regularizer, is non-
trivial. So, we learn the regularizer to automatically balance
it with the main loss, which can be formulated as a bi-level
optimization given as:

min
Θ,ϕ
L
(
Θ∗ (ϕ) ;Dval) (12)

s.t. Θ∗ (ϕ) = argmin
Θ

L
(
Θ;Dtr)+Rϕ

(
Θ;Dtr) ,

where Θ is a meta-parameter for the better adaptation, and
ϕ is a also meta-parameter to learn the strength of regular-
izer R. Similar to Eq. (8) in MAML, using the one-step
update approximation, Eq. (12) can be rewritten as

min
Θ,ϕ
L
(
Θ̂ (ϕ) ;Dval

)
(13)

s.t. Θ̂ (ϕ) = Θ− α
(
g +Mϕ

(
greg; g

))
, (14)

where g = ∇ΘL (Θ;Dtr) and greg = ∇ΘR (Θ;Dtr), and
Mϕ is the gradient modulation function with the parameter
ϕ that adaptively adjusts greg considering g as:

Mϕ
(
greg; g

)
= σ

(
mϕ

)
⊙ greg, (15)

where σ is the sigmoid function and ⊙ is Hadamard
product. The modulation vectors mϕ is computed by
MLPϕ

([
g||greg

])
considering the gradients of both the loss

and the regularizer.
By learning the regularizer, we have addressed the over-

fitting problem of the prompt learning methods. We fur-
ther extend our framework to boost generalization perfor-
mance in new tasks (task generalization) by generating di-
verse tasks. To this extent, we incorporate task augmenta-
tion into our framework as:

min
Θ,ϕ

E L
(
Θ̂ (ϕ) ;Aug

(
Dval))

s.t. Θ̂ (ϕ) = Θ− α
(
g +Mϕ

(
greg; g

))
,

(16)
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where Aug (·) is the task augmentation operation. The task
augmentation generates new labels to augment many tasks,
which encourages the parameters to be optimized for di-
verse tasks. The augmented task can be viewed as a virtu-
ally large meta-validation set with many tasks. This helps
the model generalize on new tasks.

Mixup-based augmentation is one of the augmenta-
tion operations that generate new interpolated labels. In
our experiments, task augmentation randomly draws sam-
ples from train and validation sets and employs manifold
mix [63] for augmentation. Specifically, given a pair of
random samples xi ∈ Dval and xj ∈ Dtr from valida-
tion and training sets, we interpolate the last layer fea-
tures (h(i)

val ,h
(j)
tr ) and their labels (y(i)val , y

(j)
tr ) as:

ĥ
(i)

val = ρh
(i)
val + (1− ρ)h

(j)
tr , (17)

ŷ
(i)
val = ρy

(i)
val + (1− ρ)y

(j)
tr , (18)

where ρ ∈ [0, 1] is a mixture ratio, which is sampled from
the Beta distribution Beta (µ, ν).
Remarks. Note that similar to overfitting, meta-learning
algorithms often suffer from meta-overfitting, especially
when the size of the meta-validation set {Dval

i }i∈T in
Eq. (5) is small [1, 69, 80]. The size is related to the quan-
tity of both samples and tasks, and their diversity. Un-
fortunately, in prompt tuning benchmarks such as base-
to-base/base-to-new generalization and domain generaliza-
tion settings, only one task is available for training with a
small number of samples. This setting is challenging and
can be seen as ‘single-task meta-learning’. In our frame-
work, task augmentation effectively addresses the scarcity
of tasks/samples and boosts generalization performance in
both a base (seen) task and a new task.

Overall procedure of ProMetaR. Motivated by the
episodic training scheme [64], we divide the batch into the
training and validation set based on the class of the sam-
ple. To maintain the in-domain performance, we first up-
date the parameters with the conventional gradient descent.
Then, we update the parameters with the meta-learning.
The learnable prompts Θ are adapted with the gradients of
the loss and modulated gradients (inner-loop):

Θ̂(ϕ)← Θ− α
(
g +Mϕ

(
greg; g

))
(19)

After the update, the learnable prompts Θ and gradient
modulation function ϕ are optimized for performing well
on the augmented set (outer-loop):

Θ← Θ− β∇ΘL
(
Θ̂(ϕ);Aug

(
Dval)) , (20)

ϕ← ϕ− β∇ϕL
(
Θ̂(ϕ);Aug

(
Dval)) , (21)

where α, β are hyperparameters, respectively.

3.3. Analysis of ProMetaR

We provide the analysis to elucidate how our proposed
ProMetaR enhances the generalizability of prompt learning
from the standpoint of gradient alignment [64]. The ob-
jective of ProMetaR is to find the optimal soft prompts as
follows:

min
Θ,ϕ
L
(
Θ− α

(
g +Mϕ

(
greg

))
;Dval) , (22)

where g = ∇ΘL (Θ;Dtr) , greg = ∇ΘR (Θ;Dtr) are the
gradients of loss L and regularizerR, respectively.

We can approximate L (x) with first-order Taylor expan-
sion. Given lossL(x), its first-order approximation via Tay-
lor expansion is as follows:

L(x) ≈ L (x0) +∇xL (x0)
⊤
(x− x0) , (23)

where x0 is an arbitrary point and x is a point close to x0.
Assume that we have x = Θ − α

(
g +Mϕ

(
greg

))
and

x0 = Θ. Then, our objective (Eq. (22)) can be written as:

min
Θ,ϕ
L
(
Θ;Dval)+

∇ΘL (Θ)
⊤ (
−α

(
g +Mϕ

(
greg

)))
.

(24)

SinceMϕ
(
greg

)
= σ

(
mϕ

)
⊙greg, we can rewrite Eq. (24)

as below:

min
Θ,ϕ
L
(
Θ;Dval)− α

(
∇ΘL (Θ)

⊤
g

)
− α

(
∇ΘL (Θ)

⊤ (
σ
(
mϕ

)
⊙ greg

))
.

(25)

This equation has three terms. The optimization above im-
plies minimizing (i) the loss on the validation set, (ii) maxi-
mizing the inner product between the gradients of the losses
on the validation set and the training set, and (iii) maximiz-
ing the inner product between the gradient of the valida-
tion loss and the regularizer on the training set. So, these
indicate that this optimization prefers a solution/direction
where the training and validation gradients agree, which
leads to better generalization on new tasks. In addition,
the third term in Eq. (25) plays a role in avoiding the con-
flict of the update between the task-specific knowledge by
tuned prompts and task-agnostic general knowledge pro-
vided by original prompts. From the perspective of the gra-
dient alignment [79], the third term leads to a reduction in
the generalization error by aligning the gradients induced
by tuned prompts and general knowledge from the origi-
nal prompts. So, our proposed ProMetaR enhances the task
generalization ability as well as traditional generalization
capability.
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4. Experiments

In this section, we demonstrate the effectiveness of our
proposed ProMetaR. We first introduce datasets, baselines,
and implementation details. Next, we provide the ablation
studies to explore the contribution of each component in
ProMetaR. Then, we compare the proposed method with
other prompting-based methods to evaluate the ability of
traditional generalization on seen categories (base-to-base),
and task generalization to unseen categories (base-to-new)
and new datasets (domain generalization). We also design a
task overfitting score and provide analysis to show the effi-
cacy of the proposed method.

4.1. Experimental settings

We evaluate ProMetaR on base-to-base/base-to-new gen-
eralization and domain generalization following other
prompting works [26].

Base-to-base/Base-to-new generalization. We train the
prompts only on the base classes in a 16-shot (16 images per
class) setting and measure the performance of the prompt-
ing methods on base and new classes. In this setting, the
model cannot see new classes in the training phase.

Domain generalization. We also validate the effectiveness
of our model in a 16-shot on out-of-distribution datasets.
We train the model only using ImageNet dataset (source)
and perform inference on four other variants (target) of Im-
ageNet dataset. In other words, the model cannot see target
domains in the training phase.

Datasets. For base-to-base/base-to-new class generaliza-
tion, we evaluate our method on 11 image recognition
datasets: ImageNet [8], Caltech101 [11], OxfordPets [51],
StanfordCars [31], Flowers102 [49], Food101 [4], FGV-
CAircraft [43], SUN397 [68], UCF101 [59], DTD [7], and
EuroSAT [16], following other prompting methods [26, 77].
We also evaluate our method on domain generalization
settings by setting ImageNet [8] as the source dataset.
The target datasets contain four ImageNet variants: Im-
ageNetV2 [54], ImageNet-Sketch [65], ImageNet-A [18],
and ImageNet-R [17].

Baselines. To validate the effectiveness of our ProMetaR,
we use the following baselines: (1) zero-shot CLIP [52],
(2) textual prompt learning approaches: CoOp [78] and Co-
CoOp [77], (3) multimodal prompt learning approaches:
MAPLE [26] and RPO [32], (4) prompt learning with reg-
ularization and ensemble methods: PromptSRC [27], (5)
prompt learning with the meta-learning: UNIGRAM [36],
and (6) our base prompting method: IVLP.

Experimental details. Following other prompt learning
works [26, 27, 77], we use CLIP-ViT-B/16 as the pre-
trained backbone model and four soft prompting tokens
for each modality. For the base prompt learning method,

MetaLearn TaskAug MetaReg Base New H

(a) 82.51 73.36 77.66
(b) ✓ 83.51 73.15 77.99
(c) ✓ ✓ 84.04 75.37 79.47
(d) ✓ ✓ 84.27 75.06 79.40
(e) ✓ ✓ ✓ 84.39 76.93 80.49

Table 1. Contribution of each component of our ProMetaR. Re-
sults are averaged over 11 datasets. H refers to harmonic mean.
MetaLearn: meta-learning, TaskAug: Task augmentation to alle-
viate the meta-overfitting, MetaReg: meta-regularization to learn
the regularizer.

we use Independent Vision-Language Prompting as a base
prompt learning method that optimizes hierarchical prompts
on both image and text modalities [26]. In all experiments,
we evaluate the performance of the methods in three inde-
pendent runs (seed 1, 2, and 3) and report average perfor-
mance following other prompt learning works [26, 27, 77].

4.2. Effectiveness of ProMetaR

We validate the effectiveness of each component of the pro-
posed ProMetaR under the base-to-base/base-to-new set-
ting. Table 1 provides the ablation study on our compo-
nents, and the results are averaged over 11 datasets. Met-
aLearn denotes meta-learning, TaskAug indicates task aug-
mentation to alleviate the meta-overfitting, and MetaReg
refers to meta-regularization. Eliminating all of our com-
ponents, or (a), corresponds to using only IVLP, which is
the base prompt learning method of ProMetaR. By adopt-
ing meta-learning to IVLP ((a) → (b)), the base class per-
formance improves (+1.0%) but it impairs generalization
to new classes (-0.21%). However, our task augmentation
((b)→ (c)) significantly enhances the average accuracy on
new classes and harmonic mean with gains of +2.22% and
+1.48%, respectively, compared to IVLP+meta-learning.
Additionally, our meta-regularization ((b)→ (d)) improves
accuracy for both base and new classes by +0.76% and
+1.91%, respectively. This indicates that both task augmen-
tation and meta-regularization clearly ameliorate the meta-
overfitting caused by meta-learning and contribute to strong
generalization. Furthermore, by adding meta-regularization
to (c), i.e., (c)→ (e), all three accuracies increase to +0.35%
(base class), +1.56% (new class), and +1.02% (harmonic
mean). Employing task augmentation to (d), i.e., (d)→ (e),
leads to an additional +1.87% growth in new class accuracy.
Our ProMetaR significantly improves over IVLP for both
base and new classes ((a) → (e)), achieving performance
gains of +1.88%, +3.57%, and +2.83% on the base class,
new class accuracy, and harmonic mean, respectively.
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Dataset CLIP CoOp CoCoOp MaPLe RPO PromptSRC UNIGRAM IVLP ProMetaR Gain
[52] [78] [77] [26] [32] [27] [36] (Base) (Ours) ∆

Avg. Rank 8.18 8.55 6.73 3.64 4.55 2.73 3.82 5.27 1.36 -

Average on
11 datasets

Base 69.34 82.69 80.47 82.28 81.13 84.26 80.34 82.51 84.39 +1.88
New 74.22 63.22 71.69 75.14 75.00 76.10 75.92 73.35 76.93 +3.58

H 71.70 71.66 75.83 78.55 77.78 79.97 78.07 77.66 80.49 +2.83

ImageNet
Base 72.43 76.47 75.98 76.66 76.60 77.60 76.60 77.39 77.76 +0.37
New 68.14 67.88 70.43 70.54 71.57 70.73 70.69 70.04 70.75 +0.71

H 70.22 71.92 73.10 73.47 74.00 74.01 73.53 73.53 74.09 +0.56

Caltech
101

Base 96.84 98.00 97.96 97.74 97.97 98.10 98.07 98.28 98.11 -0.17
New 94.00 89.81 93.81 94.36 94.37 94.03 95.11 93.65 94.29 +0.64

H 95.40 93.73 95.84 96.02 96.03 96.02 96.57 95.91 96.16 +0.25

Oxford
Pets

Base 91.17 93.67 95.20 95.43 94.63 95.33 94.94 95.41 95.57 +0.16
New 97.26 95.29 97.69 97.76 97.50 97.30 97.94 96.31 97.43 +1.12

H 94.12 94.47 96.43 96.58 96.05 96.30 96.42 95.86 96.49 +0.63

Stanford
Cars

Base 63.37 78.12 70.49 72.94 73.87 78.27 73.50 72.39 78.32 +5.93
New 74.89 60.40 73.59 74.00 75.53 74.97 75.38 73.31 75.18 +1.87

H 68.65 68.13 72.01 73.47 74.69 76.58 74.43 72.85 76.72 +3.87

Flowers
102

Base 72.08 97.60 94.87 95.92 94.13 98.07 95.20 96.17 98.13 +1.96
New 77.80 59.67 71.75 72.46 76.67 76.50 76.21 73.64 77.66 +4.02

H 74.83 74.06 81.71 82.56 84.50 85.95 84.65 83.41 86.70 +3.29

Food101
Base 90.10 88.33 90.70 90.71 90.33 90.67 90.84 90.53 90.80 +0.27
New 91.22 82.26 91.29 92.05 90.83 91.53 92.12 91.66 91.89 +0.23

H 90.66 85.19 90.99 91.38 90.58 91.10 91.48 91.09 91.34 +0.25

FGVC
Aircraft

Base 27.19 40.44 33.41 37.44 37.33 42.73 32.25 37.24 42.02 +4.78
New 36.29 22.30 23.71 35.61 34.20 37.87 38.00 34.47 38.63 +4.16

H 31.09 28.75 27.74 36.50 35.70 40.15 34.89 35.80 40.25 +4.45

SUN397
Base 69.36 80.60 79.74 80.82 80.60 82.67 80.43 82.63 82.70 +0.07
New 75.35 65.89 76.86 78.70 77.80 78.57 77.91 78.40 79.02 +0.62

H 72.23 72.51 78.27 79.75 79.18 80.52 79.15 80.46 80.82 +0.36

DTD
Base 53.24 79.44 77.01 80.36 76.70 83.37 73.62 80.67 83.02 +2.35
New 59.90 41.18 56.00 59.18 62.13 62.97 62.38 55.31 64.05 +8.74

H 56.37 54.24 64.85 68.16 68.61 71.75 67.56 65.63 72.31 +6.68

EuroSAT
Base 56.48 92.19 87.49 94.07 86.63 92.90 86.26 92.64 94.94 +2.30
New 64.05 54.74 60.04 73.23 68.97 73.90 71.38 63.33 77.44 +14.11

H 60.03 68.69 71.21 82.35 76.79 82.32 78.12 75.23 85.30 +10.07

UCF101
Base 70.53 84.69 82.33 83.00 83.67 87.10 82.00 84.23 86.97 +2.74
New 77.50 56.05 73.45 78.66 75.43 78.80 78.06 76.78 79.84 +3.06

H 73.85 67.46 77.64 80.77 79.34 82.74 79.98 80.33 83.25 +2.92

Table 2. Performance comparison on the base-to-new generalization setting. We train our model with a subset of the classes (base classes)
in a 16-shot setting and evaluate on the test set including base classes and new classes. H denotes the harmonic mean of base and novel
performance to show the generalization trade-off [67]. Avg. Rank is the average rank of the harmonic mean on each dataset among the
baselines. ∆ denotes the performance gain of ProMetaR from IVLP (our base prompting method).

4.3. Base-to-base/Base-to-new generalization

We compare the performance of ProMetaR with other re-
cent prompting approaches in the base-to-base/base-to-new
generalization setting to demonstrate the effectiveness of
the proposed learning framework. Following [26, 77], we
report the average accuracy of three different data splits
used in CoCoOp [77] for a fair comparison. The results
are reported in Table 2.

Our ProMetaR shows the best performance on the av-
erage accuracy over 11 datasets among baselines. In par-

ticular, ProMetaR achieves a significant improvement on
new classes from 76.10 to 76.93 compared to the best base-
line method PromptSRC. Also, ProMetaR substantially im-
proves the average accuracy of the base model IVLP by 3.58
on new classes. This result indicates that our ProMetaR en-
hances the generalizability of existing prompting methods
by meta-learning the regularization. In comparison with
UNIGRAM, which applies meta-learning with a large scale
of external data, ProMetaR shows impressive performance
improvement on both base and new categories without any
external data for the meta-learning.
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Source Target

ImageNet -V2 -S -A -R Avg.

CLIP 66.73 60.83 46.15 47.77 73.96 57.18
CoOp 71.51 64.20 47.99 49.71 75.21 59.28
CoCoOp 71.02 64.07 48.75 50.63 76.18 59.91
MaPLe 70.72 64.07 49.15 50.90 76.98 60.27
RPO 71.67 65.13 49.27 50.13 76.57 60.28
PromptSRC 71.27 64.35 49.55 50.90 77.80 60.65
UNIGRAM 71.65 64.81 49.54 51.51 77.34 60.80

ProMetaR 71.29 64.39 49.55 51.25 77.89 60.77

Table 3. Performance comparison on the domain generalization.

Top-3 Bottom-3
Dataset tosIVLP Gain ∆ Dataset tosIVLP Gain ∆

EuroSAT 36.88 10.07 Food101 -0.01 0.25
DTD 32.02 6.68 Caltech101 1.79 0.25
Flowers 28.25 3.29 Imagenet 3.06 0.56

Table 4. Task overfitting score tosIVLP = δIVLP
base − δIVLP

new and the
gain ∆. ∆ denotes the performance gain (H) by ProMetaR on
IVLP (Table 2).

4.4. Domain generalization

In the domain generalization setting, the performance com-
parison of ImageNet-trained models, evaluated with four
out-of-distribution variants, is reported in Table 3. For
a fair comparison, we exclude UNIGRAM since it em-
ploys a large scale of extra datasets to pre-train the learn-
able prompts. ProMetaR successfully generalizes to out-of-
domain datasets showing the best average accuracy. This
demonstrates that our meta-regularizer and task augmenta-
tion clearly enhance the robustness to domain shifts.

4.5. Analysis

Task overfitting score. We analyze when our ProMetaR
provides a relatively large (or small) performance improve-
ment compared to the base model (IVLP). To quantify
the room for improvement, we define Task Overfitting
Score (tos) of the prompting method <pr> as

tos<pr> = δ<pr>base − δ<pr>new , (26)

where δ<pr>base = max(0, s<pr>base − sCLIP
base ), δ

<pr>
new = s<pr>new −

sCLIP
new be the performance difference between prompting

method <pr> and zero-shot CLIP on the base and new
classes, respectively. s<pr>base , s<pr>new indicate the accuracy of
the prompting method <pr> on base and new classes, re-
spectively. As the task overfitting score is lower, the method
<pr> tends to generalize well on new tasks. Table 4 re-
ports the task overfitting score and performance gain ∆ of
ProMetaR from IVLP (Table 2) on the datasets with top-
3 (left) and bottom-3 (right) task overfitting scores. The
table shows that gains of ProMetaR are relatively high
when the task overfitting score is high. It demonstrates that
ProMetaR is more effective when prompting method IVLP
suffers from overfitting.

Methods Base New H

CoOp 82.69 63.22 71.66
+ ProMetaR 83.35 71.20 76.80

VPT 82.75 71.00 76.43
+ ProMetaR 83.18 73.19 77.87

Table 5. Performance comparison of ProMetaR with different
prompting approaches (CoOp [78] and VPT [25]) under the base-
to-base/base-to-new generalization setting.

Method Base New H

Loss+Reg. 83.96 75.70 79.62
ProMetaR (Ours) 84.39 76.93 80.49
Performance Gain (∆) +0.43 +1.23 +0.87

Table 6. Performance comparison of ProMetaR with IVLP trained
with the loss and regularizer under the base-to-base/base-to-new
generalization setting.

ProMetaR with diverse methods. ProMetaR can be ap-
plied to any existing prompting methods in a plug-and-
play manner. We elucidate the effectiveness of ProMetaR
by comparing the performance of various methods, such
as CoOp and VPT, with our method plugged in (Table 5).
ProMetaR consistently improves all the other prompt learn-
ing methods with harmonic mean gains of +5.14% and
+1.44% over CoOp and VPT, respectively. Moreover, the
performance is enhanced, especially in new classes, indi-
cating that our ProMetaR effectively prevents the prompts
from overfitting to downstream tasks.

Meta-Regularization. In Table 6, we also compare
ProMetaR with IVLP trained with the loss and the regu-
larizer (Loss+Reg) in (11) with manually tuned hyperpa-
rameters (e.g., a regularization strength). The experimental
results show that our ProMetaR outperforms standard IVLP
training with regularization (Loss+Reg). This result indi-
cates that our ProMetaR automatically learns more effective
regularization via meta-learning.

5. Conclusion

We propose ProMetaR to encourage both traditional gen-
eralization and task generalization, yielding a significant
performance improvement in base-to-base/base-to-new and
domain generalization settings. Specifically, we adopt
meta-learning to learn both soft prompts and regularizers.
We further incorporate task augmentation to generate di-
verse tasks and address the meta-overfitting. Extensive ex-
periments and analyses demonstrate that our ProMetaR en-
hances the generalizability of prompt learning.
Acknowledgements. This work was partly sup-
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