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Abstract

Spurious correlations can cause strong biases in deep
neural networks, impairing generalization ability. While
most existing debiasing methods require full supervision
on either spurious attributes or target labels, training a
debiased model from a limited amount of both annotations is
still an open question. To address this issue, we investigate
an interesting phenomenon using the spectral analysis of
latent representations: spuriously correlated attributes make
neural networks inductively biased towards encoding lower
effective rank representations. We also show that a rank
regularization can amplify this bias in a way that encourages
highly correlated features. Leveraging these findings, we
propose a self-supervised debiasing framework potentially
compatible with unlabeled samples. Specifically, we first
pretrain a biased encoder in a self-supervised manner with
the rank regularization, serving as a semantic bottleneck
to enforce the encoder to learn the spuriously correlated
attributes. This biased encoder is then used to discover
and upweight bias-conflicting samples in a downstream task,
serving as a boosting to effectively debias the main model.
Remarkably, the proposed debiasing framework significantly
improves the generalization performance of self-supervised
learning baselines and, in some cases, even outperforms
state-of-the-art supervised debiasing approaches.

1. Introduction
While modern deep learning solves several challenging tasks
successfully, a series of recent works [16, 18, 20] have
reported that the high accuracy of deep networks on in-
distribution samples does not always guarantee low test error
on out-of-distribution (OOD) samples, especially in the con-
text of spurious correlations. Existing studies [3, 38, 50]
suggest that the deep networks can be potentially biased to
the spuriously correlated attributes, or dataset bias, which are
misleading statistical heuristics that are closely correlated
but not causally related to the target label.

These catastrophic pitfalls of dataset bias have facili-
tated the development of debiasing methods, which can be
roughly categorized into approaches: (1) leveraging annota-
tions of spurious attributes, i.e., bias label [27, 46, 49, 56];
(2) presuming specific type of bias, e.g., color and texture
[5, 17, 53]; or (3) without using explicit kinds of supervi-
sions on dataset bias [30, 31, 35, 39, 60].

While substantial advances have been made in this regard,
these approaches still fail to address the problem: how to
train a debiased classifier by fully exploiting unlabeled sam-
ples lacking both bias and target label. More specifically,
while the large-scale unlabeled dataset can be potentially
biased towards spuriously correlated sensitive attributes, e.g.,
ethnicity, gender, or age [1, 2], current existing debiasing
frameworks are not designed to deal with this real-world
unsupervised settings. Here we also confirm that most super-
vised debiasing frameworks suffer from performance degra-
dation in the low-labeled data setting. Moreover, recent
works have suggested that self-supervised learning might
not be sufficient to deal with OOD generalization [10, 19, 44]
when dataset bias remains after data augmentation.

To tackle this issue, we first make a series of empiri-
cal observations that allow us to examine the fundamental
difference between biased and unbiased representations. In-
terestingly, we found that spurious correlations suppress the
effective rank [45] of latent representations, which severely
deteriorates the semantic diversity of representations and
leads to the degradation of feature discriminability. An-
other notable aspect of our findings is that the intentional
increase of feature redundancy amplifies “prejudice” in neu-
ral networks. To be specific, as we enforce the correlation
among latent features to regularize the effective rank of
representations (i.e., rank regularization), the accuracy on
bias-conflicting samples quickly declines while the model
still performs reasonably well on the bias-aligned 1 samples.

1The bias-aligned samples refer to data with a strong correlation be-
tween (potentially latent) spurious features and target labels. The bias-
conflicting samples refer to the opposite cases where spurious correlations
do not exist.
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Figure 1. Concept. Based on the bias-rank relationship (Section 2), we introduce a novel debiasing framework centered on rank
regularization, which intentionally amplifies spurious correlation by enforcing feature components to be entangled with both spurious and
invariant attributes.

Based on these observations, we propose a novel debias-
ing framework that can utilize both labeled and unlabeled bi-
ased samples with rank regularization. The proposed method
is fully compatible with both supervised and self-supervised
scenarios, where such compatibility arises from the rank reg-
ularization that does not rely on any labels. Specifically, for
a supervised (self-supervised) setting, we train 1) a biased
classifier (encoder) with rank regularization, which serves as
a semantic bottleneck limiting the semantic diversity of fea-
ture components, and 2) the main classifier (encoder) with
standard (self-)supervised learning approaches. The biased
model affords us the leverage to uncover spurious correla-
tions and identify bias-conflicting samples in a downstream
task.

Our work is the first to unveil the bias-rank relationships
and introduce an effective debiasing strategy to exploit po-
tentially unlabeled data samples. We demonstrate the effec-
tiveness of the proposed debiasing framework with various
challenging real-world biased datasets, including MultiCM-
NIST [34], biased Chest X-ray databases, UTKFace, CelebA,
etc., in both a supervised and self-supervised scenario. These
experiments show that our method significantly outperforms
other self-supervised baselines, and even state-of-the-art su-
pervised debiasing methods in some cases.

2. Low-rank bias of biased representations
2.1. Preliminaries

Throughout the paper, we denote x ∈ Rm and y ∈ Y as
m-dimensional input sample and its corresponding predict-
ing label, respectively. Then we denote X = {xk}nk=1 as a
batch of n samples from a dataset which is fed to an encoder
fθ : Rm → Rd, parameterized by θ. Then we construct a
matrix Z ∈ Rn×d where each ith row is the output repre-
sentations of the encoder fθ(xi)

T for xi ∈ X . For every
analysis in this section, we use Z as our latent representa-

tions, where the neural backbone of the encoder may vary
as simple convolutional networks, ResNet-18, or ViT [15]
(Experimental details provided in Appendix C.1 and D).

To evaluate the semantic diversity of given representation
matrix, we introduce effective rank [45] which is a widely
used metric to measure the effective dimensionality of ma-
trix and analyze the spectral properties of features in neural
networks [4, 6, 23, 42]:

Definition 1. Given the matrix X ∈ Rm×n and its singular
values {σi}min (m,n)

i=1 , the effective rank ρ of X is defined as
the shannon entropy of normalized singular values:

ρ(X) = −
min (m,n)∑

i=1

σ̄i log σ̄i, (1)

where σ̄i = σi/
∑

k σk is i-th normalized singular value.
Without loss of generality, we omit the exponentiation of
ρ(X) as done in [45].

Effective rank is also referred to as spectral entropy where
its value is maximized when the singular values are all equal
and minimized when a top singular value dominates relative
to all others. Recent works [12, 13] have revealed that the
discriminability of representations resides on wide range of
eigenvectors since the rich discriminative information for
the classification task cannot be transmitted by only few
eigenvectors with top singular values. Thus from a spectral
analysis perspective, effective rank quantifies how diverse
the semantic information encoded by each eigenfeature is,
which is closely related to the feature discriminability across
target label categories. In the rest of paper, we interchange-
ably use effective rank and rank by following prior works.

2.2. Spectral analysis of the bias-rank relationships

We now present experiments showing that the deep networks
may tend to encode lower-rank representations in the pres-
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(a) Unbiased corr. (b) Biased corr.

(c) Effective rank
(d) SVD analysis

Figure 2. Empirical analysis on rank reduction phenomenon. For
every analysis, we used the output Z of the encoder (Sec. 2.1). (a,
b): Hierarchically clustered auto-correlation matrix of unbiased
and biased representations (Bias ratio=99%). (c): Effective rank
with color bias. ‘Unbiased’ represents the case training model with
perfectly unbiased dataset, i.e. random color for each sample. (d):
SVD analysis with max-normalized singular values. Top 100 values
are shown in the figure (total: 256).

ence of stronger spurious correlations. To arbitrarily control
the degree of spurious correlations, we introduce synthetic
biased datasets, Color-MNIST (CMNIST) and Corrupted
CIFAR-10 (CIFAR-10C, [21]), with color and corruption
bias types, respectively. We define the degree of spurious
correlations as the ratio of bias-aligned samples included in
the training set, or bias ratio, where most of the samples are
bias-aligned in the context of strong spurious correlations.

Figure 2c shows that the rank of latent representations
from a penultimate layer of the simple convolutional clas-
sifier decreases as the bias ratio increases in CMNIST. We
provide similar rank reduction results of CIFAR-10C with
ResNet-18 and ViT in the Appendix C.1. We further com-
pare the correlation matrix of biased and unbiased latent rep-
resentations in the penultimate layer of biased and unbiased
classifiers, respectively. In Figure 2a and 2b, we observe that
the block structure in the correlation matrix is more evident
in the biased representations after the hierarchical clustering,
indicating that the features become highly correlated which
may limit the semantic diversity of networks. To investigate
the rank reduction phenomenon in-depth, we compare the
normalized singular values of biased and unbiased represen-
tations. We conduct singular value decomposition (SVD) on
the feature matrices of both biased and unbiased classifiers
and plot the singular values normalized by the spectral norm
of the corresponding matrix. Figure 2d shows that the top
few normalized singular values of biased representations
are similar to or even greater than those of unbiased rep-

resentations. However, the remaining majority of singular
values decay significantly faster in biased representations,
greatly weakening the informative signals of eigenvectors
with smaller singular values and deteriorating feature dis-
criminability [12, 13].

2.3. Rank regularization

Motivated from the aforementioned rank reduction phe-
nomenon, we ask an opposite-directional question: “Can
we intentionally amplify the prejudice of deep networks
by maximizing the redundancy between the components of
latent representations?". If the feature components are ex-
tremely correlated, the corresponding representations may
exhibit most of its spectral energy along the direction of one
singular vector. For this case, effective rank may converge
to 0. In other words, our goal is to design a semantic bottle-
neck of representations that restricts the semantic diversity
of feature vectors. To implement the bottleneck in practice,
motivated from Figure 2b, we compute the auto-correlation
matrix of the output of encoder.

Let Z̄ denote the mean-centered representations Z along
the batch dimension. The normalized auto-correlation matrix
C ∈ Rd×d of Z̄ is defined as follow:

Ci,j =

∑n
b=1 Z̄b,iZ̄b,j√∑n

b=1 Z̄
2
b,i

√∑n
b=1 Z̄

2
b,j

1 ≤ ∀i, j ≤ d, (2)

where b is an index of sample and i, j are index of each
vector dimension. Then we define our regularization term as
the negative of a sum of squared off-diagonal terms in C:

ℓreg(X; θ) = −
∑
i

∑
j ̸=i

C2
i,j , (3)

where we refer to it as the rank loss. Note that the target
labels on X is not used at all.

Analysis of rank-regularized networks. To investigate
the impacts of rank regularization in deep neural networks,
we construct the classification model by combining the lin-
ear classifier fW : Rd → Rc parameterized by W ∈ W
on top of the encoder fθ, where c = |Y| is the number of
classes. Then we trained models by cross entropy loss ℓCE

combined with λregℓreg, where λreg > 0 is a Lagrangian
multiplier. We use CMNIST, CIFAR-10C, and Waterbirds
dataset [51], and evaluate the trained models on an unbiased
test set following [30, 39]. After training models with vary-
ing the hyperparameter λreg, we compare bias-aligned and
bias-conflict accuracy, which are the average accuracy on
bias-aligned and bias-conflicting samples in the unbiased
test set, respectively, for CMNIST and CIFAR-10C. Test
accuracy on every individual data group is reported for Wa-
terbirds. Figure 3 shows that models suffer more from poor
OOD generalization as trained with larger λreg . The average
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(a) CMNIST (b) CIFAR-10C (c) Waterbirds

Figure 3. (a, b): Bias-conflict and Bias-aligned accuracy on CMNIST and CIFAR-10C (Bias ratio=95%). (c): Group accuracy on Waterbirds.
Detailed simulation settings are in the Appendix D.

CMNIST CIFAR-10C

P (%) R (%) P (%) R (%)

ERM 85.59 19.76 52.03 0.06

+ Rank reg 98.83 95.91 71.39 51.43

(a) CMNIST, CIFAR-10C

Metrics ERM JTT Rank reg

Precision (%) 37.84 48.95 54.77

Recall (%) 11.67 48.75 55.01

(b) Waterbirds

Table 1. Precision (P) and Recall (R) of bias-conflicting samples.
(a): Bias-conflicting samples are identified in the error set of ERM
model trained with and without rank regularization (Bias ratio=95%
for both datasets). (b): Bias-conflicting samples are similarly iden-
tified by ERM, JTT, and the proposed biased model in Waterbirds
dataset.

accuracy on bias-conflicting groups is significantly degraded,
while the accuracy on bias-aligned groups is maintained to
some extent. It implies that rank regularization may force
deep networks to focus on spurious attributes.

Minority mining performance. Table 1a and 1b support
that the biased models with strong regularization can effec-
tively probe out the bias-conflicting samples in the training
set. Specifically, we train a biased classifier with rank regu-
larization and distill an error set E of misclassified training
samples as bias-conflicting samples proxies. As reported in
Table 1a, we observe that our biased classifier is relatively
robust to the unintended memorization of bias-conflicting
samples [47] in contrast to the standard models trained by
Empirical Risk Minimization (ERM). Moreover, Table 1b
shows that the proposed rank regularization improves the
precision and recall of identified bias-conflicting samples
compared to JTT [35]. Detailed simulation settings are in
the Appendix D.

Reconstruction of biased representations. To under-

stand the relationship between rank regularization and spu-
rious correlations more deeply, we visualize the pretrained
representations with varying degrees of bias. We first trained
deep networks on: (a) unbiased CMNIST (random back-
ground color), (b) biased CMNIST (bias ratio=95%) with-
out rank regularization and (c) with rank regularization
(λreg = 50). Then, we train the auxiliary decoder, which
reconstructs the bias-conflicting images from the freezed
latent representations of each pretrained network. Results
show that rank regularization may cause the representation
to lose information on complex invariant features, resulting
in a loss of feature discriminability and informative signals.
While both digit and color are well reconstructed with bi-
ased representations (b), the decoder fails to reconstruct
bias-conflicting images from the (c) biased representations
pretrained with rank regularization. The foreground digit
is blurred, and its class changes following the color-digit
assignment in Figure 4d.

These observations afford us some key insights into rank
regularization: First, the rank-regularized representation may
lose its information on complex invariant features (i.e., shape
and style of the foreground digit), specifically undermining
the feature discriminability and informative signals. Second,
the limited semantic diversity makes it harder to identify the
true underlying independent generative factors for multidi-
mensional data; instead, it may encode feature components
entangled with both spurious and invariant attributes as the
digit class of the reconstructed image is erroneously deter-
mined by the background color in 4c.

Multiple bias attributes. To further investigate the gen-
eralizability of rank regularization, we evaluate the biased
representations with Multi-Color MNIST (MultiCMNIST)
dataset [34], which is similar to the CMNIST but have two
bias attributes: left and right background colors. We set bias
ratio=99% for the left color and bias ratio=95% for the right
color, i.e., the left color is a more salient bias than the right
color (Dataset details are provided in Appendix D).

Table 2 shows that the rank regularization successfully
biases the model w.r.t both bias attributes, while LfF [39]
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(a) Unbiased (b) Biased (c) Biased with rank reg. (d) Examples.

Figure 4. Randomly selected reconstructed images from representations with varying degrees of bias. First and third row correspond
to the input bias-conflicting images. Second and fourth row correspond to the reconstructed images. Reconstructed from (a) unbiased
representations, (b) biased representations, and (c) biased representations with rank regularization (bias ratio=95% in b, c). (d) Examples of
bias-aligned CMNIST images.

Table 2. (a) Test accuracy (%) on MultiCMNIST. Lower is better
for this results. BC for bias-conflicting, and BA for bias-aligned.
Bias ratio=99(%) for left color, and 95(%) for right color. λreg =
50 is used for rank regularization. (b) Debiasing results. Higher is
better for this results. Baseline results are from [34]. λup = 50 is
used for upweighting in the proposed framework (λup: a manual
rescaling weight given to each identified bias-conflicting samples
in cross entropy loss). Pseudo-code and experimental details are
provided in Appendix A and D, respectively.

Idx Left color Right color (a) Biased accuracy (%) (b) Debiased accuracy (%)

ERM LfF [39] Rank reg. LfF DebiAN [34] Ours

(1) BA BC 100.0 100.0 100.0 99.6 100.0 100.0

(2) BA BC 96.6 98.8 41.6 4.7 95.6 97.0

(3) BC BA 29.3 3.2 8.7 98.6 76.5 79.1

(4) BC BC 7.6 1.3 6.1 5.1 16.0 18.3

(1) ∼ (4) average acc. 58.38 50.83 39.1 52.0 72.0 73.6

completely fails to amplify the right color bias, i.e. less
salient bias, as shown in the second row (Biased accuracy
part). This leads to the abnormal debiasing results of LfF as
shown in Table 2 where it records unbalanced accuracy for
the left- and right-color-bias-conflicting samples. In contrast,
the proposed framework shows superior performance by sim-
ply upweighting the misclassified bias-conflicting proxies,
as done in [35].

Taken together, these results indicate that the rank regu-
larization encourages the network to focus more on spurious
correlations in a way that minimizes semantic diversity and
entangles invariant and spurious features [41], which is a
fundamentally different mechanism compared to the LfF
[39] with its easy-to-learn assumption. More details on
the upweighting strategy will be provided in Section 3 and
pseudo-code in Appendix A.

3. DeFund: Debiasing framework with unla-
beled data

Motivated by the observations in Section 2, we propose a
self-supervised debiasing framework with unlabeled data,
coined DeFund (Debiasing Framework with Unlabeled Data).
A notable distinction from previous studies [5, 60] lies in
the proposed framework’s ability to effectively harness un-

labeled data for learning biased representations. This is
achieved through the application of self-supervised learning
and rank regularization techniques.

The proposed framework is composed of two stages:
We first train the biased encoder, which can be potentially
adopted to detect the bias-conflicting samples in a down-
stream task, along with the main encoder by self-supervised
learning, both without any labels. After pretraining, we
identify the bias-conflicting samples in the downstream task
using linear evaluation protocol [9, 40]. This set of samples
serves as a boosting to debias the main model.

Notation. We denote f bias
θ : X → Rd and fmain

ϕ : X →
Rd as biased encoder and main encoder parameterzied by
θ ∈ Θ and ϕ ∈ Θ, respectively, where d is the dimension-
ality of latent representations. Then we can compute the
rank loss in (3) with introduced encoders and given batch
{xk}Nk=1 with size N . Let f cls

Wb
: Rd → RC be a single-layer

classifier parameterized by Wb ∈ W which is placed on top
of biased encoder f bias

θ , where C = |Y| is the number of
classes. We similarly define the linear classifier f cls

Wm
for

the main encoder. Then we refer to f bias : X → RC as
biased model, where f bias(x) = f cls

Wb

(
f bias
θ (x)

)
,∀x ∈ X .

We similarly define the main model fmain as fmain(x) =
f cls
Wm

(
fmain
ϕ (x)

)
,∀x ∈ X . While the projection networks

[9] are employed as well, we omit the notations because they
are not engaged in classification.

Stage 1. Training a biased encoder. To train the biased
encoder f bias

θ , we revisit the proposed rank regularization
term (3) in context of instance discrimination task. Building
upon the observations in Section 2.3, we conjecture that rank
regularization may amplify bias in self-supervised learning
as well by entangling invariant and spurious features. Based
on these intuitions, we apply rank regularization directly
to the output of the base encoder, which encourages each
feature component to be highly correlated. From these appli-
cations, several noteworthy observations have emerged: (a)
The representation becomes more biased as it is trained with
stronger regularization (Appendix C.1). (b) While the over-
all performance may be upper-bounded due to the constraint
on effective dimensionality [25], the bias-conflict accuracy
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is primarily sacrificed compared to the bias-aligned accuracy
(Section 4).

Stage 2. Debiasing downstream tasks. After training
the biased encoder, our goal is to debias the main model,
which was pretrained using standard self-supervised learn-
ing methods on the same dataset. Here, assume that we
have an ideal pretrained main encoder of which each output
component corresponds to the latent factor of data variation
[63]. While this ideal encoder should seamlessly adapt to
downstream classification tasks, if most downstream task
samples are bias-aligned, they may misguide the model to
upweight spuriously correlated latent factors, leading to a
biased solution despite well-generalized representations. We
refer to this problem as the biased downstream application
(Related analysis in Appendix C.1).

The above contradiction elucidates the importance of bias-
conflicting samples, which serve as counterexamples of spu-
riously correlated feature components, thereby preventing
the alleged involvement of such components in prediction.
Based on these intuitions, we introduce a novel debiasing
protocol that probes and upweights bias-conflicting samples
to find and fully exploit feature components independent
of spurious correlations. We apply our framework on two
scenarios: linear evaluation and semi-supervised learning.

Linear evaluation. To validate our hypothesis on the
biased downstream application, we conduct linear evalua-
tion [40, 61] following the conventional protocol of self-
supervised learning. Specifically, a linear classifier is trained
on top of unsupervised pretrained representations by using
target labels of training samples. After training a linear clas-
sifier f cls

Wb
with pretrained biased encoder f bias

θ given the
whole training set D = {(xk, yk)}Nk=1 with size N , an error
set E of misclassified samples and corresponding labels is
regarded as bias-conflicting pairs. Then we train a linear
classifier f cls

Wm
on intentionally freezed representations of

main encoder fmain
ϕ by upweighting the identified samples

in E with λup > 0. The loss function for debiased linear
evaluation is defined as follows:

ℓdebias(D;Wm)

= λup

∑
(x,y)∈E

ℓ(x, y;Wm) +
∑

(x,y)∈D\E

ℓ(x, y;Wm),

where we use cross entropy loss for ℓ : X×Y×W → R+.
Note that the target labels are only used in training linear
classifiers after pretraining.

Note that the debiased linear evaluation is not meant to
compete directly with other supervised baselines. Instead,
it aims to: (a) examine the potential origin of the failure
in OOD generalization, (b) provide a rough estimate of the
potential improvement achievable with frozen latent repre-
sentations, and (c) compare with standard self-supervised
baselines and identify the optimal learning algorithms, e.g.
SimCLR [9], for training the main encoder.

Semi-supervised learning. We further compare our
method directly to other supervised debiasing methods in the
context of semi-supervised learning. Here we assume that
the training dataset includes only a small amount of labeled
data combined with a large amount of unlabeled data. As
in linear evaluation, we train a linear classifier on top of the
biased encoder by using labeled samples. After obtaining an
error set E of misclassified samples, we finetuned the whole
main model by upweighting the identified samples in E with
λup. Note that supervised baselines are restricted to using
only a small fraction of labeled samples, while the proposed
approach benefits from the abundant unlabeled samples dur-
ing pre-training of the biased encoder (Pseudo-code in the
Appendix section A).

4. Results

4.1. Methods

Dataset. We evaluate several supervised and self-supervised
baselines on MIMIC-CXR + NIH [32], UTKFace [62]
and CelebA [36] in which prior work reported poor gener-
alization performance due to spurious correlations (Dataset
details in Appendix).

For MIMIC-CXR + NIH, we mixed the MIMIC-CXR
[26] and NIH [55] following [32] where the target categories
are no finding and pneumonia. Most pneumonia
images are collected from MIMIC-CXR, while most no
finding images are from NIH. In other words, the biases
come from systematic differences in data sources, where
the classifier may erroneously rely on spurious radiographic
features tied to variations in data acquisition pipelines [14]
instead of true pathological indicators (Example images in
Figure 8).

For UTKFace, we conduct binary classifications using
(Gender, Age) and (Race, Gender) as (target, spuri-
ous) attribute pair, which we refer to UTKFace (age) and
UTKFace (gender), respectively. For CelebA, we consider
(HeavyMakeup, Male) and (Blonde Hair, Male) as
(target, spurious) attribute pairs, which are referred to
CelebA (makeup) and CelebA (blonde), respectively. The
results of CelebA (blonde) are reported in Appendix C.4.
Following [22, 39], we report bias-conflict accuracy together
with unbiased accuracy, which is evaluated on the explicitly
constructed validation set. We exclude the dataset in Figure
3 based on the observations that the SimCLR models are
already invariant w.r.t spurious attributes.

Baselines. We mainly target baselines consisting of re-
cent advanced self-supervised learning methods, SimCLR
[9], VICReg [7], and SimSiam [11], which can be catego-
rized into contrastive (SimCLR) and non-contrastive (VI-
CReg, SimSiam) methods. We further report the perfor-
mance of vanilla networks trained by ERM, and other super-
vised debiasing methods such as LNL [27], EnD [49], and
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Table 3. (Supervised learning) Bias-conflict and unbiased accuracy (%) on MIMIC-CXR + NIH. Each ✓marker represents whether the
model requires information on dataset bias. Bias ratio=10%.

Accuracy LNL EnD LfF JTT CVaR DRO ERM SimCLR Ours
✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Conflict 43.8±0.5 50.4±2.3 25.2±2.1 47.9±0.2 44.6±0.5 41.7±1.2 35.5±1.3 56.8±1.7

Unbiased 68.1±1.0 71.8±1.4 60.8±0.2 68.9±1.0 65.8±1.2 67.8±1.0 62.0±1.4 69.8±0.2

Table 4. (Linear evaluation) Bias-conflict and unbiased test accuracy (%) evaluated on UTKFace and CelebA. Models requiring information
on target class or dataset bias in the (pre)training stage are denoted with ✓in columns Y and B, respectively. Our results are marked in bold
to highlight the improvements compared to the mainly interested self-supervised learning baselines (Gray rows).

Model Y B UTKFace (age) UTKFace (gender) CelebA (makeup)

Conflict Unbiased Conflict Unbiased Conflict Unbiased

LNL ✓ ✓ 45.8±0.6 72.6±0.3 73.1±1.6 84.9±0.8 55.9±2.1 76.0±0.6

EnD ✓ ✓ 45.3±0.9 72.2±0.2 75.5±1.1 85.5±0.4 57.3±2.4 76.4±1.4

JTT ✓ ✗ 63.8±0.9 69.4±1.3 71.2±0.3 77.6±0.4 62.4±1.2 74.7±0.8

CVaR DRO ✓ ✗ 45.7±2.0 71.4±0.3 68.6±1.0 81.0±0.8 58.0±1.7 76.5±0.6

ERM ✓ ✗ 45.4±2.1 71.0±1.2 65.7±1.4 79.5±0.6 54.2±0.2 74.1±1.4

SimSiam ✗ ✗ 28.2±0.9 62.6±0.7 48.5±1.0 69.8±0.7 39.9±0.6 66.7±0.6

VICReg ✗ ✗ 32.3±0.6 64.6±0.3 51.0±1.4 71.3±0.7 48.6±0.6 71.9±0.2

SimCLR ✗ ✗ 36.4±1.5 66.3±0.6 56.3±0.2 74.2±0.2 46.9±1.0 69.8±0.4

DeFund ✗ ✗ 59.5±0.8 70.6±0.8 63.7±2.0 74.9±0.9 58.4±0.6 73.1±1.0

upweighting-based algorithms, JTT [35] and CVaR DRO
[31], which can be categorized into methods that leverage
annotations on dataset bias (LNL, EnD) or not (JTT, CVaR
DRO).

Optimization setting. Both bias and main encoder is pre-
trained with SimCLR [9] for 100 epochs on UTKFace, and
20 epochs on CelebA, respectively, using ResNet-18, Adam
optimizer and cosine annealing learning rate scheduling [37].
We use a MLP with one hidden layer for projection networks
as in SimCLR. All the other baseline results are reproduced
by tuning the hyperparameters and optimization settings us-
ing the same backbone architecture. We report the results
of the model with the highest bias-conflicting test accuracy
over those with improved unbiased test accuracy compared
to the corresponding baseline algorithms, i.e., SimCLR for
ours (More experimental details in Appendix D).

4.2. Evaluation results

Supervised learning. To quantify the effectiveness of the
rank regularization in-depth, we first consider a standard
supervised debiasing scenario as similarly done in Table 2.
For a MIMIC-CXR + NIH dataset, we found that the pro-
posed framework outperforms other supervised baselines
with respect to bias-conflict accuracy. Table 14 in the Ap-
pendix shows that the rank-regularized networks effectively

discover the bias-conflicting samples which are consistent
with Table 1a, 1b, and 2.

Linear evaluation. We also found that DeFund outper-
forms every self-supervised baseline by a large margin in
a linear evaluation protocol, including SimCLR, SimSiam
and VICReg, with respect to both bias-conflict and unbi-
ased accuracy (Table 4). Moreover, in some cases, DeFund
even outperforms ERM models or supervised debiasing ap-
proaches regarding bias-conflict accuracy. Note that there is
an inherent gap between ERM models and self-supervised
baselines, roughly 8.7% on average. Moreover, we found
that non-contrastive learning methods generally perform
worse than the contrastive learning method. This warns
us against training the main model using a non-contrastive
learning approach, while it may be a viable option for the
biased model. Results of the proposed framework with non-
contrastive learning methods are provided in the Appendix
section C.5.

Semi-supervised learning. To compare supervised and
self-supervised methods in a more practical and fair scenario,
we randomly sample 10% of the labeled CelebA training
dataset. The remaining 90% samples are treated as unla-
beled ones and engaged only in pretraining encoders for
self-supervised baselines. Labeled samples are provided
equally to both supervised and self-supervised methods.
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Table 5. (Semi-supervised learning) Accuracy results (%) on CelebA. Label fraction= 10%.

Accuracy CelebA (Makeup) CelebA (Blonde)

LNL EnD JTT CVaR DRO ERM SimCLR DeFund JTT DeFund

Conflict 55.7±1.4 55.3±1.5 51.5±1.9 55.6±1.5 51.5±1.1 50.5±4.7 60.5±0.4 70.6±1.0 75.1±0.8

Unbiased 75.6±0.5 76.2±0.8 71.4±1.3 75.7±1.0 73.1±0.3 71.6±1.9 75.6±0.2 78.8±1.7 85.8±0.3

Remarkably, Table 5 and Table 16 in Appendix show
that the proposed framework outperforms other state-of-the-
art supervised debiasing methods. Existing upweighting
protocols, such as JTT, fail to prevent deep networks from
memorizing minority counterexamples. However, the pro-
posed framework can fully utilize unlabeled samples with
contrastive learning to prevent memorization. Existing bias-
conflicting sample mining algorithms may be affected by
the implicit bias of overparameterized networks, but this is
unlikely to happen with the proposed framework since it
only trains a simple linear classifier on top of a frozen biased
encoder to identify such samples.

Method UTKFace (age) UTKFace (gender) CelebA (makeup)

Conflict Unbiased Conflict Unbiased Conflict Unbiased

SimCLR 36.4 66.3 56.3 74.2 46.9 69.8
+ Rank reg 26.6 61.3 50.9 70.3 43.9 68.3
+ Upweight 53.0 64.6 58.3 74.5 50.1 70.4

DeFund 59.5 70.6 63.7 74.9 58.4 73.1

(a) Ablation study

Method UTKFace (age) UTKFace (gender) CelebA (makeup)

Precision Recall Precision Recall Precision Recall

SimCLR 68.31 44.63 33.36 39.59 52.25 28.23

DeFund 68.67 75.94 29.98 50.93 55.29 32.46

(b) Precision and recall

Table 6. (a) Ablation study on introduced modules. (b) Precision
and recall (%) of bias-conflicting samples identified by SimCLR
and our biased model. Both case used linear evaluation.

Ablation study. To quantify the extent of performance
improvement achieved by each introduced module, we com-
pared the linear evaluation results of (a) vanilla SimCLR,
(b) SimCLR with rank regularization, (c) SimCLR with up-
weighting error set E of the main model, and (d) DeFund.
Note that (c) does not use a biased model at all. Table 6a
shows that every module plays an important role in OOD
generalization. Considering that the main model is already
biased to some extent, we found that bias-conflict accuracy
can be improved even without a biased model, where the
error set E of the biased model further boosts the generaliza-
tion performance. We also measures the precision and recall
of identified bias-conflicting samples in E, finding that the
biased model detects more diverse bias-conflicting samples
than the baseline (Table 6b). The improvement of recall in
CelebA may seem marginal, but it is significant given the

larger number of samples compared to UTKFace.
Computational costs. Our framework is computation-

ally affordable as it only trains the linaer classifier (linear
eval.) or finetune networks with a few epochs, e.g., about
30 epochs for UTKFace in debiasing stage. Self-supervised
pre-training and linear evaluation takes 19.3 and 4.5 minutes
with a NVIDIA GeForce RTX 2080Ti, respectively.

5. Conclusion
We present a novel solution to the challenging self-
supervised debiasing, an important problem that has received
little attention so far. We (a) unveil the inductive bias towards
encoding low effective rank representations in the presence
of spurious correlations. Based on this, we (b) design a rank
regularization that amplifies the feature redundancy by reduc-
ing the spectral entropy of latent representations. Then we
(c) design a debiasing framework empowered by the biased
model pretrained with abundant unlabeled samples.
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