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Abstract

Trajectory prediction is a challenging problem that

requires considering interactions among multiple actors

and the surrounding environment. While data-driven ap-

proaches have been used to address this complex prob-

lem, they suffer from unreliable predictions under distri-

bution shifts during test time. Accordingly, several on-

line learning methods have been proposed using regres-

sion loss from the ground truth of observed data leverag-

ing the auto-labeling nature of trajectory prediction task.

We mainly tackle the following two issues. First, previ-

ous works underfit and overfit as they only optimize the

last layer of motion decoder. To this end, we employ

the masked autoencoder (MAE) for representation learn-

ing to encourage complex interaction modeling in shifted

test distribution for updating deeper layers. Second, uti-

lizing the sequential nature of driving data, we propose

an actor-specific token memory that enables the test-time

learning of actor-wise motion characteristics. Our pro-

posed method has been validated across various chal-

lenging cross-dataset distribution shift scenarios includ-

ing nuScenes, Lyft, Waymo, and Interaction. Our method

surpasses the performance of existing state-of-the-art on-

line learning methods in terms of both prediction accu-

racy and computational efficiency. The code is available

at https://github.com/daeheepark/T4P.

1. Introduction

Trajectory prediction plays a significant role in autonomous

systems, enhancing safety and navigation efficiency [28,

31]. Recently, data-driven methods have shown remarkable

prediction capabilities [1, 16, 38, 52, 55, 57, 60, 81, 89, 90];

however, they are prone to distribution shift [9, 88]. Trajec-

tory prediction models also produce unreliable output when

faced shifts in the data distribution [25], posing significant

risks in various real-world applications. This vulnerability

stems from the ease with which the trajectory data distri-
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Figure 1. Previous methods optimize the last layer of the decoder

using regression loss from delayed ground truth. Our method, on

the other hand, learns representation via a masked autoencoder,

which boosts prediction performance by optimizing deeper layers.

In addition, the proposed actor-specific token enables the predic-

tion model to learn actor-wise motion characteristics.

bution can be altered by numerous factors, such as scene

changes and driving habits; i.e. road layout, interaction be-

tween agents, driver demographics [6, 51, 82].

To address this challenge, recent methods have proposed

domain adaptation and generalization strategies which aim

to anticipate the distribution shifts and accordingly train the

model [32, 76, 80]. However, due to the wide variety of fac-

tors influencing data distribution, the anticipated shifts may

differ significantly from those encountered at test time. As

a result, several online learning methods have been devel-

oped to dynamically adapt models during test time [36, 73].

Since trajectory prediction serves as an auto-labeling task

where trajectory data is obtained from object tracking, the

observed past and future trajectory provide both input and

corresponding ground truth for supervision (Lreg), as de-

picted at the top right of Fig. 1. Nevertheless, updating the

entire model may ruin the representation learned from the
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source data, so only part of the network, such as the batch

normalization layer, is updated [27, 40, 61, 83]. Particu-

larly, because regression loss is calculated at delayed times-

tamps and only a few samples are available during test time,

this approach risks deteriorating the model’s learned repre-

sentation [73]. Therefore, previous online prediction meth-

ods mainly update only the last layer of the decoder.

In this work, we propose a test-time training (TTT) for

trajectory prediction with two key aspects. First, we build a

masked autoencoder (MAE) framework to adapt deep fea-

tures, incorporating good representation that captures com-

plex interactions between agents and road structures. Due

to the challenge of existing online learning methods in dam-

aging learned representations when updating deeper layers,

we employ a MAE to guide representation learning. Sec-

ond, we introduce an actor-specific token memory that has

significant advantages in real-world driving scenario where

data arrives continuously and sequentially. As each actor

instance has its own driving habits and the past motion pat-

tern of specific actors can be accessed from the arrived ob-

servations, we design a token memory in transformer struc-

ture [68] and its training strategy to learn actor-wise mo-

tion characteristics. The proposed TTT framework is val-

idated on challenging cross-dataset distribution shift cases

between nuScenes, Lyft, Waymo, and INTERACTION, and

shows state-of-the-art performance surpassing previous on-

line learning methods. Furthermore, we show the practical-

ity of our TTT framework by evaluating its computational

efficiency. We summarize our contributions as below:

• We propose a test time training for trajectory prediction

(T4P) by utilizing a masked autoencoder to learn deep

feature representations that stably improve prediction per-

formance across entire network layers.

• We introduce an actor-specific token memory used to

learn the different actor characteristics and habits.

• Our method is validated across 4 different datasets as well

as different temporal configurations. Ours achieves state-

of-the-art performance both in accuracy and efficiency.

2. Related Works

2.1. Trajectory Prediction

Trajectory prediction garners attention with the emergence

of methods that can enhance perception or planning [11,

12, 44]. Its goal is to predict future trajectories of traffic ac-

tors based on their historical trajectories and the context of

their environment [3, 17, 19, 20, 39, 58, 63, 78, 91]. Histori-

cal trajectories, or tracklets of traffic actors, are sequentially

acquired via vehicle detection and tracking systems. Some

studies employed this temporal property to enhance predic-

tion via memory replay [35, 42, 59]. In the early stages

of trajectory prediction, only the historical trajectory of the

actors of interest was considered. However, recent stud-

ies emphasize the significance of understanding interactions

among agents [67, 85] and the rules governed by surround-

ing environments [72, 77] in improving prediction perfor-

mance. This has led to the development of models that in-

corporate multi-head attention or graph-based methods to

capture these interactions [24, 26, 42]. Additionally, MAE

has been adopted for pretraining to better understand agent

interactions [8, 13]. To further refine prediction capabilities,

various generative models have been introduced, enabling

the generation of future trajectories [15, 41, 71, 79].

2.2. Transfer Learning in Trajectory Prediction

With data-driven approaches offering superior performance

in trajectory prediction, their effectiveness diminishes un-

der distribution shifts [25, 56]. In response, several stud-

ies have adopted domain adaptation or generalization strat-

egy [69, 74]. Some specifically aimed to reduce the domain

gap within unique characteristics of trajectory prediction:

differences in road structures [84], actor interaction [80],

etc. However, these methods rely on anticipating how to

cover domain shifts. Yet, given that trajectory data is subject

to influence from numerous factors, predicting and accom-

modating for shifts may not always be sufficient. Conse-

quently, recent developments have introduced adaptation to

unseen test sets using online learning [33, 34, 43]. Among

them, some methods [36, 73] showed remarkable prediction

performance improvement under severe distribution shifts

like cross-dataset cases by utilizing regression loss for on-

line learning. These methods exploit the fact that the input

and ground truth (GT) labels are provided at test time as

tracking history. However, with the limitations of updating

with only a few samples in a delayed time, adaptation be-

comes restricted to the last layer of the decoder.

2.3. Test Time Training

Test-time training (TTT) is a method that trains the network

on test time data, unseen during training [4, 7, 14, 18, 22, 49,

66, 75]. Unlike domain generalization or adaptation, which

are confined to the training phase, TTT extends model adap-

tation into the test phase by utilizing available test data [47].

TTT methods are categorized into regularization-based ap-

proaches for post-hoc regularization of out-of-distribution

(OOD) samples [46, 87], and self-supervised approaches

that employ pretext tasks on test data for optimal representa-

tion learning [7, 9, 45, 50, 54]. Specifically, TTT [65] intro-

duced a Y-shaped network structure consisting of a feature

encoder, a pretext branch, and a decoder branch. The de-

coder branch is fixed, while the encoder and pretext branch

are optimized through self-supervision. Adhering to this

model, TTT-MAE [23] integrated a MAE in the pretext task.

Expanding on this method, we adopt TTT-MAE to the do-

main of trajectory prediction, leveraging its representation

learning capabilities to enhance test-time training.
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Figure 2. Overall method. During test-time training, the network trained on source dataset is optimized on target data under online setting.

The model is optimized both from regression and reconstruction loss. Both losses utilize the data observed at the delayed time stamp (tτ ).

Actor-specific token is used to learn instance-wise motion pattern during test-time training phase. During online evaluation phase, model

and actor-specific token learned from test-time training phase are used.

3. Method

3.1. Problem definition

Trajectory prediction aims to learn the mapping function be-

tween the input, consisting of historical trajectory and map

information X : {Xt,Mt}, and the output, consisting of

K possible candidates for future trajectory of N traffic ac-

tors, Y :
{

Y0:K−1
t

}

, at current time t. We predict C differ-

ent actor classes including vehicle, cyclist, etc. Historical

and future trajectories are represented as Xt = x0:N−1
t−th:t

and

Yt = x0:N−1
t:t+tf

where th and tf represent sequence length of

input and output trajectory. Here, xn
t represents the spatial

location of actor n at time t. For map informationMt, we

use L segmented lane centerlines around ego-actors which

is widely-used in trajectory prediction methods.

We deal with the case when the target data distribution

during test time {X,Y}
T

is different from the source data

distribution seen during the training phase {X,Y}
S

. We

formulate the problem as a online adaptation scenario in

which one data sample is given per each time interval as

time passes. The test data is consists of multiple distinct

scenes. Each scene includes temporally ordered data sam-

ples which are captured through real-world driving. Follow-

ing standard TTT methods, there is no access to the source

data at test time. However, thanks to the auto-labeling na-

ture of trajectory prediction, there is access to delayed GT

future trajectory (xtτ :tτ+tf ) from a previous time window at

time tτ (= t− τ) as depicted in left lower corner of Fig. 2.

3.2. Overall method

Our method, Test-Time Training of Trajectory Prediction

(T4P), enhances the online learning method using supervi-

sion from a delayed GT future trajectory with representation

learning from MAE and actor-specific token memory. Fol-

lowing standard TTT [65], the overall framework consists

of three phases: offline training, test-time training, and on-

line evaluation. Offline training occurs before test time, and

test-time training and online evaluation are executed repeat-

edly and sequentially during test time. We adopt the Fore-

castMAE [13] backbone consisting of embedding layers f ,

a shared encoder E, a reconstruction head R and a motion

decoder head D, as depicted in the middle of Fig. 2. The

detailed methods during each phase are described below:

3.3. Offline training

During offline training, the model is trained on source data

using both reconstruction loss and regression loss.

min
θ∈{f,E,R,D}

EX ,Y,M∈{X,Y}S [Lrecon + Lreg] (1)

In this subsection, subscript t is omitted for simplicity. First,

all input elements (X ,Y,M) are embedded with their re-

spective embedding layer (fx, fy, fm). Additionally, we

define actor class token ᾱ ∈ R
C×D that learns different

motion patterns of each actor class. The actor class token

is implemented as a learnable embedding of a transformer

structure. Corresponding actor class token α(c) is added to

trajectory embedding according to the class of each actor.

hx, hy, hm = fx(X ) + α(c), fy(Y) + α(c), fm(M) (2)

For reconstruction, the history/future trajectory and lane

embeddings are fed to the encoder to obtain the encodings

Fx, Fy , Fm. Then, segments of the encodings are randomly

masked and replaced with masking tokens, Mx, My , Mm,
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and the other encodings remain unmasked (F ′
x, F

′
y, F

′
m).

Here, we use random masking for the lane centerline and

complementary masking strategy for history/future trajec-

tory following previous works [13]. The masking tokens

and the unmasked encodings are fed to the reconstructor to

reconstruct the masked elements.

Fx, Fy, Fm = E(hx, hy, hm)

X̂ , Ŷ,M̂ = R(Mx,My,Mm, F ′
x, F

′
y, F

′
m)

(3)

The encoder and reconstructor both consist of multi-head

attention to utilize interaction between history, future and

lanes, thus, the reconstruction guides to the model have the

capability of interaction reasoning. Finally, a reconstruc-

tion loss Lrecon is computed as the MSE loss between the

ground truth and the reconstructed outputs.

Lrecon =
1

N

∑

n

(X−X̂ )2+
1

N

∑

n

(Y−Ŷ)2+
1

L

∑

l

(M−M̂)2

(4)

For the decoder head, historical trajectory and lanes em-

beddings are again fed to the same encoder and the output

encodings are passed to the motion decoder, composed of

MLP layers. The decoder outputs K candidates for trajec-

tory prediction, and the regression loss Lreg is computed

with the widely-used Winner-takes-all (WTA) loss [29, 48].

Ŷ0:K−1 = D(E(hh, hl))

Lreg =
1

N

∑

n

argmin
k∈K

(Yn − Ŷn,k)2
(5)

3.4. Testtime training

During test-time, a data sample consisting of trajectories

and maps arrives sequentially. Therefore, even though we

cannot access the GT future trajectory of current time (Yt),
we can access both the inputs and GT (Xtτ ,Ytτ ,Mtτ ) at

a previous time tτ . With this data, the model is optimized

with the same objective as Eq. 1 with target data distribution

instead of source data distribution.

min
θ∈{f,E,R,D}

EXtτ ,Ytτ ,Mtτ ∈{X,Y}T [Lrecon + Lreg] (6)

Unlike existing online learning methods that only utilize re-

gression loss, we incorporate an additional reconstruction

loss. This enables the model to learn a good representation

that considers the complex actor-actor and actor-lane inter-

action even in the unseen target data distribution. An ad-

vantage of representation learning is that the performance

stably improves even when the deeper layers are optimized.

3.4.1 Actor-specific token memory

Unlike during the offline training phase, when the data order

is shuffled, data at test-time comes in sequentially. There-

fore, at test time, it is possible to keep track of movement

Scene 0

…

Register

𝛼!
!

𝛼"
"

𝛼!
"

𝛼
#

$!

𝛼
%

$!

…

Scene 1

…

Register

𝛼!
"

𝛼
&

$!

𝛼
%

$!

…

…
𝛼"
!

𝛼!
!

Newborn 

Actor Token

Updated 

Actor Token

Actor-Specific 

Token Memory

Scene 

Rel. time
𝑇!0 1 𝑇! 0 1… …

Eq.(7)

Figure 3. Actor-specific token memory is colored in gray. It

evolves as time passes within a scene. For newborn actors, the

corresponding class token is registered. Until the actor disappears,

the token is updated through test-time training. At the end of the

scene, all tokens are averaged by each class and passed to the next

scene as denoted in red arrow and Eq. 7.

patterns of a specific actor instance. Using this, we propose

an actor-specific token memory.

The overall scheme is described in Fig. 3. During offline

training, actor class tokens ᾱtrain ∈ R
C×D are trained to

reflect the average motion pattern of each of the C classes.

At the beginning of the test-time, scene 0, class tokens are

initialized from that of training phase (ᾱscene(0) ← ᾱtrain).

When a new nth-actor appears at time t, the class token

αt
n(c) is cloned from ᾱscene(0) by selecting corresponding

class. The newborn tokens are then registered to the actor-

specific token memory. The token memory is structured

as a dictionary where actor instance ID/corresponding to-

kens are key/values. At each iteration, the actor-specific

tokens are used for both test-time training and online eval-

uation. As time progresses, the actor-specific tokens evolve

and are updated through the reconstruction and regression

losses until the actor disappears in the scene. By giving

each actor its own specific token that distinguishes it from

the sharing of other parts of models with other actors, actor-

specific motion patterns can be learned.

When the scene changes, scene 1, the actors observed

during scene 0 are not to be observed anymore, so we need

a new averaged actor class token ᾱscene(1). For that, we

average all the tokens in the memory at the final time step

TS of scene 0 after gathering by classes as Eq. 7. Here,

Nc refers to the number of actors of class c. It is because,

with a sufficient number of actors class tokens per each class

in memory, their average motion can be a representative

motion pattern of actor classes. This is more useful than

ᾱtrain because newly averaged tokens are trained on the

target dataset while ᾱtrain contains motion pattern trained

on the source dataset. The averaged class tokens are then

passed to the next scene and used to initialize tokens for the
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Table 1. Adaptation results in various distribution shifts. The model is trained on source dataset, and test-time trained and evaluated on

target dataset (Source → Target). All metrics are better in lower value. The best and second-best results are marked in bold and underline.

mADE6

/ mFDE6

Short-term exp (1/3/0.1) Long-term exp (2/6/0.5)

INTER → nuS INTER → Lyft nuS → Way Mean nuS → Lyft Way → Lyft Way → nuS Mean

Source Only 1.047 / 2.247 1.391 / 2.945 0.431 / 1.031 0.956 / 2.074 1.122 / 2.577 0.621 / 1.347 1.153 / 2.220 0.965 / 2.048

Joint Training 1.116 / 2.445 1.553 / 3.458 0.472 / 1.125 1.047 / 2.343 1.108 / 2.597 0.638 / 1.404 1.091 / 2.031 0.946 / 2.011

DUA 1.118 / 2.455 1.516 / 3.352 0.516 / 1.294 1.050 / 2.367 1.365 / 3.257 0.790 / 1.868 1.270 / 2.634 1.142 / 2.586

TENT (w/ sup) 1.102 / 2.423 1.519 / 3.405 0.448 / 1.071 1.023 / 2.300 1.068 / 2.514 0.628 / 1.381 1.077 / 2.012 0.924 / 1.969

MEK (τ = tf/2) 1.012 / 2.445 1.283 / 3.458 0.445 / 1.125 0.913 / 2.343 1.079 / 2.597 0.629 / 1.404 1.079 / 2.031 0.929 / 2.011

MEK (τ = tf ) 0.892 / 1.952 0.746 / 1.654 0.405 / 1.061 0.691 / 1.556 1.006 / 2.369 0.615 / 1.351 1.117 / 2.140 0.913 / 1.953

AML (K0) 2.093 / 4.697 2.695 / 6.677 1.624 / 2.139 2.137 / 4.504 1.787 / 3.067 1.322 / 2.571 1.618 / 2.999 1.576 / 2.879

AML (full) 1.149 / 2.550 1.042 / 2.616 0.764 / 1.791 0.985 / 2.319 1.462 / 2.573 0.977 / 2.184 1.495 / 2.978 1.311 / 2.578

Ours (T4P) 0.537 / 1.137 0.391 / 0.824 0.336 / 0.807 0.421 / 0.923 0.776 / 1.820 0.549 / 1.171 0.996 / 1.784 0.774 / 1.592

newborn actors. Please note that while scene 0 is initialized

by actor class tokens from the training phase, subsequent

scenes obtain as in Eq. 7. More details of memory evolving

strategies can be found on the supplementary material.

ᾱscene(i+1) ←

{

1

Nc

Nc
∑

n

αT
n (c)

}

scene(i)

(7)

3.5. Online evaluation

Using the updated model weight and actor-specific token

memory during test-time training, online evaluation is exe-

cuted. With the input data (Xt,Mt) at current time t, the

learned encoder and decoder predict multi-modal trajectory

(Yt) for all actors in the sample.

4. Experiment

4.1. Datasets

We conducted experiments on well-known datasets,

nuScenes [5], Lyft [30], WOMD [21], and INTERAC-

TION [86], to evaluate T4P on various data distribution

shifts. These datasets are parsed into the same format using

trajdata [37]. Additionally, to verify in various prediction

configurations, experiments were conducted with the two

most widely used configurations of long-term and short-

term prediction. Long-term prediction requires predicting

6 seconds into the future given 2 seconds of the past with

a time interval of 0.5s, making the input/output sequence

lengths to be 5 and 12, respectively. Short-term prediction

requires predicting 3 seconds into the future given 0.9 sec-

onds of the past with a time interval of 0.1s, making the

input/output sequence lengths to be 10 and 30, respectively.

4.2. Implementation details

For actor classes, we use the 5 classes: unknown, vehicle,

pedestrian, bicycle and motocycle. Our method predicts

K=6 future candidates for all actors in the sample. We use

τ as tf to enable the past GT future to contain full predic-

tion horizon. We train and evaluate our model with a single

NVIDIA A6000. Learning rates of model weight and actor-

specific parameters are set as 0.01 and 0.5, respectively, and

weight decay is set to 0.001 for all. The gradient is clipped

by 15. For metrics, widely used mADE6 and mFDE6 are

used. Detailed metric definition, model architecture, and

training details are included in the supplementary material.

4.3. Baselines

We compare our T4P with several baselines, including un-

supervised/supervised test-time-training methods and on-

line learning trajectory prediction methods. All baseline

methods are implemented using the same backbone.

Source only refers to the backbone model trained on the

source dataset only using regression loss.

Joint training is similar to source only but trained with re-

gression and reconstruction loss jointly.

DUA [53] is an unsupervised post-hoc regularization

method only updates batch normalization statistics in a

momentum-updating manner without back-propagation.

TENT with supervision is a variant of the original

TENT [70] in which regression loss is used to optimize the

batch normalization layers instead of entropy minimization

loss, as entropy minimization is not applicable.

MEK [73] is an online learning trajectory prediction

method utilizing the Modified Extended Kalman filter. It

uses only regression loss to optimize the last layer of the

decoder. As the prediction horizon is different in our exper-

iment from the original paper, we use both 1
2 tf and tf .

AML [36] is an Adaptive Meta-learning method. Unlike

the other methods that use the same backbone, AML re-

places the last decoder layer with a Bayesian linear regres-

sion layer for adaptive training. The modified version of

backbone without adaptive training is denoted as K0, while

the full version with adaptive training is denoted as full.

5. Results

5.1. Quantitative results

The results of comparing our method with the baselines in

various distribution shift scenarios are presented in Tab. 1.

We reported three distribution shift scenarios per each time

configuration on the table, and other results are included in
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multi-modal prediction for all actors method.

Figure 5. Prediction accuracy and execution time on INTER →

nuS (1/3/0.1) experiment. Adjusting update frequency can bal-

ance between accuracy and efficiency. Our method significantly

outperforms the baseline methods in both accuracy and efficiency.

the supplementary material. Notably, our approach consis-

tently surpassed baseline performance across all scenarios.

DUA consistently exhibits compromised performance

across nearly all cases, due to the distinctive characteristics

of trajectory data. In contrast to image data, where data is

treated as a singular sample, trajectory data involves multi-

ple agents, each exhibiting distinct motion patterns, within

a single data. Consequently, holistically updating batch

statistics proves to be counterproductive. Similar challenges

are encountered by TENT w/ sup. While regression loss

prevents performance decline, updating only the batch norm

layer has little to no effect on the prediction performance.

MEK exhibited the most competitive performance

among the baselines. While performance improved signifi-

cantly in short-term settings, it brings limited improvement

in long-term cases. As the Kalman filter updates based on

the number of prediction steps, short-term configurations

with 12 update steps show a better improvement than long-

term configurations with only 5 update steps.

Although AML led to a considerable improvement in the

full version, the predictive performance itself was substan-

tially degraded due to the significant performance drop in

the modified backbone (K0). The limitation of the back-

bone is due to the Bayesian regression layer being based

on probability sampling which is known to be worse than

non-probability sampling method of ours [2]. In contrast to

all the baseline methods, our method demonstrated state-of-

the-art performance in all scenarios featuring various distri-

bution shifts, whether short-term or long-term, showcasing

the generalizability of our approach.

5.1.1 Efficiency

As efficiency is a crucial factor in TTT, we evaluate the

frame per second (FPS) along with accuracy (mADE6),

shown in Fig. 5. We set the performance of the joint train-

ing method w/o adaptation as the benchmark and present

MEK and TENT, which demonstrates competitive perfor-

mance among the baselines. Our approach allows for the

adjustment of the update frequency, with a frequency of 1

indicates updating at every opportunity, and 2 means up-

dating every other opportunity. While frequent updates im-

prove prediction performance, they also increase execution

time; adjusting the update frequency allows for a balance

between efficiency and accuracy. As shown in Fig. 5, our

method outperforms in both accuracy and efficiency. Given

that the time interval is 0.1 seconds, real-time execution re-

quires a processing speed of at least 10 FPS. Even at the

maximum update frequency of 1, our method maintains

real-time capability with a superior accuracy of 0.39. When

increasing the update frequency to 20, the error increases to

0.81, close to MEK’s 0.75. However, the FPS reaches 24.2,

demonstrating overwhelmingly faster operation compared

to MEK’s speed of 3.3 FPS.

5.2. Qualitative results

Comparison to the baselines: We compare our results with

TENT and MEK in Fig. 4. While all methods, includ-
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trajectories. The white lines are the lane centerlines, and the gray
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Before adaptation After adaptation

Figure 7. Multi modal prediction results (blue arrows) before and

after adaptation via our method. Ours generates elaborate samples

that consider interaction between lane (above) or actors (below)

due to representation learning, which cannot be learned from the

GT (red arrow) via regression loss.

ing ours, perform multi-agent, multi-modal predictions, we

only illustrate one actor and the closest mode to the GT

for visual simplicity. The first row of the figure represents

predictions before adaptation, and below are the results af-

ter adaptation using three different methods. MEK and

TENT exhibit instances of underfitting or excessive over-

fitting upon adaptation, whereas our method consistently

demonstrates stable and accurate predictions.

Reconstruction results: Reconstruction examples are de-

picted in Fig. 6. For all agents and lanes within a data sam-

ple, random masking is applied, as shown in the first row.

During test-time training, learning for reconstruction is con-

ducted, resulting in successful reconstruction for data with

different distributions, as seen in the second row.

Multi-modal prediction results: As multi-modality is a

crucial issue [10, 62, 64], we show that ours can handle

multi-modal prediction results in Fig. 7. The adapted pre-

dictions showcase diverse yet plausible scenarios, either

considering the lane structure (above) or surrounding agents

Table 2. Effect of type of losses to be optimized. Optimizing all

losses shows optimal test-time adaptation performance.

Exp.
Loss type mADE6

/mFDE6Actor

recon

Lane

recon
Reg

INTER → Lyft

(1/3/0.1)

1.553 / 3.458

✓ 1.054 / 2.007

✓ ✓ 0.842 / 1.512

✓ 0.674 / 1.430

✓ ✓ ✓ 0.391 / 0.824

nuS → Lyft

(2/6/0.5)

1.108 / 2.597

✓ 0.987 / 2.304

✓ ✓ 0.973 / 2.280

✓ 0.942 / 2.262

✓ ✓ ✓ 0.776 / 1.820

Table 3. Ablation on the depth of optimizing layer according to the

loss types. The right side of the table indicates the optimization of

deeper layers. Using only Lreg deteriorates performance when

optimizing all layers while ours stably improves as deeper.

Loss
Optimizing layers

D D+E D+E+fh,f,l
Lreg 0.864 / 2.072 0.840 / 2.093 0.942 / 2.262

Lreg + Lrecon 0.859 / 2.060 0.813 / 1.923 0.776 / 1.820

(below). These elaborated samples, although not present in

the observed ground truth (GT) future, are learned through

the representation learning from reconstruction loss. In ad-

dition, it shows that actor-specific tokens do not induce

mode collapse to only one motion.

6. Ablation

6.1. Reconstruction objective

Table. 2 shows ablation studies on optimizing different loss

types. Both reconstruction and regression losses individ-

ually boost prediction performance, with their joint op-

timization yielding even greater improvements. Table. 3

compares the effects of using only regression loss versus

both losses on prediction performance across different layer

depths. Updating just the decoder (D) shows similar results

in both scenarios, but extending updates to the encoder (E)

significantly enhances performance when using both losses.

Furthermore, extending updates to the embedding layers

(fh,f,l) deteriorates performance when only regression loss

is optimized. This highlights the importance of incorpo-

rating representation learning through the MAE, as relying

solely on regression loss can lead to suboptimal adaptation

and damage to learned representations.

We also conduct ablation studies on the masking ratio

for both actors and lane centerlines in Tab. 4. The result is

visualized via graphs in Fig. 8 according to lane masking ra-

tio and actor masking ratio, respectively. Around 0.3 of lane

and 0.4 of actor masking ratio, tendencies of mADE6 follow
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Table 4. mADE6 according to actor and lane masking ratio.

INTER → Lyft

(1/3/0.1)

Lane Masking Ratio

0.1 0.3 0.5 0.7 0.9

Actor

Masking

Ratio

0.1 0.418 0.407 0.464 0.481 0.446

0.3 0.423 0.443 0.443 0.445 0.390

0.5 0.417 0.455 0.515 0.391 0.435

0.7 0.567 0.435 0.448 0.453 0.491

0.9 0.447 0.421 0.494 0.417 0.398

Figure 8. Tendency of mADE6 according to actor and lane mask-

ing ratio respectively. (INTER → Lyft (1/3/0.1))

a U-shape. In case of too small masking ratio, the recon-

struction does not learn sufficient representation from the

loss, while large masking ratio interrupt interaction learn-

ing due to absence of sufficient information. However, in

both lane and actor masking, mADE6 gets improved when

the masking ratio increases above 0.8. In that case, the re-

construction network is induced to learn scene-specific in-

formation. In addition, unlike regression loss which deteri-

orates performance, reconstruction loss does not harm per-

formance because it induces learning the semantic relation-

ship than direct regression supervision.

6.2. Actorspecific token

Table. 5 presents results for the baseline without adapta-

tion, our method without actor-specific tokens, and our full

method. The second column reveals that even without actor-

specific tokens, the prediction performance is 0.581 and

0.931, surpassing MEK’s 0.746 and 1.006. However, incor-

porating actor-specific tokens for instance-aware adaptation

yields notable improvements of 32.7% and 16.7% for short-

term and long-term experiments, respectively. The differ-

ence in performance between short-term and long-term is

influenced by the scene length in the dataset. The aver-

age scene length for short-term data with a 0.1 time inter-

val is 200.04, significantly longer than the average of 32.67

for long-term data with a 0.5 time interval. Intuitively, as

scene length increases, the time spent observing previously

adapted actors also increases, enhancing the effectiveness

of actor-specific tokens. To verify this, Fig. 9 adjusts scene

length arbitrarily by skipping to the next scene in data load-

ing once a specific scene length is exceeded. The results

confirm that as scene length decreases by skipping scenes

earlier, the effectiveness of actor-specific tokens diminishes

in both short-term and long-term scenarios.

Table 5. Effect of actor-specific token in mADE6/mFDE6. The

proposed method enhances adaptation performance by learning

actor-wise motion characteristics.

Exp. Baseline
Ours w/o

Actor-specific
Ours (Full)

INTER → Lyft

(1/3/0.1)
1.553 / 3.458 0.581 / 1.151 0.391 / 0.824

nuS → Lyft

(2/6/0.5)
1.108 / 2.597 0.932 / 2.220 0.776 / 1.820

0.391

0.484

0.751

0.581

0.629

0.752

0.776

0.895

0.9620.932
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Figure 9. Effect of scenario length to the effectiveness of actor-

specific token. As the scenario length shortens with manual skip-

ping, its effectiveness diminishes because the duration available

for the actor-specific token to adapt is reduced. In real-world ap-

plications, driving scenarios are continuous, resulting in maximal

efficacy of the proposed method.

7. Conclusion

We propose a test-time training method for trajectory pre-

diction by incorporating the MAE and actor-specific to-

ken memory. The introduced MAE objective addresses a

limitation of conventional online learning, preventing the

loss of representations learned from source data. Conse-

quently, our approach enables learning deeper layers, lead-

ing to improved representations and enhanced predictions

even for out-of-distribution samples. The integration of

actor-specific tokens during test-time allows for instance-

wise learning of motion patterns, resulting in substantial

performance improvements. This approach, particularly ef-

fective in continuous real-world autonomous driving sce-

narios without scene breaks, demonstrates significant effi-

cacy and holds promise for practical applications.

Acknowledgements This research was supported

by National Research Foundation of Korea (NRF)

grant funded by the Korea government (MSIT)

(NRF2022R1A2B5B03002636) and the Challengeable

Future Defense Technology Research and Development

Program through the Agency For Defense Development

(ADD) funded by the Defense Acquisition Program

Administration (DAPA) in 2024 (No.912768601).

15072



References

[1] Görkay Aydemir, Adil Kaan Akan, and Fatma Güney. Adapt:
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