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Figure 1. We show the capability of our continuous 3D-representation-based expression generation method in generating rich and com-

pound expressions. An extra arbitrarily chosen expression component (+X) is added to the targeted compound on the left. The proposed 3D

model performs the best compared to the 2D model and other competing methods. Our model shares the same settings with DreamBooth.

Abstract

Canonical emotions, such as happy, sad, and fearful, are

easy to understand and annotate. However, emotions are of-

ten compound, e.g. happily surprised, and can be mapped

to the action units (AUs) used for expressing emotions,

and trivially to the canonical ones. Intuitively, emotions

are continuous as represented by the arousal-valence (AV)

model. An interpretable unification of these four modalities

—namely, Canonical, Compound, AUs, and AV— is highly

desirable, for a better representation and understanding of

emotions. However, such unification remains to be unknown

Project & code: https://emotion-diffusion.github.io/
∗This work was done as a part of INSAIT internship.

in the current literature. In this work, we propose an in-

terpretable and unified emotion model, referred as C2A2.

We also develop a method that leverages labels of the non-

unified models to annotate the novel unified one. Finally,

we modify the text-conditional diffusion models to under-

stand continuous numbers, which are then used to generate

continuous expressions using our unified emotion model.

Through quantitative and qualitative experiments, we show

that our generated images are rich and capture subtle ex-

pressions. Our work allows a fine-grained generation of ex-

pressions in conjunction with other textual inputs and offers

a new label space for emotions at the same time.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Category AUs Category AUs

Happy 12,25 Sadly disgd. 4,10

Sad 4,15 Fearfully angry 4,20,25

Fearful 1,4,20,25 Fearfully surpd. 1,2,5,20,25

Angry 4,7,24 Fearfully disgd. 1,4,10,20,25

Surprised 1,2,25,26 Angrily surpd. 4,25,26

Disgusted 9,10,17 Disgd. surpd. 1,2,5,10

Happily sad 4,6,12,25 Happily fearful 1,2,12,25,26

Happily surpd. 1,2,12,25 Angrily disgd. 4,10,17

Happily disgd. 10,12,25 Awed 1,2,5,25

Sadly fearful 1,4,15,25 Appalled 4,9,10

Sadly angry 4,7,15 Hatred 4,7,10

Sadly surpd. 1,4,25,26 - -

Fear Surprise

Fearfully 
surprised

Anger

Disgust

Sadness

Happiness

Fearfully 
angry

Angrily 
disgusted

Sadly 
disgusted

Happily
sad

Happily
surprised

Arousal

Valence

Figure 2. The compound emotion model on the left unifies the categorical emotions and the AUs based expressions [4]. The continuous

emotion model of arousal-valence (middle) allows the mapping of some of the categorical emotion on the continuous space [39]. The

proposed 3D-based emotion modelling largely unifies the both thereby allowing more combination of the compound emotions (right).

1. Introduction

Expressing emotions affects our lives by playing a vital role

in day-to-day communications. We are interested in facial

expressions, which are a primary means of such commu-

nication. Therefore, a generative model must generate re-

alistic expressions for human-like communications. Hu-

man emotions and expressions however, are very complex

even for humans to articulate with natural language. Among

many, one possible reason is the used language for describ-

ing them – in particular the existing different modalities,

which are even inconsistent with each other. This paper

aims for a unified emotion model that is consistent and map-

pable to the existing ones, which makes our model also in-

terpretable. The unified model is then used to enable gener-

ating rich facial expressions using text-to-image models, as

shown in Figure 1. Further, we propose a method capable

of understanding continuous expressions.

The most commonly used emotion models include ba-

sic Categorical [6], Compound [4], and arousal-valence

(AV) [39] -based. The categorical model is simple, intu-

itive, and easy to annotate, while the compound emotion

model is more complete. On the other hand, AV-based mod-

els are continuous where Categorical models can also be

mapped, as shown in Figure 2 (middle). A popular physics-

based modeling of expressions is Action Units (AUs) [30],

which relies on the activation of the facial muscles. In fact,

Compound emotions can be mapped to AUs, as shown in

Figure 2 (left). We aim to map all Categorical, Compound,

AV, and AUs in a common unified representation, as shown

in Figure 2 (right), which we refer to as C2A2 (for Canoni-

cal, Compound, Action units, Arousal-valence). To the best

of our knowledge, such unification is proposed for the first

time in this paper. Our proposed unification offers a better

representation, leading to more versatile emotion genera-

tion, in the context of this paper.

One major challenge of using a new emotion model is

the missing associated labels. To address this problem, we

first propose a 3D model such that it can exploit the existing

2D AV labels. Then, we propose a method to learn the ad-

ditional third dimension without requiring any explicit su-

pervision. In the language of basic categorical emotions,

we lift up the “fear” towards the positive third-dimension,

and the “sad” towards the negative side, as shown in Fig-

ure 2 (right). The choice of these two particular emotions is

made to best cover the compound emotions presented in the

Figure 2 (left). To learn the third dimension, our method

leverages AUs-based modeling, where 3D vectors repre-

senting some compound emotions are first mapped to the

action units followed by their supervision within a learning

framework, inspired by GANmut [5]. This allows us to first

generate the third-dimension labels (Z), which we later use

to learn the conditional image generation.

On the image generation side, large text-to-image diffu-

sion models [2, 28, 34, 42, 51] have emerged as a power-

ful way of generating high-quality images. However, the

existing models cannot understand the continuous number

required to represent the facial expressions of our interest.

Therefore, we also develop a method that facilitates gener-

ating images conditioned upon text and a vector of contin-

uous numbers that represents the target emotions of inter-

est. More specifically, we propose to use a number encoder

that maps the emotion-condition vector into the common

text embedding space. The embedded numbers are then

used together with the text embeddings to generate text and

emotion-conditioned images.

We use the latent diffusion model [34] in the training

setting of DreamBooth [37]. In this setting, we perform

two parallel loss computations, one with and other without

the emotion embedding. This regularizes the training and

helps to preserve the knowledge of base diffusion model,

thus allowing us to generate images with a rich expression

and additional attributes described by the conditioning text

input. Our experiments clearly demonstrate the superiority

of the proposed 3D emotion model over the existing 2D AV,

in the very same setup. Furthermore, our model that can
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understand both text and numeral inputs provides very very

convincing expression generation results.

Our major contributions can be summarized as:

• We propose an emotion model that unifies four different

existing models in a common interpretable framework.

• We propose a method to annotate the emotion in the pro-

posed emotion space by leveraging the AV and AUs.

• A number+text-to-image diffusion model is proposed to

accommodate the proposed 3D numerical representation.

• Our results validate the 3D emotion model, annotation

method, and number+text-to-image generation, by offer-

ing better quality and fine-grained control of expressions.

2. Related Work

Modeling human emotions is a century-long ongoing topic

of study [7, 22, 38–41, 48]. A commonly used model is

basic categorical emotions [6, 24, 36]. Other models are

also used [12, 43]. Among these, the most commonly used

are compound emotions [4], arousal-valence (AV) [39], and

Action Units (AUs) [30]. The compound emotion represen-

tation also embeds the AUs, up to an extent, as shown in

Figure 2. Similarly, AUs representation also embeds basic

categorical and some compound emotions. However, to the

best of our knowledge, there is no emotion model that offers

better unification than the mentioned above.

Understanding and generating expressions are of high in-

terest in computer vision [1, 3, 5, 8, 10, 11, 21]. Many gen-

erative works are utilized for the purpose of realistic manip-

ulation of human emotions, including StarGAN [8], GANi-

mation [10], SMIT [10], GANmut [5], ICface [20] and Neu-

ral Emotion Director [11]. These methods use generative

adversarial networks (GANs) [15] to generate or manipu-

late the expressions expressed in the existing emotion mod-

els. Differently, a recent work [52] uses a diffusion model to

generate landmark controlled 3D meshes for facial expres-

sions. In this work, we introduce a new emotion model and

propose a text-to-image diffusion method to generate im-

ages with expressions representing our targeted emotions.

Nevertheless, we use the framework of GANmut to anno-

tate images in our emotion representation space.

Diffusion-based methods [16, 19, 45–47] have become

the go-to choice for image generation due to their synthe-

sis quality and stable training. Recently, text-to-image dif-

fusion methods [29, 32, 33, 35, 42] have shown promise

in enabling an intuitive interface for users to control image

generation, using natural language descriptions. However,

fine-grained control and customized image generation has

proven difficult with natural language descriptions alone

[13, 25, 26, 49]. To address this problem, some existing

works adapt pre-trained models to their targeted examples,

either to find pseudo-words[14, 27] or fine-tune some parts

of the pre-trained model [23, 37]. The pseudo-words are

searched in the text embedding space of the text encoder

Category 2D 3D Category 2D 3D

Sadly disgd. 6 6 Happily disgd. : 6

Fearfully angry 6 6 Sadly feraful : 6

Fearfully surpd. 6 6 Sadly angry : 6

Angrily disgd. 6 6 Fearfully disgd. : 6

Happily surpd. 6 6 Angrily surpd. : 6

Happily sad 6 6 Happily fearful : 6

- - - Sadly surpd. : 6

Awed - - Happy+surprise+fear : 6

Hatred - - Disgust+anger+fear : 6

Appalled - - Disgust+surprise : :

Disgd. surpd. : : - - -

Table 1. The compound emotions that can and cannot be rep-

resented by the proposed 3D representation of emotions. Our

3D model can represent 15/17 desired emotions (after mapping

“Awed” and “Hatred” to composition of three basic emotions),

whereas, 2D representation of AV can represent only 6/17.

(e.g, CLIP [31]). On the other hand, the fine-tuning meth-

ods such as DreamBooth [37] fine-tunes only the attention

layers while preserving the generation capabilities of the

original network. Therefore, we are interested in this setting

and thus develop our method to augment DreamBooth [37]

with fine-grain control over facial expressions.

3. The C2A2 Emotion Model

While aiming to generate compound and continuous ex-

pressions, we realized that the existing interpretable repre-

sentations do not support our needs. Therefore, we pro-

ceed to modify the most suitable existing model, namely

arousal-valence, as it already embeds the basic emotions in

the 2D continuous space. In fact, this representation allows

six compound emotions to be expressed, as shown in Ta-

ble 1. In the same Table, it can be seen that other com-

pound emotions of interest are not expressed using the 2-

dimensional AV model. Therefore, we propose to repre-

sent the emotions in 3-dimensional space, while preserving

the structure of the AV-based 2D model. More specifically,

we lift the “fear” towards the positive third-dimension, and

the “sad” towards the negative side, as shown in Figure 2

(right). This choice is made to best cover the most num-

ber of compound emotions, i.e. 15/17, as shown in the Ta-

ble 1. In fact, we decompose two terminologies of [30],

“Awed”, “Hatred”, and “Appalled”, into the composition of

basic emotions, happy+surprise+fear, disgust+anger+fear,

and disgust+surprise, respectively. This leads to the com-

patibility of two additional compound emotions. Unfortu-

nately, the emotion “Appalled” and “Disgustedly surprised”

are not yet compatible with our emotion model. We choose

to avoid modelling these two emotions to simplify our emo-

tion model and make use of the AV labels. In fact, in our 3D

representation, we use AV labels as the 2D coordinate and

learn the third dimension, which we denote with a variable

Z, using a method inspired by GANmut [5], with the help

of the Action Units’ labels, presented below.
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3.1. Implicit Supervision for Z of C2A2

To learn the third dimension of C2A2, we extend the idea

proposed in 2D linear GANmut model that has a condi-

tional space parameterized with polar coordinates θ and

ρ, which are both uniformly distributed θ ∼ U([0, 2π]),
ρ ∼ U([0, 1]). The angle θ indicates the category of the

emotion, while the radius ρ tells more about its intensity.

The expected behavior of the model is that the intensity in-

creases with the distance from the center and the emotion

transition between two basic emotions is smooth and con-

tinuous, reflecting the compound emotions in between.

Our method aims to learn a linear 3D model by fixing

the positions of basic categorical emotions. We use the Af-

fectNet [17] dataset. From the AV labels, the angles of the

basic emotions are determined by averaging the AV labels

corresponding to them. We fix the angles of basic emotions

happiness, surprise, disgust, and anger vectors following

the estimations. The extreme point of each of these emo-

tions is set at the maximum distance from the center. On

the other hand, fear and sadness, we lift above and under

the AV plane respectively. The lifting is constrained in such

a way that their projection to the AV plane corresponds to

the expected 2D position, and makes 60◦ angle with the AV

plane. Now, any emotion represented in our 3D space can

be mapped back to AV by projecting on the XY-plane.

By lifting the two emotions to the third dimension, we

have created a void in labels along the Z dimension. We

wish to learn the labels along this dimension in an implicit

manner, so as to avoid the need of direct annotations. Note

from Table 1 that by making the modification we are able

to represent nine additional compound emotions. More im-

portantly, these compound emotions can be mapped to the

AUs, which are also continuous in nature (please, refer the

left side of Figure 2). Now, our interest is to exploit the

continuous labels of AUs, which can conversely help us in

the 3D space C2A2. In this work, we first design the map-

ping process for AUs, and then exploit them to learn the

3D space of C2A2 by using the conditional space learning

framework, from weak labels, of GANmut [5].

Learning the conditional space is based on conditioning

the samples from mini batches that correspond to the basic

categorical emotions, but this time we include also the com-

pound ones. While learning Z, we supervise our model also

by AV labels, say vva. Therefore, we add the following new

loss to the discriminator’s objective function,

Lav = Ex,z[||Dcoor(x)− vav||
2

2
], (1)

where, D(.) is the discriminator network, and x is the input

image. The second loss added to the GANmut discrimi-

nator’s objective function is the AU loss. Since AffectNet

does not provide action units’ labels, they were manually

mapped from the valence and arousal values. Therefore,

labels of the real images are limited to 12 possible sets

of AUs, which could be found in the AV plane (please,

refer to the Figure 2 (left)). The mapping starts by dividing

the space between each basic and surrounding compound

emotions into two parts, such that one half could be still

considered the basic emotion, while the other half goes into

the part covered by the compound one.

Y Emotion category AU ÂUreal

LAUY

We obtain the pseudo-labels ÂUreal using the Open-

GraphAU tool [9]. The OpenGraphAU provide us the acti-

vation probability of all 41 actions units. Based on Figure 2

(left), we need only 15 action units in total to decide on

the compound emotions of our interests. The pseudo-labels

of AUs are used to compute an additional loss between the

labeled activation probabilities and the estimated ones,

LAUY
= Ex,Y [KL(Dau||AUY ) +KL(AUY ||Dau)]. (2)

Here, KL(.||.) is the Kullback-Leibler Divergence, and

Y = [A, V, Z]⊺ is the 3D conditional vector. During train-

ing, the generator is conditioned on two mentioned mini

batches and sampling was performed along the basic and

compound emotion vectors (or in their proximity).

3.2. Unprojecting Images along Z

Once the conditional space is learned using the GANmut

framework, we obtain the labels for Z in rather a straight-

forward manner. Although the conditional space is implic-

itly learned by the earlier training, the images still need to

be mapped to the conditional space to obtain the Z labels.

This could possibly be done more accurately by using tech-

niques reported [50]. However, we use a simple approach

and obtain the sought labels directly from the discrimina-

tory network. Let Ẑ = D(x) be the z-dimensional label

predicted by the discriminator for a given image x, then we

use Y = [A, V, Ẑ] as the emotion label corresponding to

that image in the proposed representation.

4. Hybrid Text-to-Image Generation

Describing compound emotions using natural language de-

scriptions does not always lead to faithful representation of

the intended emotion (see Figure 1) in text-to-image mod-

els. To introduce granular control over such emotions, while

taking advantage of large text-to-image diffusion models,

we use a number encoder that encodes the 3D emotion vec-

tor Y ∈ R
3 such that, when concatenated with the encoded

text description, it can depict the described face with the

intended emotion represented by the 3D vector.

During training, the prior loss Lprior is tasked with mit-

igating language drift and overfitting on training images

while the reconstruction loss Lrecon enables the desired

control of the generated faces’ expressions. Figure 3 shows
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Caption:
a photo of a [   ] person

}
Regularization Images

Training Images

Text              ImageNumber
Encoder

Caption:
a photo of a person

3D Emotion Vector

0.12

0.40

0.68

Figure 3. We use a number encoder that embeds the continuous 3D representations of emotions. The embedded numbers are fused with

the text embedding before decoding into number+text-to-image generation. The learning is done using the frozen text-encoder and shared

image decoder. During learning, our method uses prior preservation and emotion reconstruction loss, similar to DreamBooth [37].

θ = 0.11π 0.32π 0.53π 0.74π 0.95π 1.16π 1.37π 1.58π 1.79π 2π
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Z
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0
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Z
=
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d
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Figure 4. Top three rows: images sampled around a circle (angle of AV on top) at different learned Z of our 3D model. Bottom: the same

circle for 2D model. Not that the 3D model is clearly superior than 2D. The images on first and last rows may directly be compared.

how C2A2 effectively augments text-to-image models with

a number encoder. We train our method on AffectNet

dataset with and without 3D labels Y , which are obtained

using the method described in the previous section.

Number Encoder. We use an MLP-based number encoder

Ey = φθ(Y ) that projects the emotion vector Y ∈ R
3

to a higher dimensional embedding. Note that the Dream-

Booth [37] framework uses CLIP [31] as the text encoder,

following this we map our emotion vector to the embedding

Ey ∈ R
768. This embedding is merged with the embed-

dings from the text encoder to condition the image decoder.

Learning number+text-to-image generation. To enable

the joint condition of the numbers and text, we first map

the emotion vectors to a higher dimensional embedding.

These embeddings are then used together with the text em-

beddings, followed by the text-to-image generator training

using Lprior and Lrecon losses, similarly as in [37]. Dur-

ing the inference, text and number embeddings are fused to

generate images with continuous emotions and given text

description. Please, refer Figure 7 for such examples.

5. Experiments

Datatest. The training of our models and baselines utilize

AffectNet [17], recognized as the most extensive dataset in

affect computing, comprising ≈ 1M images sourced from

the Internet. Searches on prominent search engines were

conducted using 1250 keywords linked to emotions across

six languages. Remarkably, 450K of these images received

manual annotations from 12 specialists, categorizing them

into basic emotions and AV labels. Given our objective to

generate intricate and nuanced emotions in a highly varied

context, this dataset emerged as the perfect selection.
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Figure 5. Both our 2D and 3D methods understand the emotions represented as continuous numbers. For 3D model, we showcase the

behaviour towards the learned Z. These images illustrate that our learned representation is indeed continuous. Better viewed zoomed in.
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Figure 6. Nine compound emotions that can be represented by our 3-dimensional C2A2 but cannot be represented by 2-dimensional AV

model (please refer Table 1 to associated the emotions (top, here) to the 3D vs. 2D representations). When compared with other methods,

our 3D-based representation is clearly superior, thanks to its richer representation and the continuous number understanding capabilities.

Implementation details. We implemented two parts pro-

posed in this paper in two different settings. The first

part of our implementation is based on GANmut [5]. We

set the number of training iterations to 1M. We adopted

the same training strategy of GANmut, and the same

hyper-parameters. For the second part, we implemented a

Dreambooth-like approach on top of the Stable Diffusion

model. We performed 2 experiments where we generated

emotions from the 2D and the 3D spaces. We also tried

several variation of text+number inputs, with limited suc-

cess. That is why we use both a text and a number embed-

dings. During the training and the generation process we
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Figure 7. Our method can preserve the attributes from the base

network. This allows us to perform meaningful number+text-to-

image generation. Expression for Compound emotions (left) rep-

resented in numbers are generated with text attributes (top).

used “sks” as a placeholder token which is used to iden-

tify a specific emotion. We experimented with different text

prompts such as “a photo of a sks person” and “a colour-

ful photo of a sks person”, and came to the conclusion that

the best performing one is “a high-quality realistic color

photo of a sks person”, so we used it as a text prompt in

all of our experiments. For regularization we used 100K

randomly chosen images from the training datasets with the

same prompt and all of the coordinates corresponding to

their emotions were set to 0.

Evaluation metric. Similar to GANmut, we employ the

modified Fréchet Inception Distance [18], termed as Fréchet

Emotion Distance (FED), for assessing emotions. For cal-

culating FED, we trained VGGNet [44] on AffectNet for

emotion classification. This involves inputting real and gen-

erated images into VGGNet and extracting features proxi-

mal to the ultimate classifier. We then assume Gaussian

distributions for both feature sets and compute their Fréchet

distance. Our goal is to minimize the FED value. To de-

termine FED, we uniformly randomly sample images in ev-

ery instance. More evaluation methods are also presented,

detailed in their respective subsections. For approximating

human emotion assessment, we utilize the softmax score

from the trained VGGNet. Additionally, we also engage 8

psychologists for evaluation through an expert user study.

Baselines. We use DreamBooth [37] trained on the Af-

fectNet as our baseline for both quantitative and qualitative

evaluations. Additionally, we use recent and popular image

generation methods for further comparisons. More impor-

tantly, we perform exhaustive comparisons of our method

that uses 2D AV representation against the proposed 3D rep-

resentation. Please, refer to our supplementary material for

more details, further analysis, and visualizations.

20 30 40 50 60 70
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AUs

2D

3D (ours)

Stable Diffusion

DreamBooth

FID  / User Ratings
DALL-E
AUs
2D
3D (ours)
Stable Diffusion
DreamBooth

Figure 8. FID and user ratings (Scores) for six different methods.

Our 3D representation based method presents the best combina-

tion between low FID and high user rating score. Two methods

with low FID often fail to represent the targeted expressions.

0.0 0.2 0.4 0.6 0.8 1.0

r
0.0
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Softmax score of the corresponding emotion

Happy
Sad
Anger

Figure 9. Top: subtle control of expression between r=0.02 and

r=0.3 along the “happy” axis. Bottom: softmax scores with in-

creasing radius away from the neutral to 3 canonical emotions.

5.1. Qualitative Results

We present five sets of qualitative results, as depicted in

Figures 4, 5, 6, 7, and 9 demonstrating the efficacy of our

methods. Figure 5 reveals that both our 2D and 3D mod-

els effectively interpret emotions represented as continuous

numbers, with the 3D model exhibiting behavior towards

the learned Z, indicating a continuous learned representa-

tion. Specifically, the top three rows of Figure 5 display

images sampled around a circle at different learned Z val-

ues of our 3D model, with AV values annotated above. The

bottom part of the same figure contrasts this with the 2D

model, using the same circle in the AV space to generate ex-

pressions. Notably, the 3D model’s results are significantly

superior to those of the 2D model, as they can be directly

compared in the first and last rows.

Figure 6 focuses on nine compound emotions that our

3D C2A2 model can represent but are beyond the scope

of the 2D-AV model. This comparison, detailed in Ta-

ble 1, underscores the superiority of our 3D-based repre-

sentation, attributing to its richer representation and un-

derstanding of continuous numbers. For comparison, we

also provide results obtained using Stable Diffusion [34],

DreamBooth [37], and closed-source popular DALL-E 3.

Figure 7 illustrates how our method preserves attributes
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Method FED (↓) ERE (↓) SS (↓)

DreamBooth [37] 61.147 – –

2D-AV model 20.347 0.0774 0.905

3D model (Ours) 16.060 0.0536 0.806

Table 3. Fréchet Emotion Distance (FED), Emotion Reconstruc-

tion Error (ERE), and Smoothness Score (SS) for three different

method. Our 3-dimensional representation of emotions clear out-

perform the other alternatives, when trained on the same settings.

from the base network, enabling meaningful number+text-

to-image generation. Here, expressions for compound emo-

tions, represented as numbers, are generated alongside text

attributes, showcasing the versatility and robustness of our

approach in handling complex emotional representations.

Lastly, Figure 9 illustrates an example of subtle control.

5.2. Quantitative Results

We conduct two sets of quantitative evaluations. First we

provide the results using the metric from GANmut [5].

Later, the evaluation by the human psychologists is pro-

vided, along with FID, confirming the significance of our

3D representation model, by a large margin, in generating

meaningful images. The user rating and FID trade-off is

summarized in Figure 8 for six different methods.

FED, ERE, and Smoothness. Together with the FED,

we use the Emotion Reconstruction Error (ERE) and the

Smoothness Score (SS). To calculate FED, we sample 50K

images and compute the FID using the emotion features.

For ERE, we conduct a uniform search for target emotion,

using a sample budget of 500 images. Multiple runs are per-

formed for each of seven basic emotions. Then ERE is the

averaged emotion reconstruction errors between target and

closest images. The SS is determined by using the VGGNet

classifier with increasing emotion intensity. We follow [5]

for these metrics, where readers can also find more details.

The FED, ERE, and SS, obtained by DreamBooth [37],

2-dimensional AV based representation, and the proposed

3-dimensional representation are reported in Table 3. Note

that we train DreamBooth on AffectNet to obtain the re-

ported results, which does not use 2D or 3D emotion labels.

These results again highlighting the superiority of the our 3-

dimensional C2A2 emotion model and method developed to

perform number+text-to-image generation.

Expert user (psychologist) study. We asked 8 expert psy-

chologists to rate 315 images (per method) on the scale from

1 to 5 (5 being the highest) by how much they agree with the

coordinates of the images. We also provided them with the

nearest emotion to every image. More details of our study

is in the supplementary materials. The obtained results are

reported in Table 2, which shows that the experts clearly

prefer the images generated by the proposed 3D represen-

tation, for individual compound emotions as well as overall

emotions. This further validates our emotion representation

and expression generation methods.

6. Conclusion

We proposed a novel, unified and interpretable emotion rep-

resentation that is capable of expressing nine additional

compound emotions from the continuous 3-dimensional

space. The continuous and 3D aspect of our representa-

tion allowed us to generate images with multitude of expres-

sions. To facilitate such generation, we proposed two meth-

ods; one to recover the additional emotion axis Z, and an-

other to generate images using the continuous vectors rep-

resenting emotions in a DreamBooth-like setting. Both our

qualitative and quantitative results showcase the superiority

of the proposed emotion representation and the method for

number+text-to-image generation. Furthermore, we show-

case the capability of our method in generating compound

expressions together with other facial attributes. We seek to

extend our method along the temporal dimension by learn-

ing from the video examples as our future work.

Limitations and ethical statement. The emotion condi-

tioning in our model is not entirely disentangled. This is

particularly evident with attributes akin to age, shown in

Figure 5. Our method in processing text descriptions be-

yond facial attributes needs further exploration. In this

work, we controlled the expression without preserving the

identity of the person. A future extension could benefit from

adding identity preserving properties to our model. Central

to our research ethos is a commitment to ethical and respon-

sible data usage, with a strong focus on fostering socially

responsible applications.
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the Ministry of Education and Science of Bulgaria (support
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Model Happy-disgd. Sad-Fearful Sad-Angry Fearful-Disgd. Angry-Surpd. Happy-Fearful Sad-Surpd. Average Average Overall

3D model (Ours) 3.51 4.06 4.18 4.52 4.74 4.32 4.02 4.19 4.03

2D-AV model 2.71 3.00 2.67 3.09 3.67 3.41 2.50 3.01 3.50

AUs model 1.17 1.55 1.77 1.83 1.60 1.69 1.92 1.76 1.87

Stable Diffusion 1.32 2.15 2.31 2.31 1.89 2.50 2.07 2.04 2.21

DALL.E 3 2.25 3.43 3.45 3.36 3.94 3.04 2.60 3.31 3.72

DreamBooth 1.94 1.32 1.07 1.33 1.23 1.14 1.59 1.47 1.59

Table 2. Average ratings (out of 1-5) for 7 compound emotions that can be represented by our 3D C2A2 but cannot be represented by the

2D-AV model, the average of these 7 emotions (second last) and the average among all emotions (last column) used in our study.
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