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Abstract

Text-to-image (T2I) diffusion models, notably the un-
CLIP models (e.g., DALL-E-2), achieve state-of-the-art
(SOTA) performance on various compositional T2I bench-
marks, at the cost of significant computational resources.
The unCLIP stack comprises T2I prior and diffusion im-
age decoder. The T2I prior model alone adds a bil-
lion parameters compared to the Latent Diffusion Mod-
els, which increases the computational and high-quality
data requirements. We introduce ECLIPSE1, a novel con-
trastive learning method that is both parameter and data-
efficient. ECLIPSE leverages pre-trained vision-language
models (e.g., CLIP) to distill the knowledge into the prior
model. We demonstrate that the ECLIPSE trained prior,
with only 3.3% of the parameters and trained on a mere
2.8% of the data, surpasses the baseline T2I priors with an
average of 71.6% preference score under resource-limited
setting. It also attains performance on par with SOTA big
models, achieving an average of 63.36% preference score in
terms of the ability to follow the text compositions. Exten-
sive experiments on two unCLIP diffusion image decoders,
Karlo and Kandinsky, affirm that ECLIPSE priors consis-
tently deliver high performance while significantly reduc-
ing resource dependency. Project page: https://eclipse-
t2i.vercel.app/

1. Introduction
Diffusion models [13, 36, 38, 43] have demonstrated re-
markable success in generating high-quality images condi-
tioned on text prompts. This Text-to-Image (T2I) genera-
tion paradigm has been effectively applied to various down-
stream tasks such as subject/segmentation/depth-driven im-
age generation [4, 6, 10, 21, 30]. Central to these advance-
ments are two predominant text-conditioned diffusion mod-
els: Latent Diffusion Models (LDM) [38], also known as

1Our strategy, ECLIPSE, draws an analogy from the way a smaller prior
model, akin to a celestial entity, offers a glimpse of the grandeur within the
larger pre-trained vision-language model, mirroring how an eclipse reveals
the vastness of the cosmos.
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Figure 1. Comparison between SOTA text-to-image models with
respect to their total number of parameters and the average per-
formance on the three composition tasks (color, shape, and tex-
ture). ECLIPSE achieves better results with less number of param-
eters without requiring a large amount of training data. The shown
ECLIPSE trains a T2I prior model (having only 33M parameters)
using only 5M image-text pairs with Kandinsky decoder.

Stable Diffusion, and unCLIP models [36]. The LDM, no-
table for its open-source availability, has gained widespread
popularity within the research community. On the other
hand, unCLIP models have remained under-studied. Both
model types fundamentally focus on training the diffusion
models conditioned on text prompts. The LDM contains a
singular text-to-image diffusion model, while unCLIP mod-
els have a text-to-image prior, and a diffusion image de-
coder. Both model families work within the vector quan-
tized latent space of the image [44]. In this paper, we focus
on unCLIP models because they consistently outperform
other SOTA models in various composition benchmarks
such as T2I-CompBench [14] and HRS-Benchmark [2].

These T2I models, typically large in parameter count, re-
quire massive amounts of high-quality image-text pairs for
training. unCLIP models like DALL-E-2 [36], Karlo [8],
and Kandinsky [37], feature prior module containing ap-
proximately 1 billion parameters, resulting in a significant
increase in overall model size (≥ 2B) compared to LDMs.
These unCLIP models are trained on 250M, 115M, and
177M image-text pairs, respectively. Therefore, two critical

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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questions remain: 1) Does the incorporation of a text-to-
image prior contribute to SOTA performance on text com-
positions? 2) Or is scaling up model size the key factor? In
this study, we aim to deepen the understanding of T2I priors
and propose substantial enhancements to existing formula-
tions by improving parameter and data efficiency.

As proposed by Ramesh et al. [36], T2I priors are also
diffusion models, which are designed to directly estimate
the noiseless image embedding at any timestep of the diffu-
sion process. We perform an empirical study to analyze this
prior diffusion process. We find that this diffusion process
has a negligible impact on generating accurate images and
having the diffusion process slightly hurts the performance.
Moreover, diffusion models require substantial GPU hours
for training due to the slower convergence. Therefore, in
this work, we use the non-diffusion model as an alternative.
While this approach may reduce the compositional capabil-
ities due to the absence of classifier-free guidance [12], it
significantly enhances parameter efficiency and decreases
the dependencies on the data.

To overcome the above limitations, in this work, we in-
troduce ECLIPSE, a novel contrastive learning strategy to
improve the T2I non-diffusion prior. We improve upon
the traditional method of maximizing the Evidence Lower
Bound (ELBO) for generating the image embedding from
the given text embedding. We propose to utilize the se-
mantic alignment (between the text and image) property
of the pre-trained vision-language models to supervise the
prior training. Utilizing ECLIPSE, we train compact (97%
smaller) non-diffusion prior models (having 33 million pa-
rameters) using a very small portion of the image-text pairs
(0.34% - 8.69%). We train ECLIPSE priors for two unCLIP
diffusion image decoder variants (Karlo and Kandinsky).
The ECLIPSE-trained priors significantly surpass baseline
prior learning strategies and rival the performance of 1 bil-
lion parameter counterparts. Our results indicate a promis-
ing direction for T2I generative models, achieving better
compositionality without relying on extensive parameters
or data. As illustrated in Fig. 1, by simply improving the
T2I prior for unCLIP families, their overall parameter and
data requirements drastically reduce and achieve the SOTA
performance against similar parameter models.

Contributions. 1) We introduce ECLIPSE, the first attempt
to employ contrastive learning for text-to-image priors in
the unCLIP framework. 2) Through extensive experimenta-
tion, we demonstrate ECLIPSE’s superiority over baseline
priors in resource-constrained environments. 3) Remark-
ably, ECLIPSE priors achieve comparable performance to
larger models using only 2.8% of the training data and 3.3%
of the model parameters. 4) We analyze and offer empirical
insights on the shortcomings of T2I diffusion priors.

2. Related Works
Text-to-Image Generative Models. Advancements in
vector quantization and diffusion modeling have notably
enhanced text-to-image generation capabilities. Notable
works like DALL-E [35] have leveraged transformer mod-
els trained on quantized latent spaces. Contemporary state-
of-the-art models, including GLIDE [27], Latent Diffusion
Model (LDM) [38], DALL-E-2 [36], and Imagen [39], have
significantly improved over earlier approaches like Stack-
GAN [48] and TReCS [20]. As these models achieve
remarkable photorealism, several works focus on making
T2I models more secure [9, 17, 18, 28]. LDM models
primarily focus on unified text-to-image diffusion models
that incorporate the cross-attention layers [38]. Addition-
ally, several studies aim at refining Stable Diffusion mod-
els during inference through targeted post-processing strate-
gies [4, 6, 33]. In contrast, unCLIP models, exemplified
by DALL-E-2 [16], Karlo [8], and Kandinsky [37], incor-
porate a two-step process of text-to-image diffusion trans-
former prior model and diffusion image decoder having the
same model architecture as LDMs. Recent benchmarks
have highlighted the superior compositional capabilities of
DALL-E-2 over LDM methods [2, 14]. Our work exam-
ines and enhances existing prior learning strategies in open-
source pre-trained unCLIP models, Karlo and Kandinsky.

Efficient Text-to-Image Models. The current generation
of T2I models is characterized by extensive parameter sizes
and demanding training requirements, often necessitating
thousands of GPU days. Research efforts have primarily
centered on model refinement through knowledge distilla-
tion, step distillation, and architectural optimization [22, 26,
40]. Würstchen [32] presents an efficient unCLIP stack re-
quiring less training time. Concurrently, Pixart-α [5] lever-
ages pre-trained Diffusion-Transformers (DiT) [31] as base
diffusion models, further reducing training time. Distinc-
tively, ECLIPSE focuses on refining text-to-image priors
within the unCLIP framework using a mere 3.3% of the
original model parameters, thereby significantly reducing
the training duration to approximately 50 GPU hours. Our
work falls orthogonal to the existing efficient T2I method-
ologies that mainly focus on knowledge and step distilla-
tion, and/or architectural compression. When integrated
with these model compression strategies, ECLIPSE can po-
sition the unCLIP family models as a compact yet highly
accurate and efficient methodology.

Contrastive Learning in Generative Models. Contrastive
learning, traditionally applied in visual discriminative tasks,
has seen utilization in image-text alignment models like
CLIP [34], LiT [46], and SigLIP [47]. However, its ap-
plication in generative models, particularly in Generative
Adversarial Networks (GANs), remains limited [7, 23, 49].
For instance, Lafite [49] employs a contrastive approach
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Figure 2. Standard T2I prior learning strategies (top) minimizes the mean squared error between the predicted vision embedding ẑx w.r.t.
the ground truth embedding zx with or without time-conditioning. This methodology cannot be generalized very well to the outside
training distribution (such as Orange Square). The proposed ECLIPSE training methodology (bottom) utilizes the semantic alignment
property between zx and zy with the use of contrastive learning, which improves the text-to-image prior generalization.

for image-to-text prior training in language-free T2I GANs.
StyleT2I [23] attempts to learn the latent edit direction for
StyleGAN [15], which is supervised via spatial masks on
the images making the method not scalable. ACTIG [7] in-
troduces an attribute-centric contrastive loss to enhance dis-
criminator performance. These methods are constrained by
their domain-specific knowledge requirements and inability
to be directly applied to diffusion models [7, 23]. In con-
trast, ECLIPSE applies CLIP-based contrastive learning to
train more effective T2I prior models in diffusion-based T2I
systems. This strategy is not only resource-efficient but sig-
nificantly enhances the traditional text-to-image diffusion
priors by exploiting the semantic latent space of pre-trained
vision-language models.

3. Methodology
This section elaborates on the Text-to-Image (T2I) method-
ologies, beginning with an overview of unCLIP, followed
by the formal problem statement. We then delve into
our proposed training strategy, ECLIPSE, for T2I prior in
detail. Figure 2 provides the overview of baselines and
ECLIPSE training strategies.

3.1. Preliminaries

Without the loss of generality, let’s assume that y ∈ Y
denotes the raw text and x ∈ X denotes the raw image.
zx and zy denote the image and text latent embeddings
extracted using the pre-trained vision and text encoders
(zx = Cvision(x); zy = Ctext(y)). Ideally, these Ctext

and Cvision can be any model (e.g., T5-XXL, ViT, and

CLIP). Both model families (LDM and unCLIP) fundamen-
tally focus on learning a mapping function fθ : Y → X .
The LDMs contain a singular text-to-image decoder model
(fθ), while unCLIP framework (fθ = hθ ◦ gϕ) contains two
primary modules:
• Text-to-Image Prior (gϕ : zy → zx): This module maps

the text embeddings to the corresponding vision embed-
dings. Ramesh et al. [36] showed that the diffusion model
as T2I prior leads to slightly better performance than the
autoregressive models. For each timestep t and a noised
image embedding z

(t)
x ∼ q(t, zx) (here, q is a forward

diffusion process), the diffusion prior directly estimates
noiseless zx rather than estimating Gaussian noise distri-
bution ϵ ∼ N (0, I) as:

Lprior = E
t∼[0,T ],

z(t)
x ∼q(t,zx)

[
||zx − gϕ(z

(t)
x , t, zy)||22

]
. (1)

• Diffusion Image Decoder (hθ : (zx, zy) → x): This
module generates the final image conditioned on the zx
and the input text features zy . This diffusion decoder fol-
lows the standard diffusion training procedure by estimat-
ing ϵ ∼ N (0, I) after [13]:

Ldecoder = E
ϵ∼N(0,I)
t∼[0,T ],
(zx, zy)

[
||ϵ− hθ(x

(t), t, zx, zy)||22
]
. (2)

Different versions of the unCLIP decoder (i.e., Kandin-
sky and Karlo) vary in whether they include text condition-
ing (zy) in the diffusion image decoder. Both approaches
yield comparable results, provided that image condition-
ing (zx) is accurate. The training objectives, Lprior and
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Ldecoder, integrate Classifier-Free Guidance (CFG) [12],
enhancing the model’s generative capabilities.

3.2. Problem Formulation

Given the pivotal role of the T2I prior module in image gen-
eration from text, in this paper, our focus is on enhancing
gϕ, while keeping the pre-trained hθ frozen. Let’s con-
sider a training distribution PXY , comprising input pairs
of image and text (x, y). Maximizing the Evidence Lower
Bound (ELBO) on the training distribution PXY facilitates
this mapping of zy → zx. However, such a strategy does not
inherently assure generalization, especially when the input
text prompt (y) deviates from the assumed independently
and identically distributed (i.i.d.) pattern of PXY [45].
Therefore, attaining a more diverse and representative PXY

becomes crucial for improving the performance. While a
diffusion prior combined with CFG has been shown to bol-
ster generalization, especially with diverse training data and
extensive training iterations [29], it is computationally ex-
pensive and is not always reliable (especially, in low re-
source constraint settings) as shown in Section 4.2. Given
these constraints, our goal is to develop an alternative prior
learning methodology that improves parameter efficiency
(97% reduction) and mitigates the need for large-scale high-
quality data (≤ 5%) while maintaining the performance.

3.3. Proposed Method: ECLIPSE

This section elaborates on ECLIPSE, our model training
strategy to learn text-to-image prior (gϕ). We focus on en-
hancing non-diffusion prior models through the effective
distillation of pre-trained vision-language models, such as
CLIP, while preserving the semantic alignment between the
input text embedding zy and corresponding estimated vision
embeddings ẑx by using the contrastive loss.

Base Prior Model. T2I diffusion prior deviates from the
standard diffusion objective (such as Eq. 2). Unlike the
standard ϵ prediction diffusion objective, the T2I diffusion
prior objective instead estimates the zx which is noiseless.
Despite its convertibility, the empirical analysis (Section 5)
shows that having more diffusion prior steps does not bene-
fit the overall text-to-image generation abilities. During the
inference, for diffusion priors, we still adhere to the conven-
tional denoising process, introducing additional noise (σtϵ)
at each step, except for the final step according to Ho et al.
[13]. This degradation in performance is likely due to the
compressed latent space of the CLIP models. Moreover, if
we repeat this for T timesteps, it can lead to the accumula-
tion of errors, which is undesirable.

Therefore, to mitigate this unnecessary computing, we
use non-diffusion T2I prior, making the prior model both
parameter-efficient and less demanding in terms of com-
putational resources. This non-diffusion architecture forms
our base model, and we introduce the training objective that

leverages pre-trained vision-language models trained on ex-
tensive datasets to improve generalization outside the PXY .

Projection Objective. Despite vision-language models
aligning the semantic distributions across modalities, each
modality may exhibit unique distributions. Therefore, our
approach involves projecting the text embedding onto the
vision embedding. This is achieved using a mean squared
error objective between the predicted vision embedding (ẑx)
and the ground truth vision embedding (zx):

Lproj = E
ϵ∼N (0,I)

zy,zx

[
||zx − gϕ(ϵ, zy)||22

]
, (3)

where ϵ is the Gaussian input noise. Notably, as discussed
previously, this is an approximation of the diffusion prior
objective (Eq. 1) with t = T and without CFG. Lproj learns
latent posterior distribution with the i.i.d. data assumption.
However, this model, fine-tuned on PXY , may not general-
ize well beyond its distribution. The optimal solution would
be to train on a dataset that encapsulates all potential distri-
butions to cover all possible scenarios, which is an imprac-
tical and resource-consuming task.

CLIP Contrastive Learning. To address these limita-
tions, we propose utilizing the CLIP more effectively, which
contains the semantic alignment between image and lan-
guage. Specifically, we apply the CLIP Contrastive Loss
after [34] to train the T2I priors. For a given input batch
{(zix, ziy)}Ni=1 from the PXY distribution, we calculate the
text-conditioned image contrastive loss for the ith image
embedding prediction relative to the all input ground truth
text embeddings as:

LCLS; y→x = − 1

N

N∑
i=0

log
exp(⟨ẑix, ziy⟩/τ)∑

j∈[N ] exp(⟨ẑix, z
j
y⟩/τ)

, (4)

where τ is the temperature parameter, ⟨, ⟩ denotes the cosine
similarity, and N is the batch size. This loss encourages
the model to understand and follow the input text better,
effectively reducing overfitting to the PXY , as illustrated in
Figure 2. Consequently, the final objective function is:

LECLIPSE = Lproj + λ ∗ LCLS; y→x, (5)

where λ is the hyperparameter balancing the regularizer’s
effect. Overall, the final objective function aims to map the
text latent distribution to the image latent distribution via
Lproj and such that it preserves the image-text alignment
using LCLS; y→x. This makes the prior model generalize
beyond the given training distribution PXY such that it can
follow the semantic alignment constraint. Importantly, we
cannot use LCLS; y→x alone or with a high value of λ as
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Table 1. The comparison (in terms of FID and compositions) of the baselines and state-of-the-art methods with respect to the ECLIPSE. * in-
dicates the official reported ZS-FID. Ψ denotes the FID performance of a model trained on MSCOCO. The best performing ECLIPSE vari-
ant (with respect to its big counterpart) is highlighted by green . ECLIPSE consistently outperforms the SOTA big models despite being
trained on a smaller subset of dataset and parameters.

Methods Model Training Total Data ZS- T2I-CompBench
Type Params [M]* Params [B] Size [M] FID (↓) Color (↑) Shape (↑) Texture (↑) Spatial (↑) Non-Spatial (↑)

Stable Diffusion v1.4 LDM 900 0.9 400 16.31* 0.3765 0.3576 0.4156 0.1246 0.3076
Stable Diffusion v2.1 LDM 900 0.9 2000 14.51* 0.5065 0.4221 0.4922 0.1342 0.3096
Würstchen unCLIP 1000 2.0 1420 23.60* 0.3216 0.3821 0.3889 0.0696 0.2949
Kandinsky v2.1 unCLIP 1000 2.22 177 18.09 0.4647 0.4725 0.5613 0.1219 0.3117
DALL-E-2 unCLIP 1000 4.5 250 10.65* 0.5750 0.5464 0.6374 0.1283 0.3043

Karlo unCLIP 1000 1.9 115 20.64 0.5127 0.5277 0.5887 0.1337 0.3112

Karlo
33 0.93 0.6MSCOCO 23.67Ψ 0.5965 0.5063 0.6136 0.1574 0.3235
33 0.93 2.5CC3M 26.73 0.5421 0.5090 0.5881 0.1478 0.3213ECLIPSE (ours)
33 0.93 10.0CC12M 26.98 0.5660 0.5234 0.5941 0.1625 0.3196

Kandinsky v2.2 unCLIP 1000 2.22 177 20.48 0.5768 0.4999 0.5760 0.1912 0.3132

Kandinsky v2.2 34 1.26 0.6MSCOCO 16.53Ψ 0.5785 0.4951 0.6173 0.1794 0.3204ECLIPSE (ours) 34 1.26 5.0HighRes 19.16 0.6119 0.5429 0.6165 0.1903 0.3139

the prior model will converge outside the vision latent dis-
tribution that optimizes the contrastive loss (such input text
latent space itself). And keeping λ to a very low value can-
not do knowledge distillation well enough. Empirical stud-
ies suggest setting λ = 0.2 for optimal performance, bal-
ancing knowledge distillation, and maintaining alignment
within the vision latent distribution.

4. Experiments & Results
This section introduces the datasets, training specifications,
comparative baselines, and evaluation metrics utilized in
our experiments. We conduct an extensive assessment of
our proposed ECLIPSE methodology and its variants.

4.1. Experimental Setup

Dataset. Our experiments span four datasets of vary-
ing sizes: MSCOCO [24], CC3M [42], CC12M [3], and
LAION-HighResolution2 [41]. MSCOCO comprises ap-
proximately 0.6 million image-text pairs, while CC3M and
CC12M contain around 2.5 and 10 million pairs, respec-
tively 3 . We select a very small subset of 5 million (2.8%)
image-text pairs from the LAION-HighRes dataset (175M).
We perform Karlo diffusion image decoder-related experi-
ments on MSCOCO, CC3M, and CC12M as these datasets
are subsets of the data used to train the Karlo diffusion
image decoder. Similarly, we use MSCOCO and LAION-
HighRes for the Kandinsky decoder.

Baselines. ECLIPSE variants are compared against leading
T2I models, including Stable Diffusion, Würstchen, Karlo,
Kandinsky, and DALL-E-2. Additionally, we introduce two
more baselines along with ECLIPSE to evaluate the impact

2https://huggingface.co/datasets/laion/laion-
high-resolution

3According to the download date: 08/26/2023

of our training strategy in a resource-constrained environ-
ment: 1) Projection: A non-diffusion prior model trained
with Lproj (Eq. 3). 2) Diffusion-Baseline: A diffusion prior
model trained with Lprior (Eq. 1) – the traditional T2I prior,
and 3) ECLIPSE: A non-diffusion prior model trained with
our proposed methodology LECLIPSE (Eq. 5).

Training and inference details. We evaluate ECLIPSE us-
ing two pre-trained image decoders: Karlo-v1-alpha and
Kandinsky v2.2, trained on distinct CLIP vision encoders.
Our prior architecture is based on the standard PriorTrans-
former model [36], modified to be time-independent. The
detailed architecture is outlined in the appendix. We con-
figure prior models with 33 and 34 million parameters for
Karlo and Kandinsky, respectively. This contrasts with
larger models in the field, which often use up to 1 bil-
lion parameters (as summarized in Table 1). The Projec-
tion, Diffusion-Baseline, and ECLIPSE priors are trained
for both diffusion image decoders, maintaining consis-
tent hyperparameters (including total number of param-
eters) across all models. Training on CC12M, CC3M,
and LAION-HighRes is performed on 4 x RTX A6000
GPUs with a 256 per-GPU batch size, a learning rate
of 0.00005, and the CosineAnnealingWarmRestarts sched-
uler [25]. Each model undergoes approximately 60,000 it-
erations, totaling around 200 GPU hours. For MSCOCO,
training takes about 100 GPU hours. This can be further
reduced to ≤ 50 GPU hours if image-text pairs are pre-
processed beforehand. The diffusion prior is trained with a
linear scheduler and 1000 DDPM timesteps. Inferences uti-
lize 25 DDPM steps with 4.0 classifier-free guidance, while
Projection and ECLIPSE models do not require diffusion
sampling. Image diffusion decoders are set to 50 DDIM
steps and 7.5 classifier-free guidance.

Evaluation setup. Our evaluation framework encompasses
various metrics. We employ MS-COCO 30k to assess
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Figure 3. Qualitative result of our text-to-image prior, ECLIPSE, comparing with SOTA T2I model. Our prior model reduces the model
parameter requirements (from 1 Billion → 33 Million) and data requirements (from 177 Million → 5 Million → 0.6 Million). Given this
restrictive setting, ECLIPSE performs close to its huge counterpart (i.e., Kandinsky v2.2) and even outperforms models trained on huge
datasets (i.e., Würstchen, SDv1.4, and SDv2.1) in terms of compositions.

FID [11] and T2I-CompBench [14] for evaluating composi-
tion abilities in color, shape, texture, spatial, and non-spatial
compositions. Given the impracticality of large-scale hu-
man studies, we approximate human preferences using
PickScore [19], reporting results on the T2I-CompBench
validation set comprising about 1500 unique prompts.

4.2. Quantitative Evaluations

In Table 1, we present a performance comparison between
ECLIPSE variants and leading T2I models. Our eval-
uation metrics include zero-shot Fréchet Inception Dis-
tance (FID) on MS-COCO 30k for image quality assess-
ment and T2I-CompBench [14] for evaluating composi-
tionality. ECLIPSE priors, trained with both types of
diffusion image decoders, demonstrate notable improve-
ments. ECLIPSE consistently surpasses various baselines
in terms of compositionality, irrespective of the dataset size.

Its performance is comparable to that of DALL-E-2 and
other SOTA models, a significant improvement considering
ECLIPSE’s parameter efficiency. Standard T2I priors usu-
ally incorporate 1 billion parameters, while ECLIPSE op-
erates with only 3.3% of these parameters, maintaining
competitive performance levels. When combined with cor-
responding diffusion image decoders, the total parameter
count of ECLIPSE is close to that of Stable Diffusion mod-
els, yet it outperforms them, especially considering that the
latter are trained on a massive set of image-text pairs. A
noticeable decline in zero-shot FID (ZS-FID) is observed in
comparison to the original Karlo. We attribute this varia-
tion to the image quality differences in the training dataset,
suggesting a potential area for further investigation and im-
provement. At the same time, if we utilize the smaller sub-
set of high-resolution datasets then we can still maintain
better FID and improve the compositions, as shown in the
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Figure 4. Qualitative evaluations by human preferences approx-
imated by the PickScore [19]. The top two figures compare
ECLIPSE to Projection and Diffusion Baselines trained with the
same amount of data and model size for both Karlo and Kandin-
sky decoders. In the bottom figure, we compare ECLIPSE with the
Kandinsky v2.2 decoder trained on the LAION-HighRes dataset
against SOTA models.

last row of Table 1. ECLIPSE prior with Kandinsky v2.2
decoder trained on LAION-HighRes subset achieves simi-
lar FID to other original Kandinsky v2.2 unCLIP model and
at the same time outperforming in terms of compositions.

Table 2 provides a comparison of various baseline
training strategies for small prior models, using identical
datasets and hyperparameters. ECLIPSE exhibits superior
performance across all datasets. We also note that diffusion
priors benefit from larger datasets, supporting our premise
that such priors necessitate extensive training data for opti-
mal results, which is also attributed to the CFG. In contrast,
ECLIPSE demonstrates the consistent performance on com-
positions irrespective of the amount of image-text pairs.

4.3. Qualitative Evaluations

In Figure 3, we display qualitative examples from
various methods responding to complex prompts.
ECLIPSE demonstrates superior performance in com-
parison to Stable Diffusion v1.4, Stable Diffusion v2.1,
and Würstchen, while closely matching the quality
of its big counterpart, Kandinsky v2.2. Interestingly,
ECLIPSE trained on only 0.6 million images maintains
the compositions with minor degradation in image quality.
These observations align with our previously established
quantitative results. Beyond numerical metrics, understand-
ing human preferences is crucial. To this end, we selected
1500 unique validation prompts from T2I-CompBench and
assessed PickScore preferences. The results, illustrated
in Figure 4, reveal that ECLIPSE notably surpasses its
baselines in respective restrictive settings with an aver-

Table 2. Comparison of ECLIPSE with respect to the various
baseline prior learning strategies on four categories of composi-
tion prompts in the T2I-CompBench. All prior models are of 33
million parameters and trained on the same hyperparameters.

Methods T2I-CompBench
Color (↑) Shape (↑) Texture (↑) Spatial (↑)

MSCOCO with Karlo
Projection 0.4667 0.4421 0.5051 0.1478
Diffusion-Baseline 0.4678 0.4797 0.4956 0.1240
ECLIPSE 0.5965 0.5063 0.6136 0.1574
CC3M with Karlo
Projection 0.4362 0.4501 0.4948 0.1126
Diffusion-Baseline 0.5493 0.4809 0.5462 0.1132
ECLIPSE 0.5421 0.5091 0.5881 0.1477
CC12M with Karlo
Projection 0.4659 0.4632 0.4995 0.1318
Diffusion-Baseline 0.5390 0.4919 0.5276 0.1426
ECLIPSE 0.5660 0.5234 0.5941 0.1625

MSCOCO with Kandinsky v2.2
Projection 0.4678 0.3736 0.4634 0.1268
Diffusion-Baseline 0.4646 0.4403 0.4834 0.1566
ECLIPSE 0.5785 0.4951 0.6173 0.1794
HighRes with Kandinsky v2.2
Projection 0.5379 0.4983 0.5217 0.1573
Diffusion-Baseline 0.5706 0.5182 0.5067 0.1687
ECLIPSE 0.6119 0.5429 0.6165 0.1903

age score of 71.6%. We can also observe that the best
ECLIPSE variant (with Kandinsky decoder and trained
on LAION-HighRes) consistently outperforms the other
big SOTA models achieving an average performance of
63.36%. We observe that in terms of preferences, the
original Kandinsky v2.2 diffusion prior (with a 1 billion
parameter) trained on LAION-HighRes (175M) performs
better than the ECLIPSE prior (having 33 million param-
eters). We hypothesize that this might be due to its use
of a large-scale dataset that contains more aesthetically
pleasing images. We provide a set of qualitative results
in the appendix to show that ECLIPSE performs similarly
well, if not better, w.r.t. semantic understanding of the text.

5. Analysis
Analyzing the traditional diffusion priors. To further
support our choice of using non-diffusion prior models, we
analyze the existing diffusion prior formulation. We con-
ducted two key empirical studies: 1) Evaluating the Impact
of Prior Steps: We examined how the number of prior steps
influences model performance. 2) Assessing the Influence
of Added Noise (σtϵ): We focused on understanding how
the introduction of noise affects human preferences. For
these studies, we utilized PickScore preferences, and the
outcomes, depicted in Figure 5, corroborate our hypothesis:
both the prior steps and the addition of (σtϵ) detrimentally
affect performance. Furthermore, as indicated in Table 2,
diffusion prior surpasses the projection baseline if provided
with more high-quality data. We attribute this enhanced per-
formance to the incorporation of classifier-free guidance,
which bolsters the model’s generalization capabilities to a

9075



10 15 20 25 30 35 40 45 50
Prior Steps

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

Pi
ck

Sc
or

e 
Pr

ef
er

en
ce

s

Decoder Steps
10
25
50

0.4 0.6 0.8 1.0
Eta (added noise)

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Pi
ck

Sc
or

e 
Pr

ef
er

en
ce

s

Prior Steps
2
10
25
50

(a) Left: Performance comparison by varying the prior steps and decoder
steps w.r.t. the fixed prior steps (t = 2). Right: Performance comparison
by varying the mean η of the added scheduler noise (σtϵ) w.r.t. the noise-
less predictions (η = 0). Both experiments are on the Kandinsky v2.1.
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(b) Overall performance comparisons on various pre-trained unCLIP mod-
els before and after reducing the prior steps to two and η to 0.0.

Figure 5. Empirical analysis of the PickScore preferences of dif-
fusion priors with respect to the various hyper-parameters.

certain extent. However, it’s worth noting that both base-
lines are still outperformed by ECLIPSE. This observation
underscores the effectiveness of our proposed methodology
in comparison to traditional approaches in the realm of T2I.

Importance of data selection. In our previous analy-
sis (Table 1 and 2), we demonstrated that ECLIPSE at-
tains competitive performance on composition benchmarks
regardless of dataset size. This achievement is largely
due to the integration of the contrastive loss LCLS (Eq.4).
However, the final objective function also incorporates the
Lproj (Eq.3), which is pivotal in estimating the vision
latent distribution. This estimation is fundamentally de-
pendent on the training distribution (PXY ), leading the
model to learn spurious correlations within PXY . Con-
sequently, the model’s image quality could directly corre-
late with the overall quality of images in the training set.
To further substantiate this, we evaluated the preferences
for ECLIPSE models trained on MSCOCO, CC3M, and
CC12M, in comparison to among themselves and Karlo-
v1-alpha. The outcomes, presented in Figure 6, reveal
that the ECLIPSE model trained on CC12M outperforms
those trained on other datasets, exhibiting performance on
par with its big counterpart. ECLIPSE prior (w Karlo de-
coder) trained on the CC12M dataset performs comparably
to Karlo-v1-alpha while ECLIPSE priors trained on other
datasets struggle to do so. Furthermore, as illustrated in
Figure 6, the ECLIPSE model trained on MSCOCO demon-
strates a tendency to learn spurious correlations, such as as-
sociating the term “young tiger” with the person.
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Figure 6. The top figure shows the qualitative examples of the
biases learned by the T2I prior models. Bottom figures show the
PickScore preferences of the ECLIPSE models trained on various
datasets with respect to the other datasets (left) and Karlo (right).

6. Conclusion

In this paper, we introduce a novel text-to-image prior learn-
ing strategy, named ECLIPSE, which leverages pre-trained
vision-language models to provide additional supervision
for training the prior model through contrastive learning.
This approach significantly enhances the training efficiency
of prior models in a parameter-efficient way. Through com-
prehensive quantitative and qualitative evaluations, we as-
sessed ECLIPSE priors alongside various diffusion image
decoders. The results indicate that ECLIPSE surpasses both
the baseline projection models and traditional diffusion-
prior models. Remarkably, ECLIPSE achieves competitive
performance alongside larger, state-of-the-art T2I models.
It demonstrates that priors can be trained with merely 3.3%
of the parameters and 2.8% of image-text pairs typically re-
quired, without compromising the performance. This ad-
vancement directly leads to at least 43% overall compres-
sion of the unCLIP models. Our findings show that pre-
trained vision-language can be utilized more effectively;
suggesting promising research direction where improving
the vision-language models may directly benefit the T2I.
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