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Figure 1. Monocular 3D hand mesh reconstruction. We propose HaMeR, a fully transformer-based approach for Hand Mesh Recovery.
HaMeR achieves consistent improvements upon the state-of-the-art for 3D hand reconstruction. We can faithfully reconstruct hands in a
wide variety of scenarios, including captures from different viewpoints (third person or egocentric), under occlusion, hands that interact
with objects or other hands, hands with different skin tones, with gloves, from art paintings or mechanical hands. We encourage the reader
to watch our reconstructions in the Supplemental Video to appreciate the temporal stability.

Abstract settings, we annotate existing in-the-wild datasets with 2D
hand keypoint annotations. On this newly collected dataset
We present an approach that can reconstruct hands in of annotations, HInt, we demonstrate significant improve-
3D from monocular input. Our approach for Hand Mesh ments over existing baselines. We will make our code, data
Recovery, HaMeR, follows a fully transformer-based archi- and models publicly available upon publication. We make
tecture and can analyze hands with significantly increased our code, data and models available on the project website:
accuracy and robustness compared to previous work. The https://geopavlakos.github.io/hamer/.
key to HaMeR’s success lies in scaling up both the data
used for training and the capacity of the deep network for “It is because of his being armed with hands
hand reconstruction. For training data, we combine multi- that man is the most intelligent animal.”

ple datasets that contain 2D or 3D hand annotations. For Anaxagoras
the deep model, we use a large scale Vision Transformer 1. Introduction
architecture. Our final model consistently outperforms the

previous baselines on popular 3D hand pose benchmarks. Consider the images of hands interacting with the world in
To further evaluate the effect of our design in non-controlled Figure 1. These interactions are happening in 3D, so to in-
terpret them, we also need a system that can automatically

This work was done while Georgios Pavlakos was at UC Berkeley. perceive hands in 3D from visual input.
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Recent developments in computer vision and NLP point
to the direction where advances are achieved by simple,
high capacity models, powered by huge amounts of data.
This emerging insight has been demonstrated in the con-
text of NLP by Large Language Models, like GPT-3 [3] and
GPT-4 [43]. In the context of computer vision, we observe
this with models like CLIP [45], Stable Diffusion [47] and
SAM [29]. In the area of 3D human mesh recovery, a sim-
ilar trend has been observed, where the simple, large scale
HMRZ2.0 architecture [17] achieves state-of-the-art results.

In this paper, we take this philosophy and apply it to the
problem of 3D hand pose estimation. We propose HaMeR,
a robust and accurate approach for Hand Mesh Recovery
from images and video frames. HaMeR captures faithful 3D
reconstructions of hands in a variety of poses, viewpoints
and visual conditions, as shown in Figure 1. This translates
to improvements over existing baselines in the standard 3D
hand pose benchmarks. More importantly, HaMeR shines
when evaluated on challenging in-the-wild images, where
we outperform the state-of-the-art by significant margins.
Even though HaMeR is a single-frame approach, it recov-
ers temporally smooth and consistent reconstructions when
applied on video frames (please see the Supplemental Video
for video results).

The key to HaMeR’s success lies in scaling up the tech-
niques for hand mesh recovery. More specifically, we scale
both the training data and the deep network architecture
used for 3D hand reconstruction. For training data, we use
multiple available sources of data with hand annotations,
including both studio/controlled datasets with 3D ground
truth [6, 19, 40, 56, 63, 64], and in-the-wild datasets anno-
tated with 2D keypoint locations [15, 25, 52]. For our net-
work, we use a large-scale transformer architecture [14, 57]
which can successfully consume data of this scale. The
combination of these two ingredients leads to significant
improvements compared to previous work.

Benchmarking progress of these models is challenging
and is often constrained on datasets captured in controlled
conditions. To encourage evaluation on in-the-wild images,
we introduce a new dataset of annotations, HInt, by anno-
tating hands from diverse image sources, including videos
from YouTube [9, 51] and egocentric captures [12, 18]. The
annotations consist of 2D keypoints for the hand joints, as
well as labels of the visibility (occluded or not) for each
joint. We provide 2D hand keypoints annotations for 40.4K
hands, where 86.7% of them are hands in natural contact.
Even though with HInt we can only benchmark the 2D as-
pect of our 3D reconstruction, this evaluation is comple-
mentary to the existing benchmarks due to its diversity of
data, and together provide a more holistic picture on the
performance of different systems.

We contribute HaMeR, an approach for 3D hand mesh
reconstruction from images and video frames. We demon-

strate the key effect of scaling up to large scale training
data and high capacity deep architectures for the problem
of hand mesh recovery. We achieve state-of-the-art re-
sults where we obtain 2-3x improvement in PCK@0.05
on in-the-wild datasets compared to previous works. We
also contribute Hlnt, a dataset of annotations that comple-
ments training and evaluation of 3D hand reconstruction ap-
proaches. We make our model, code and data available to
support future work.

2. Related work

3D hand pose and shape estimation. In this section
we focus specifically on the works that estimate 3D hand
pose and shape from a single RGB image. The earlier
efforts [1, 2, 62] take inspiration from related work on
human mesh recovery [27] - they use the MANO para-
metric hand model [48] and regress the hand pose and
shape parameters given an RGB image as input. FrankMo-
cap [49] is a good representative of this line of works
which adopts a simple design, similar to HMR [27]. Fol-
lowup work [10, 16, 31, 39] follows a non-parametric ap-
proach and directly regresses the vertices of the MANO
mesh. This strategy often leads to results that align bet-
ter with the image evidence, but it is more prone to failure
in cases of occlusions and truncations. The improvements
in 3D hand pose estimation have also lead to progress in
related problems, including joint hand pose and object re-
construction [21, 22, 54, 58] and reconstruction of two in-
teracting hands [28, 32, 37, 38, 46, 55, 60, 61, 65]. More
recently, there have been works that address other aspects
of the problem. MobRecon [8] focuses on high inference
speed, that could potentially be supported on a mobile de-
vice. HandOccNet [44] designs an architecture that could
offer increased robustness to occlusions. AMVUR [24] pro-
poses a probabilistic approach for hand pose and shape es-
timation. BlurHand [41] focuses on the problem of motion
blur that often exists in footage that captures hand motion.
Our work is orthogonal to these approaches. We adopt a
simple design and we investigate the effect of scaling up
the training data and the capacity of our architecture. Given
that our main design is simple, the different choices of pre-
vious work could be combined with our HaMeR architec-
ture which could potentially lead to further improvements.
Hand datasets. Many of the datasets used to train and
evaluate 3D hand pose estimation systems are captured in
indoor/studio settings and provide 3D ground truth. Frei-
HAND [64] is captured in a multi-camera setting and fo-
cuses on different hand poses as well as hands interacting
with objects. HO-3D [19] and DexYCB [6] are also cap-
tured in a controlled setting with multiple cameras but fo-
cuses more specifically on cases where hands interact with
objects. InterHand2.6M [40] is captured in a studio with a
focus on two interacting hands. Hand pose datasets [52, 56]
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Figure 2. Dataset and Architecture. (Top) Hand crops with keypoint annotations from our HInt dataset of annotations for different
image sources, [9], [12, 13], and [18]. We provide location annotations for 21 hand keypoints as well as
the “occlusion” label for each joint. Occluded keypoints are marked using solid dot filled with black ® while non-occluded ones are filled
with white O . The pie chart shows the distribution and statistics of our dataset. (Bottom) The architecture for HaMeR follows a fully
transformer-based design. We use a large scale ViT backbone [14] followed by a transformer decoder to regress the parameters of the hand.

captured in the Panoptic studio [26] also offer 3D hand an-
notations. AssemblyHands [42] annotated 3D hand poses
for synchronized images from AssemblylO1 [50] which
participants assemble and disassemble take-apart toys in a
multi-camera setting. In this work, we use these datasets for
training and evaluation. However, we also argue that to get
a more holistic picture about the accuracy and the robust-
ness of 3D hand pose estimation systems, it is important to
evaluate performance on in-the-wild images as well.

While we cannot annotate 3D ground truth poses for
in-the-wild images, there is work that annotates 2D key-
point positions. Among the larger scale efforts, COCO-
WholeBody [25] provides hand annotations for the people
in the COCO dataset [35] and Halpe [15] annotates hands
in the HICO-DET dataset [4, 5]. Both of them source im-
ages from image datasets that contain very few egocentric
images or transitionary moments. In our dataset, HInt, we
sourced images from both egocentric and third-person video
datasets. Since our annotated hands come from video, they
depict more natural interactions with the world.

3. Technical approach

In this section, we describe HaMeR, our approach for hand
mesh recovery from monocular input. We follow a simple,
fully “transformerized” design that focuses on scaling up
the training data and the deep model architecture.

3.1. MANO parametric hand model

We adopt the MANO parametric model of the human
hand [48]. MANO takes as input the pose parameters
6 € R*8 and shape parameters 3 € R1” and defines a func-
tion M (6, 3) that returns the mesh of the hand M € RV *3,

with V' = 778 vertices. MANO additionally returns the
joints X € RE*3 of the hand, for a total of K = 21 joints.

3.2. Hand mesh recovery

Given an RGB image of a hand, I, our goal is to reconstruct
the 3D hand surface. We approach this problem by estimat-
ing the MANO pose and shape parameters for the hand in
the image. Similar to previous work in the parametric hu-
man [17, 27] and hand [49, 62] reconstruction, we use a net-
work to learn the mapping f from image pixels to MANO
parameters. Our regressor also estimates camera parame-
ters . The camera 7 corresponds to a translation ¢t € R3
that allows us to project the 3D mesh and the 3D joints to
the image. Given fixed camera intrinsics K, the projection
of the 3D joints X is: = m(X) = g (X + ¢). Eventu-
ally, we learn the mapping f(I) = ©, where the regressed
parameters are © = {0, 3, w}.

3.3. Architecture

HaMeR adopts a simple architecture with a fully
transformer-based design (Figure 2, bottom), similar
to [17]. We use a Vision Transformer (ViT) [14] as the
backbone, followed by a transformer head that regresses
the hand and camera parameters. We first convert the in-
put RGB image to patches, which are fed as input tokens to
ViT which follows the “huge” design, i.e., ViT-H. The ViT
backbone processes the image patches and returns a series
of output tokens. The transformer head is a transformer de-
coder that processes a single token while cross-attending to
the ViT output tokens. The output of the head returns the
parameters O for the input image.
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3.4. Losses

For our training losses, we follow best practices for para-
metric human and hand reconstruction [17, 27, 30, 49] and
supervise our model with a combination of 2D and 3D
losses. For the images that provide 3D ground truth, we
can directly apply a loss on the model parameters, 6 and /5.
Simultaneously, we can encourage consistency in the actual
3D space, and supervise on the level of the 3D joints X *:

Ly =10 =03 +[18 =B |5 +1X - X . (D)

To enable training with 2D annotations, we also ap-
ply a reprojection loss between the projection = of the 3D
joints X and the ground truth 2D keypoint annotations x*:

Lop = ||z — z*||1. (2)

We apply this loss, even when 3D ground truth is available,
since it promotes consistency on the output image space.

Finally, if only 2D keypoints are available, it is possible
to recover an unnatural pose that still reprojects well to the
image. To encourage the reconstruction of natural hands,
we train discriminators Dy, for a) the hand shape 3, b) the
hand pose 6, and c¢) each hand joint angle separately [27].
Then, we can apply an adversarial loss:

Loy =Y (Di(©) = 1)% 3)

k

3.5. Training data

To train our model, we consolidate multiple datasets that
provide 2D or 3D hand annotations. Specifically, we use
FreiHAND [64], HO3D [19], MTC [56], RHD [63], In-
terHand2.6M [40], H203D [19], DEX YCB [6], COCO
WholeBody [25], Halpe [15] and MPII NZSL [52]. This
results to 2.7M training examples, which is 4x larger than
the training set of the popular FrankMocap system [49].
The majority of this data is collected in controlled environ-
ments (e.g., studio or multi-camera setup), while only 5% of
the training examples (COCO WholeBody, Halpe and MPII
NZSL) include images from in-the-wild datasets.

4. Hint: Hand Interactions in the wild

In this section, we describe the dataset we contribute, with
the goal to complement existing datasets used for training
and evaluation. Since we focus on Hand Interactions in
the wild, we call our dataset HInt. HInt annotates 2D hand
keypoint locations and occlusion labels for each keypoint.
We built off of Hands23 [9] (using an early copy otained
from the authors), Epic-Kitchens [12], and Ego4D [18].

By sourcing from video datasets, we harvest more tran-
sitional moments and natural poses, compared with sourc-
ing from image data. For HInt, we source frames from

three video datasets. In Hands23, we choose from the New
Days subset [9] containing YouTube video frames of hu-
mans engaging in daily activities. In Epic-Kitchens, we
choose frames from VISOR [13] containing frames ex-
tracted from cooking actions. In Ego4D [18], we choose
frames from the critical frames (pre45, pre30, prel5, pre-
frame, contact-frame, point-of-no-return frame, and post-
frame) in the FHO (Forecasting Hands and Objects) task.

For our validation and test set, we randomly sample
frames to keep data distribution the same as source datasets.
For the training set, our goal is to include more challeng-
ing samples to compensate for other existing 2D keypoints
datasets. Thus, for New Days and VISOR, we chose half of
the samples using random sampling and forcing the other
half to contain hand-object or hand-hand interaction. For
Ego4D, we still randomly sample frames since the critical
frames already typically focus on interactions.

Annotating hand keypoints from scratch can be time-
consuming. Similar to [25], we initialize the annotation
procedure with an existing keypoint detection model [11]
to get rough keypoint locations. Given the annotation in-
structions (details in the Supplemental Material), workers
are asked to correct the keypoint locations (see annotation
samples in Figure 2, top). Additionally, each keypoint is an-
notated with an “existence” and an “occlusion” label. Exis-
tence indicates whether the keypoint exists within the image
frame or not. Occlusion indicates whether the keypoint is
occluded or not. To the best of our knowledge, Hlnt is the
first dataset to provide “occlusion” annotations for 2D hand
keypoints. We believe this can lead to a more fine-grained
analysis of the pose estimation systems.

In total, we annotate 40.4K hands with keypoints, 12.0K
for New Days, 5.3K for VISOR, and 23.2K for Ego4D. In
our Ego4D subset, we annotate 9.3K hands from sequences,
which could help future evaluation of temporal tasks.

Finally, we perform an annotation consistency check, by
having 90 valid images annotated twice. Across this subset,
90.5% of the occlusion labels and 100% of “existence” la-
bels are consistent. In terms of keypoint locations, 94.6%
visible keypoints have offset distance within 0.25x of the
palm length (see details about the data annotation process
and analysis in the Supplemental Material).

5. Experiments

In this section, we present the quantitative and qualitative
evaluation of our system. First, we evaluate the 3D pose
accuracy (subsection 5.1) and the 2D pose accuracy (sub-
section 5.2) of HaMeR. Then, we ablate some characteris-
tics of our system (subsection 5.3) and present qualitative
results and comparisons (subsection 5.4).
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5.1. 3D pose accuracy

To evaluate the 3D accuracy of HaMeR, we use two
standard benchmarks for 3D hand pose estimation, Frei-
HAND [64] and HO3Dv2 [19]. Both datasets are collected
in controlled multi-camera environments and provide 3D
ground truth annotations in the form of 3D hand meshes
(using the MANO model). To be comparable with previous
work, we follow the typical protocols [34, 44], and we re-
port metrics that evaluate 3D joint and 3D mesh accuracy.
These metrics include PA-MPJPE and AUC; (3D joints
evaluation), PA-MPVPE, AUCy, F@5mm and F@15mm
(3D mesh evaluation).

We present the complete results for FreiHAND in Ta-
ble 1 and for HO3Dv2 in Table 2. We compare with many
baselines that estimate the 3D hand mesh from a single
image in parametric or non-parametric form (i.e., regress-
ing hand model parameters or hand model vertices respec-
tively). We observe that our HaMeR approach achieves
state-of-the-art results and consistently outperforms the pre-
vious work across the majority of the metrics.

5.2. 2D pose accuracy

Although the 3D hand pose datasets provide accurate 3D
ground truth for evaluation, they are typically collected in
controlled settings, which limits the variety of subjects,
viewpoints, objects of interactions, environments, etc. To
better analyze the properties of the different hand pose
estimation systems, we also propose to evaluate on our
HInt benchmark that is closer to real in-the-wild conditions,
compared to the previous 3D benchmarks. The annotations
of Hlnt are in the form of 2D keypoints. Metrics based on
2D only evaluate reprojection accuracy of 3D methods, but
due to the nature of the images (i.e., in the wild), we can
get complementary evidence about the performance of our
method. For evaluation, we report results with the com-
monly used PCK metric [59], computed at different thresh-
olds. Given the form of HInt, we provide a more detailed
analysis, reporting separate results for images coming from
New Days [9], VISOR [12] and Ego4D [18]. Moreover, we
provide more fine-grained results, considering all the joints,
considering only the joints that have been annotated as visi-
ble (non-occluded), or considering only the joints that have
been annotated as occluded.

The complete results are presented in Table 3. Here, we
compare with a number of recent 3D hand mesh estimation
approaches that provide publicly available code. Similarly
with the results on FreiHAND and HO3D, we observe that
our method outperforms the previous baselines. However,
on these datasets we observe much larger improvements.
This highlights the clear improvement in the robustness of
our approach which performs consistently across a variety
of benchmarks. Performance on FreiHAND and HO3D
tends to be more saturated and it is not surprising that the

Method PA-MPIJPE | PA-MPVPE | F@5 1 F@15 1
12L-MeshNet [39] 7.4 7.6 0.681 0.973
Pose2Mesh [10] 7.7 7.8 0.674 0.969
12UV-HandNet [7] 6.7 6.9 0.707 0.977
METRO [33] 6.5 6.3 0.731 0.984
Tang et al. [53] 6.7 6.7 0.724 0.981
Mesh Graphormer [34] 5.9 6.0 0.764 0.986
MobRecon [8] 5.7 5.8 0.784 0.986
AMVUR [24] 6.2 6.1 0.767 0.987
Ours 6.0 5.7 0.785 0.990

Table 1. Comparison with the state-of-the-art on the Frei-
HAND dataset [64]. We use the standard protocol and report met-
rics for evaluation of 3D joint and 3D mesh accuracy. PA-MPVPE
and PA-MPJPE numbers are in mm.

Method AUC; 1T PA-MPJPE | AUCy 1 PA-MPVPE | F@5 1 F@15 1
Liu et al. [36] 0.803 9.9 0.810 9.5 0.528 0.956
HandOccNet [44]  0.819 9.1 0.819 8.8 0.564 0.963
12UV-HandNet [7]  0.804 9.9 0.799 10.1 0.500 0.943
Hampali er al. [19]  0.788 10.7 0.790 10.6 0.506 0.942
Hasson eral. [21]  0.780 11.0 0.777 11.2 0.464  0.939
ArtiBoost [58] 0.773 11.4 0.782 10.9 0.488 0.944
Pose2Mesh [10] 0.754 12.5 0.749 12.7 0.441  0.909
I2L-MeshNet [39]  0.775 11.2 0.722 13.9 0.409 0.932
METRO [33] 0.792 10.4 0.779 11.1 0.484 0.946
MobRecon[8] - 9.2 - 9.4 0.538 0.957
Keypoint Trans [20] 0.786 10.8 - - - -
AMVUR [24] 0.835 8.3 0.836 8.2 0.608 0.965
Ours 0.846 7.7 0.841 79 0.635  0.980

Table 2. Comparison with the state-of-the-art on the HO3D
dataset [19]. We use the HO3Dv2 protocol and report metrics
that evaluate accuracy of the estimated 3D joints and 3D mesh.
PA-MPVPE and PA-MPJPE numbers are in mm.

margin of improvement for our approach on these datasets
is smaller. In contrast, performance on in-the-wild datasets
is more representative of the robustness of the approaches
in different visual conditions, different viewpoints and dif-
ferent interactions, e.g., contacts with surrounding objects.

5.3. Ablation analysis

Having demonstrated the effectiveness of HaMeR, we fur-
ther ablate different options for our system.

Effect of large scale data and deep model. One of the key
aspects of HaMeR is that a simple design can achieve strong
performance if we scale up, i.e., train with large scale data
and use a large scale model for the hand reconstruction. We
evaluate these choices using different models on HInt and
we present the complete results in Table 5. More specif-
ically, we start from a basic design (2nd row of Table 5),
that follows the choices of [49] (1st row of Table 5), using
a ResNet50 architecture [23] and a relatively small training
set (only a quarter of the examples we use to train HaMeR).
This basic design is indeed very close to [49] in terms of
quantitative results. Then, by keeping the architecture the
same, we increase the volume of training examples, using
our complete training set. This model (3rd row of Table 5)
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Method New Days VISOR Ego4D
@0.05 @0.1 @0.15 @0.05 @0.1 @0.15 @0.05 @0.1 @0.15

FrankMocap [49] 16.1 41.5 60.3 16.8 45.6 66.3 13.2 37.1 56.0
@« | METRO [33] 14.7 38.9 574 16.8 45.4 65.7 13.2 36.0 54.5
-g MeshGraphormer [34] 16.8 42.0 59.7 19.1 48.5 67.4 14.7 38.4 56.3
— | HandOccNet (param) [44] 9.1 28.5 47.9 8.1 27.8 49.5 7.7 26.6 48.0
< | HandOccNet (no param) [44] 13.7 39.2 594 124 38.7 61.9 11.0 353 59.2

Ours 49.4 79.3 89.8 44.4 71.5 89.7 40.3 72.4 85.2
» | FrankMocap [49] 20.2 49.2 67.6 20.5 52.3 71.7 16.4 43.5 62.4
E METRO [33] 19.3 47.7 66.0 19.7 52.0 72.1 159 42.0 60.6
= | Mesh Graphormer [34] 22.3 51.6 68.9 23.6 56.4 74.7 18.5 45.9 63.5
_% HandOccNet (param) [44] 10.2 314 51.3 8.6 28.0 50.0 7.4 26.3 48.3
@ | HandOccNet (no param) [44] 15.8 434 64.1 13.1 40.0 63.2 11.3 36.5 60.8
> Ours 62.2 89.0 95.1 58.5 88.4 95.0 53.9 84.2 91.8
@ | FrankMocap [49] 9.3 28.1 47.0 11.0 33.0 55.0 8.4 27.1 45.4
-g METRO [33] 7.0 23.7 42.5 10.2 324 53.9 8.2 26.4 45.1
2 MeshGraphormer [34] 7.8 25.7 443 10.9 334 54.1 8.4 27.1 45.0
<= | HandOccNet (param) [44] 7.2 23.6 42.5 7.3 26.2 46.9 8.0 26.2 45.8
% HandOccNet (no param) [44] 9.8 31.3 50.9 99 33.7 55.4 9.7 31.2 52.9
Q| Ours 28.4 62.4 80.1 26.9 61.8 81.2 24.3 58.7 71.3

Table 3. Evaluation on our HInt benchmark. We report results using PCK scores at three different thresholds. All methods are 3D and
we evaluate the scores through the 2D projection of 3D joints. We report separate results for the three subsets of Hlnt, i.e., New Days of
Hands [9], Epic- Kitchens VISOR [13] and Ego4D [18]. We also report separate results considering all joints (first set of rows), considering
only the joints annotated as visible (second set of rows), or considering only the joints annotated as occluded (third set of rows).

Method New Days VISOR Ego4D

@0.05 @0.1 @0.15 @0.05 @0.1 @0.15 @0.05 @0.1 @0.15
= |Ours 494 793 898 444 775 89.7 403 724 852
<|Ours* 517 81.9 91.9 56.5 88.1 957 472 79.6 90.6
4 |Ours 622 89.0 95.1 585 884 950 539 842 918
~ [Ours* 629 894 958 66.6 928 97.5 59.5 873 944
= [Ours 28.4 624 80.1 269 61.8 81.2 243 587 713
S|Ours* 331 683 847 42.6 79.0 913 334 702 854

Table 4. Effect of training with HInt. We compare our general
model (Ours) with the model trained on HInt as well (Ours™). We
report PCK scores on the test set of HInt. Using the training set of
Hint can be helpful particularly to improve performance on ego-
centric data (VISOR and Ego4D).

achieves already consistent improvements over the previ-
ous baseline. Similarly, if we use the small training set of
the basic design, but adopt a large scale architecture, here
ViT-H [14] (4th row of Table 5), we also see improvements
over the basic design. Finally, we can combine the two in-
dependent updates, i.e., increase the volume of training ex-
amples while using a high capacity architecture, which ef-
fectively is the design of HaMeR. This version (5th row of
Table 5) outperforms by a large margin the other versions,
demonstrating the effect of both large data and large deep
model in our design.

Training with HInt. When comparing with previous work,
we avoided training with the training set of HInt. However,
here we provide a direct comparison when training with this
data. In Table 4 we present the detailed results on HInt. We

observe a clear improvement on VISOR and Ego4D, the
two egocentric datasets of HInt. This can be explained by
the fact that there have been little to no egocentric data with
hand annotations in the wild before, so using some form of
annotations for training can help improve our model. Be-
sides this, we also observe an improvement in New Days.
The improvement is smaller, given that New Days mainly
includes third-person videos, but consistent across metrics.

5.4. Qualitative results

We show qualitative results of our approach in Figure 1,
while we do a more detailed analysis in Figure 4, where
we show side and top views of our 3D hand reconstruc-
tions. Our approach is robust to different viewpoints, dif-
ferent skin tones or hand appearance (e.g. wearing differ-
ent types of gloves) as well as different objects of interac-
tion that can create various degrees of occlusion. Moreover,
in Figure 3, we show more detailed comparisons with pre-
vious baselines. We compare with METRO [33], Mesh-
Graphormer [34] and FrankMocap [49]. Following the
trend of the quantitative comparison, HaMeR is consistently
more robust and precise than the previous work.

5.5. Implementation details

Similar to previous work, e.g., [33, 34, 49], HaMeR takes as
input at test time the bounding box of the hand and returns
the 3D hand mesh. We first detect [9, 51] hand bounding
boxes and hand sides, i.e., left or right, and then process
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Method Large Large New Days VISOR Ego4D
Data Model @0.05 @0.1 @O0.15 @0.05 @0.1 @0.15 @0.05 @0.1 @0.15

FrankMocap [49] X X 16.1 41.5 60.3 16.8 45.6 66.3 13.2 37.1 56.0
Base design X X 16.9 43.6 62.7 17.5 47.5 67.3 14.0 38.0 56.2

> + large data v X 31.3 65.8 81.9 29.9 65.0 81.7 24.8 56.4 74.2
+ large model X v 25.9 58.9 77.0 24.1 62.5 81.3 19.5 51.8 71.3
HaMeR v v 494 79.3 89.8 44.4 71.5 89.7 40.3 72.4 85.2
FrankMocap [49] X X 20.2 49.2 67.6 20.5 523 71.7 16.4 435 62.4

o | Basedesign X X 21.2 51.5 70.4 21.4 54.5 73.5 17.5 452 64.0
3’5 + large data v X 38.5 75.0 88.0 36.6 73.2 87.0 30.6 65.2 81.3
- + large model X v 33.1 69.4 85.1 29.2 72.9 88.9 244 62.6 81.5
HaMeR 4 v 62.2 89.0 95.1 58.5 88.4 95.0 53.9 84.2 91.8
FrankMocap [49] X X 9.3 28.1 47.0 11.0 33.0 55.0 8.4 27.1 454

E Base design X X 9.4 29.8 48.9 11.8 35.6 57.4 9.3 27.6 45.2
£ + large data 4 X 19.0 49.5 70.8 19.1 51.6 72.5 17.1 449 64.6
) + large model X v 14.7 41.7 63.3 16.3 47.9 69.4 14.6 40.5 60.4
HaMeR 4 v 28.4 624 80.1 26.9 61.8 81.2 24.3 58.7 77.3

Table 5. Effect of large scale data and deep model. We evaluate the effect of different design choices when evaluating on HInt. We start
from a basic design similar to FrankMocap [49], using a ResNet50 backbone and a small training set (2nd row). Increasing the training
examples by 4x (3rd row) or adopting a high capacity ViT-H architecture (4th row) results in consistent improvements in 2D accuracy
over the base model. Combining the data scale and high capacity architecture (HaMeR- 5th row), obtains the best results by large margins.

Input image METRO

Mesh Graphormer

Ours

FrankMocap

Figure 3. Qualitative comparison. We compare our approach qualitatively with state-of-the-art methods for hand mesh reconstruction.
The baselines include METRO [33], Mesh Graphormer [34] and FrankMocap [49]. METRO and Mesh Graphormer are non-parametric
methods (regressing MANO vertices directly), while FrankMocap and HaMeR (ours) are parametric methods (regressing MANO parame-
ters). The reconstructions from HaMeR are consistently better, particularly on more challenging examples, e.g., cases with motion blur, or
images with hand-hand or hand-object interaction. We encourage the reader to watch the Supplemental Video for more comparisons.

each hand independently. We only train a network for the
right hand. If the input is a left hand, we mirror the input
image and the output mesh.

6. Conclusion

We present HaMeR, an approach for 3D hand mesh recon-
struction from monocular input. HaMeR is simple, without
bells and whistles and demonstrates the importance of two

design choices — scaling up the hand mesh recovery mod-
els in terms of a) the training data and b) the architecture we
use for 3D hand reconstruction. By consolidating multiple
datasets with hand annotations (either 2D or 3D) and adopt-
ing a high capacity deep model (ViT-H [14]), we are able
to outperform previous work on traditional 3D hand pose
benchmarks. Additionally, we contribute 2D keypoint an-
notations for datasets with diverse hands, coming from ego-
centric [12, 18] views or YouTube videos [9]. Evaluation
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Figure 4. Qualitative results. We present qualitative results of our approach on the test set of HInt. We include images from New
Days (row 1-2), VISOR (row 3-4), Ego4D (row 5-6), as well as various Internet images (row 7-8). HaMeR is particularly robust and can
gracefully handle cases with heavy occlusion and interactions with objects or other hands.

on this challenging new HInt benchmark demonstrates the
even bigger improvements that our approach achieves com-
pared to previous baselines. We hope that the robustness
and the precision of our approach will ignite the interest for
further use of our system in applications that 3D hand esti-
mation is important, including, but not limited to, robotics,
action recognition and sign language understanding.
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