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Abstract

In this paper, we propose a novel concept factorization
method that seeks factor matrices using a cross-order pos-
itive semi-definite neighbor graph, which provides compre-
hensive and complementary neighbor information of the
data. The factor matrices are learned with bipartite graph
partitioning, which exploits explicit cluster structure of the
data and is more geared towards clustering application. We
develop an effective and efficient optimization algorithm for
our method, and provide elegant theoretical results about
the convergence. Extensive experimental results confirm the
effectiveness of the proposed method.

1. Introduction

Matrix factorization aims at seeking two or more factor
matrices, whose product may well approximate the origi-
nal data [25]. Matrix factorization has been widely stud-
ied for dimension reduction [25, 48] and low-dimensional
representation [44] of high-dimensional data, which is es-
sentially important in various learning tasks such as cluster-
ing [12], classification [24], foreground-background separa-
tion in surveillance video [30], community detection [27],
link prediction [26], hyperspectral unmixing [8], etc.

Among these learning tasks, nonnegative data are typical
due to the fact that they naturally contain only nonnegative
elements [15], such as pixels of images [2,36], connectivity
of nodes in a social network [29], etc. For such type of data,
the nonnegative matrix factorization (NMF) has been devel-
oped for parts-based representation [15, 16], which shows
its advantage by mimicking the signal processing mecha-
nism of the human brain [15].

NMF methods have been widely studied during the
last decades [19, 39] with various extensions [11, 19, 37].
Among them, the Convex-NMF (CNMF) is quite typical

by restricting the basis vectors to be convex combinations
of the samples [6, 50]. Let X ∈ Rd×n be the data matrix
with d features, n samples, and c clusters, then the CNMF
can be represented as X ≈ XWVT , where W ∈ Rn×c

and V ∈ Rn×c denote the so-called score and coefficient
matrices [32, 38], respectively. The CNMF is also known
as the concept factorization (CF) by revealing the distinct
concepts, i.e., the cluster centers of the data, as well as the
cluster membership of each sample [50]. The CNMF allows
a direct measurement of pairwise similarity of the data [6],
which is straightforward to apply the kernel technique for
nonlinear relationship learning [6, 32]. Moreover, it has
been revealed that the variants of CNMF such as Cluster-
NMF, Semi-NMF, and Kernel-NMF, are all soft relaxations
of the K-means clustering [6]. With the success of deep
learning, deep factorization has been successfully devel-
oped for the NMF [28, 51] and CF community [3] from the
original one-layer factorization, which helps recognize hi-
erarchical structure of the data [3, 43].

Recently, the CF has been shown closely related with
subspace clustering methods in nature [32, 38], where the
product of the factor matrices can be treated as the self-
expressive representation matrix [32]. These methods in-
tegrate the local geometric structure of the data in recover-
ing the score and coefficient factor matrices [32, 38]. It has
been shown that local geometric structure is critical and ef-
fective in revealing the underlying structure of the data [32],
which can be described from the following perspectives:
1) It helps avoid over-fitting issue by recovering local ge-
ometric structure of the data [20]; 2) A full kernel matrix
does not consider local density of the samples and might
be inefficient in the representation capability [17, 21]; 3)
The intrinsic information of high-dimensional data needs to
be maintained by the low-dimensional representation [45].
For NMF methods, the local geometric structure of the data
is often preserved by techniques such as sparse regulariza-
tion [36] and graph Laplacian [2]. For the former, the lo-
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cal relationship of the data is preserved by the sparse rep-
resentation [46], meanwhile the parts-based representation
of NMF naturally leads to sparsity [2]. For the latter, the
NMF method recovers the low-dimensional representation
on a local manifold that maintains local neighbors [2]. Be-
sides, some other techniques have been developed such as
inter-class separability [32] and local centroid learning [4].
All these methods only consider the first-order neighbors,
which might be insufficient to fully exploit local geometric
structure of the data [13], and more comprehensive infor-
mation still needs to be exploited.

In fact, high-order neighbors may provide more compli-
cated relationships and reveal latent structure of the data
[13,42], which has been rarely considered in the CF or NMF
community. In this paper, we fully exploit the high-order
neighbor relationships of the data for concept factorization,
which provides comprehensive and complementary infor-
mation of the data. Moreover, we seek factorization with
bipartite graph partitioning, which renders the score and co-
efficient matrices to have clear group structure and thus are
more geared towards clustering application.

We summarize the key contributions of this paper as fol-
lows: 1) We seek the concept factorization using the fine-
grained neighbor graph composed of cross-order neighbors,
which provides comprehensive and complementary infor-
mation of the data; 2) The cluster information is preserved
by the bipartite graph partitioning, which renders the coef-
ficient matrix to have a clear group structure; 3) The fine-
grained neighbor graph allows the data to have mixed signs,
which potentially extends the applicability of NMF meth-
ods in broader areas; 4) Efficient optimization algorithm is
developed with theoretical convergence guarantee; 5) Ex-
tensive experimental results confirm the effectiveness of the
proposed method in clustering and data representation.

2. Related Work
We briefly review some closely related methods as fol-

lows. Given data set X ∈ Rd×n, the CF seeks a factoriza-
tion with the following minimization problem [50]:

min
W≥0,V≥0

‖X−XWVT ‖2F , (1)

with ‖·‖F being the Frobenius norm, which allows the NMF
methods to handle mixed-signed data [6]. It is seen that (1)
is closely related with subspace clustering methods [32,33],
which assume self-expressiveness of the data and can be ex-
pressed as X ≈ XZ with Z ∈ Rn×n being the representa-
tion matrix [33, 40]. It is straightforward to have nonlinear
expansion of (1) using the kernel trick [6, 31].

3. Fine-grained Bipartite CF
The CF methods have been widely studied [1, 38, 50]

and have been shown to be closely related with the spec-

tral clustering-based subspace clustering [32]:

min
W,V

1

2
‖X−XWVT ‖2F +

α

2
‖WVT‖2F ,W ≥ 0,V ≥ 0, (2)

where α ≥ 0 is a balancing parameter, the factor 1
2 is used

to facilitate the optimization, and WVT ∈ Rn×n can be
treated as a low-rank self-expressive representation matrix
of subspace clustering methods [33,35]. Although the prod-
uct of WVT has strict rank constraint, it does not necessar-
ily leads to a proper group structure of WVT nor a strong
clustering capability of V. To further enhance the represen-
tation capability of WVT , as well as V, in revealing un-
derlying group structure of the data, we first define the fol-
lowing symmetric and nonnegative bipartite graph matrix

S =

[
0 (WVT)

T

(WVT) 0

]
, and its graph Laplacian

matrix L = DS−S, with 0 being an n×n zero matrix, DS

being diagonal, and (DS)ii =
∑n

j=1 Sij . For ease of nota-
tion, we define an operator L(·) such that L = L(W,V).
Then, it is desired that S has exactly c connected compo-
nents that correspond to c clusters of the data, which is en-
sured by the following Ky-Fan’s Theorem [22]:

Theorem 1 ( [22]). For any ST = S ≥ 0, let L be its
Laplacian matrix. Then the number of zero eigenvalues of
L equals the number of connected components in S.

It is straightforward to impose rank constraint of L in (2)
for the desired property. However, the hard rank constraint
is usually difficult to solve. Thus, we relax it to minimize
the c smallest eigenvalues of L, which leads to

min
W,V,F

1

2
‖X−XWVT ‖2F +

α

2
‖WVT ‖2F +β

c∑
i=1

λi(L)

s.t. W ≥ 0,V ≥ 0,L = L(W,V),

(3)

where β ≥ 0 is a balancing parameter and λi(·) returns
the i-th smallest eigenvalue of the input matrix. Thus, it is
guaranteed that

∑c
i=1 λi(L) = 0 with a properly large β.

According to [7], we may rewrite (3) as the following:

min
W,V,F

1

2
‖X−XWVT ‖2F +

α

2
‖W‖2F +βTr(FTLF)

s.t.W≥0,V≥0,FTF=Ic,L=L(W,V),

(4)

where Ic denotes an identity matrix of size c×c. Moreover,
it is desired to make V a relaxed indicator matrix for im-
mediate clustering interpretation. Therefore, we impose the
constraint VTV = Ic and our model becomes

min
W,V,F

1

2
‖X−XWVT ‖2F +

α

2
‖W‖2F +βTr(FTLF)

s.t.W≥0,V≥0,FTF=Ic,V
TV=Ic,L=L(W,V).

(5)
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To further enhance the nonlinear learning capability, we ex-
pand the above model using the kernel trick [31]. In partic-
ular, we may expand the first term of (5) and replace XTX
with the kernel matrix K ∈ Rn×n, which leads to

min
W,V,F

1

2
Tr(VWTKWVT − 2KWVT )

+
α

2
‖W‖2F + βTr

(
FTLF

)
, s.t. W ≥ 0,V ≥ 0,

FTF = Ic,V
TV = Ic,L = L(W,V),

(6)

where K is obtained by adopting a certain kernel function.
It has been revealed that local relationships play an essential
role in learning the underlying structures of the data [32,38].
However, such information is omitted in the above model.
To combat this issue, we construct a local neighbor graph by
element as Kij = I{Xj∈NK(Xi)}, where I{·} is an indicator
function that returns 1 if the conditions in the subscript hold
and 0 otherwise, Xi denotes the i-th sample and NK(·) de-
notes the set ofK-nearest neighbors of the input. In this pa-
per, for simplicity and yet without loss of generality, we use
the binary kernel similarity to measure the pair-wise neigh-
bor relationships of the data [2], with K being set to 5.

Essentially, the weighted graph is closely related with
the random walk and Markov transition probability matrix
(TPM) [41,49,52], where the neighbor relationships are di-
rectly revealed by the probabilities of the one-step random
walks. Inspired by [49], we construct the TPM as P =
D−1K K, where DK is diagonal and (DK)ii =

∑n
j=1 Kij .

We may also treat the probability as the soft neighbor rela-
tionship. In practice, there often exist high-order neighbor
relationships among the data, which are not directly avail-
able in a weighted graph. Intuitively, such relationships
can be measured by the probabilities of multi-step random
walks [42]. To account for the high-order neighbor informa-
tion, we define the following a-th order probability matrix
of the data as P[a] = Pa = P ·P · · · · ·P︸ ︷︷ ︸

a times

∈ Rn×n,

which measures the neighbor relationships up to an a-step
random walk. To fully exploit such comprehensive cross-
order neighbor information, we fuse the high-order proba-
bility matrices. Moreover, to ensure the symmetry, which
is a natural and desired property for neighbor relationships,
we define the following fine-grained probability matrix as

PA =
∑A

a=1

P[a]+PT
[a]

2 =
∑A

a=1
Pa+(Pa)T

2 , with A being
the highest order of the neighbor information. Thus, with
PA, our model can be finally developed as:

min
W,V,F

1

2
Tr(VWTPAWVT − 2PAWVT )

+
α

2
‖W‖2F + βTr

(
FTLF

)
, s.t. W ≥ 0,V ≥ 0,

FTF = Ic,V
TV = Ic,L = L(W,V).

(7)

We name model (7) as the Fine-grained Bipartite Concept

Factorization (Figer-CF). It is noted that PA ≥ 0, which
renders the Figer-CF suitable for general data with mixed
signs and potentially applicable in broader applications.

Remark 1. In practice, to ensure that PA is positive semi-
definite, we add an identity matrix with a scaling factor τ ≥
0 to it. This strategy makes sense because it is natural that
one sample has the highest similarity with itself. In practice,
we may set the scaling factor as τ = |min{0,λn(PA)}|.
Moreover, we may provide a general lower bound of τ for
any PA, which only depends on the sample size n and order
of neighbors A. In rest of this paper, the adjusted PA + τIn
is denoted as PA for ease and clarity of representation. The
lower bound is provided in the following Theorem 2.

Theorem 2. It is ensured that PA+τIn�0 with τ≥ A
√
n.

Proof. According to the definition of PA, it is clear that
PA + τIn is real and symmetric. Thus, PA + τIn is diag-
onalizable and we only need to show that all its eigenval-
ues are nonnegative. It is straightforward that ‖PA‖F ≤∑A

a=1 ‖
1
2 (P[a] + PT

[a])‖F ≤
∑A

a=1 ‖P[a]‖F . Moreover,

‖P[a]‖2F =
∑n

a=1‖P
(i)
[a]‖

2
2≤
∑n

a=1‖P
(i)
[a]‖

2
1 ≤

∑n
a=1 1 =n.

Thus, we have ‖PA‖F ≤
∑A

a=1

√
n = A

√
n.According to

Schur’s inequality, we have |λi(PA)| ≤ ‖PA‖F ≤ A
√
n

for i = 1, · · · , n. Thus, it is straightforward that λn(PA) ≥
−A
√
n, and λn(PA + τIn) = λn(PA) + τ ≥ 0, which

guarantees that PA + τIn � 0.

4. Optimization
In this section, we develop an effective iterative opti-

mization algorithm.

4.1. Optimization of F

Keeping the other variables fixed, the optimization prob-
lem of F is as minFT F=Ic Tr(FTLF), which can be effec-
tively solved by the eigenvalue decomposition. As a result,
F is obtained by computing the eigenvectors of L that are
associated with its top c eigenvalues, which is denoted as:

F = EVDc(L). (8)

4.2. Optimization of W and V

With fixed F, the subproblem of W and V is compli-
cated, since L is associated with both W and V. To facil-
itate the optimization, we reformulate the term Tr(FTLF)
to explicitly represent it in W and V. First, we divide
F into two blocks, i.e., FT = [FT

(1),F
T
(2)], with F(1) ∈

Rn×c and F(2) ∈ Rn×c, respectively. Then, we have
Tr(FTLF) = 1

2

∑2n
i,j=1‖Fi − Fj‖22Sij =

∑n
i,j=1‖Fi

(1)−
Fj

(2)‖
2
2(WVT )ji =

∑n
i,j=1Tij(WVT )ji = Tr(TWVT ),
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where Fi, Fi
(1), and Fi

(2) denote the i-th row of F, F(1),

and F(2), and Tij = ‖Fi
(1) − Fj

(2)‖
2
2 is the (i, j)-th ele-

ment of matrix T ∈ Rn×n, respectively. Thus, the joint
minimization problem associated with W and V becomes

min
W,V

1

2
Tr(VWTPAWVT−2PAWVT )+

α

2
‖W‖2F

+ βTr
(
TWVT

)
, s.t. W ≥ 0,V ≥ 0.

(9)

Given PA and T, we provide the following updating rules
of W and V for the joint minimization problem (9):

Wik←Wik

√
(PAV)ik

β(TTV)ik+(PAWVTV)ik+αWik
, (10)

Vik ← Vik

√
(PAW)ik + β (VVTTW)ik
(VVTPAW)ik + β(TW)ik

. (11)

We denote the objective function as f(F,W,V). We
repeat (8), (10) and (11) until convergence of objective
value sequence {f(F(t),W(t),V(t))} and obtain the solu-
tion {F(?),W(?),V(?)}, where we use the superscript (·)(t)
to denote the number of iterations. Then, we perform the K-
means to V(?) to obtain the final clusters of the data.

5. Convergence Analysis
In this section, we provide the main theoretical results,

including correctness of the updating rules and convergence
of our algorithm.

5.1. Correctness and Convergence of (10)

For the updating rule of (10), we present the following
two main results: 1) When convergent, the limiting solu-
tion of (10) satisfies the KKT condition. 2) The iteration of
(10) converges. We formally establish the above results in
Theorems 3 and 4, respectively.

Theorem 3. Fixing V and T, the limiting solution of the
updating rule in (10) satisfies the KKT condition.

Proof. Fixing V, the subproblem for W is

min
W

1

2
Tr(−2PAWVT + VWTPAWVT )

+ βTr(WTTTV)+
α

2
Tr(WTW), s.t. W ≥ 0.

(12)

We introduce an Lagrangian multiplier Ψ ∈ Rn×c to the
above problem and obtain its Lagrangian function:

LW =
1

2
Tr(−2PAWVT + VWTPAWVT )

+
α

2
Tr(WTW) + βTr(WTTTV) + Tr(ΨWT ).

(13)

First, we may obtain the gradient of LW as

∂LW

∂W
= −PAV+βTTV+PAWVTV+αW+Ψ. (14)

By the complementary slackness condition, we can see that

(−PAV+βTTV+PAWVTV+αW)ikWik = ΨikWik = 0,
(15)

which provides a fixed point condition that the limiting so-
lution of (10) should satisfy. It is clear that (10) can be
reduced to the following equation:

(−PAV+βTTV+PAWVTV+αW)ikW2
ik = 0, (16)

which is identical to (15) because both of them imply the
same conditions that either Wik = 0 holds in both (15)
and (16) or (−PAV+βTTV+PAWVTV+αW)ik = 0
holds in both (15) and (16), which concludes the proof.

Before we provide the result about convergence of (10),
we introduce the technique of auxiliary function [2,16] that
plays an essential role in the following analysis.

Definition 1. Given functions L̄(Q,Q′) and L(Q), then
L̄(Q,Q′) is called an auxiliary function of L(Q) if

L̄(Q,Q′) ≥ L(Q) and L̄(Q,Q) = L(Q) (17)

hold for any Q and Q′.

Proposition 1. Given a function L(Q), let L̄(Q,Q′) be
one of its auxiliary functions. Then, the variable sequence
{Q(t)}, with t ∈ N and

Q(t+1) = arg min
Q

L̄(Q,Q(t)), (18)

satisfies the following chain of inequalities: L(Q(t)) =
L̄(Q(t),Q(t)) ≥ L̄(Q(t+1),Q(t)) ≥ L(Q(t+1)), which im-
plies that the value sequence {L(Q(t))}∞t=0 is monotoni-
cally decreasing (nonincreasing).

Proposition 2 ( [6]). For any matrices Γ ∈ Rn×n
+ ,

Ω ∈ Rc×c
+ , ∆ ∈ Rn×c

+ , and ∆′ ∈ Rn×c
+ , with Γ

and Ω being symmetric, the following inequality holds:∑n
i=1

∑c
s=1

(Γ∆′Ω)is∆2
is

∆′
is

≥ Tr(∆TΓ∆Ω).

Next, we provide the main result about the convergence
of (10) in the following theorem and proof.

Theorem 4. For fixed V, the objective in (12) is monoton-
ically decreasing under the updating rule in (10).

Proof. We define the subproblem of W as

P (W) =
α

2
Tr(WTW) + Tr(−WTPAV

+
1

2
WTPAWVTV + βWTTTV).

(19)
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Then, according to Proposition 2, as well as a ≤ a2+b2

2b and
a ≥ 1 + log a for a, b ≥ 0, it is straightforward that the
following inequalities hold for any W′ ∈ Rn×c ≥ 0:

Tr(WTPAWVTV) ≤
∑
ik

(PAW′VTV)ikW2
ik

W′
ik

, (20)

Tr(WTTTV) ≤
∑
ik

(TTV)ik
W2

ik + W′2
ik

2W′
ik

, (21)

Tr(WTPAV) ≥
∑
ik

(PAV)ikW′
ik

(
1 + log

Wik

W′
ik

)
, (22)

where the equal sign holds when W = W′. Thus, we may
construct an auxiliary function of P (W) as

P̄ (W,W′) = −
∑
ik

(PAV)ikW′
ik

(
1 + log

Wik

W′
ik

)
+

1

2

∑
ik

(PAW′VTV)ikW2
ik

W′
ik

+ β
∑
ik

(TTV)ik
W2

ik + W′2
ik

2W′
ik

+
α

2

∑
ik

W2
ik,

(23)

where P̄ (W,W′) ≥ P (W) and P̄ (W,W) = P (W)
hold for any W,W′ ≥ 0.

Next, the key is to show that (10) essentially follows
(18). It is easy to verify that P̄ (W,W′) is convex in W.
Thus, the global optimum is ensured by the first-order opti-
mality condition, which gives rise to

∂P̄ (W,W′)

∂Wik
= − (PAV)ikW′

ik

Wik
+ αWik

+
(PAW′VTV)ikWik

W′
ik

+ β
(TTV)ikWik

W′
ik

= 0.

(24)

With straight algebra, (24) can be reduced to

Wik =W′
ik

√
(PAV)ik

(PAW′VTV)ik+β(TTV)ik+αW′
ik

. (25)

Let W′ = W(t) and W = W(t+1), then (25) falls back
to (10). Thus, (10) essentially follows (18). According to
Definition 1 and Proposition 1, we may conclude the proof.

5.2. Correctness and Convergence of (11)

For the updating rule of (11), we present the following
two main results: 1) When convergent, the limiting solution
of (11) satisfies the KKT condition. 2) The iteration of (11)
converges. We formally establish the above results in Theo-
rems 5 and 6, respectively. Before presenting these results,
we first introduce the following Lagrangian function.

Fixing W and T, we need to solve (26) for V:

min
V

1

2
Tr(−2PAWVT + VWTPAWVT )

+ βTr(WTTTV), s.t. V ≥ 0,VTV = Ic.
(26)

We introduce the symmetric Lagrangian multipliers Θ ∈
Rc×c and obtain the Lagrangian function to be minimized:

LV =
1

2
Tr(−2PAWVT +VWTPAWVT )

+ βTr(WTTTV)+
1

2
Tr(Θ(VTV − Ic))

= Tr(−PAWVT +
1

2
V(WTPAW+Θ)+VT

− 1

2
V(WTPAW+Θ)−VT+βTWVT)− 1

2
Tr(Θ),

(27)

where for an arbitrary input matrix M, (·)+ and (·)− return
matrices such that M+,M− ≥ 0 and M+ −M− = M.
The correctness and convergence of (11) are ensured by the
following Theorems 5 and 6.

Theorem 5. Fixing V and T, the limiting solution of (28)
satisfies the KKT complementarity condition of (27):

Vik←Vik

√
(PAW)ik+(V(WTPAW + Θ)−)ik
β(TW)ik+(V(WTPAW + Θ)+)ik

. (28)

Proof. The gradient of LV is

∂LV

∂V
= −PAW + VWTPAW + βTW + VΘ. (29)

Then the KKT complementarity condition gives

(−PAW+VWTPAW+βTW+VΘ)ikVik = 0, (30)

which provides a fixed point condition that the limiting so-
lution should satisfy. From the updating rule of (28), it is
seen that V satisfies the following condition:(
−PAW −V(WTPAW + Θ)−

+ V(WTPAW + Θ)+ + βTW
)
ik
·V2

ik = 0.
(31)

Moreover, since

WTPAW+Θ = (WTPAW+Θ)+−(WTPAW+Θ)−,

the condition in (31) can be further reduced to

(−PAW+VWTPAW+βTW+VΘ)ikV2
ik = 0. (32)

It is clear that (30) and (32) are identical because they imply
the same conditions that either Vik = 0 holds in both (30)
and (32) or (−PAW+VWTPAW+βTW+VΘ)ik = 0
holds in both (30) and (32), which concludes the proof.
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Theorem 6. Fixing W and T, the limiting solution of (11)
satisfies the KKT complementary condition, and the La-
grangian function LV monotonically decreases under (11).

Proof. For ease of notation, we define J(V) = LV. Sim-
ilarly to the proof of Theorem 4, we obtain the following
inequalities, which provide some proper upper bounds to
the first four terms of J(V) in (27):

Tr(VTTW) ≤
∑
ik

(TW)ik
V2

ik + V′
2
ik

2V′ik
, (33)

Tr(V(WTPAW + Θ)+VT )

≤
∑
ik

(V′(WTPAW + Θ)+)ikV2
ik

V′ik
(34)

Tr(VTPAW)≥
∑
ik

(PAW)ikV′ik

(
1 + log

Vik

V′ik

)
, (35)

Tr(V(WTPAW + Θ)−VT )

≥
∑
ikl

(WTPAW + Θ)−klV
′
ikV′il

(
1+log

VikVil

V′ikV′il

)
, (36)

where the equal sign holds when V = V′ ≥ 0. Combining
the above inequalities with proper weights, we construct the
following auxiliary function for J(V):

J̄(V,V′)=−1

2
Tr(Θ)−

∑
ik

(PAW)ikV′ik

(
1+log

Vik

V′ik

)
+ β

∑
ik

(TW)ik
V2

ik + V′
2
ik

2V′ik

+
1

2

∑
ik

(V′(WTPAW + Θ)+)ikV2
ik

V′ik

− 1

2

∑
ikl

(WTPAW+Θ)−klV
′
ikV′il

(
1+log

VikVil

V′ikV′il

)
,

(37)

where J̄(V,V′) ≥ J(V) and J̄(V,V) = J(V) hold for
any V,V′ ≥ 0. It is straightforward to check that J̄(V,V′)
is convex in V. According to the first-order optimality con-
dition of J̄(V,V′):

∂J̄(V,V′)

∂Vik
= − (PAW)ikV′ik

Vik
+ β

(TW)ik
V′ik

Vik

+
(V′(WTPAW + Θ)+)ik

V′ik
Vik

− (V′(WTPAW + Θ)−)ikV′ik
Vik

= 0, (38)

we obtain the global minimum of J̄(V,V′):

Vik =V′ik

√
(PAW)ik+(V′(WTPAW + Θ)−)ik
β(TW)ik+(V′(WTPAW + Θ)+)ik

. (39)

Let V(t) = V′ and V(t+1) = V, we may recover (28) from
(39). By the first-order optimality condition of LV, we have

VT (−PAW + VWTPAW + βTW + VΘ)

=−VTPAW + WTPAW + βVTTW + Θ = 0,
(40)

which implies that WTPAW + Θ = VTPAW −
βVTTW. Thus, it is proper to define (WTPAW+Θ)+ =
VTPAW, (WTPAW + Θ)− = βVTTW. Then, it is
straightforward to obtain (11) by substituting the above def-
initions into (28), which concludes the proof.

5.3. Convergence of Overall Algorithm

The convergence of the overall algorithm is guaranteed
by the following Theorem 7.

Theorem 7. The objective value sequence of (7) is mono-
tonically decreasing under the updating rules of (8), (10)
and (11), and thus converges.

Proof. Define the objective function as f(F,W,V) and
denote the iteration by superscript (·)(t), respectively, then
it is clear that the following chain of inequalities hold:

f(F(t),W(t),V(t))

≥f(F(t+1),W(t),V(t))≥f(F(t+1),W(t+1),V(t+1)).
(41)

Thus, the sequence {f(F(t),W(t),V(t))}∞t=0 is monoton-
ically decreasing. Moreover, since PA is symmetric and
p.s.d., there exists C∈Rn×n such that PA =CTC. Then, it
is clear that

f(F(t),W(t),V(t))

=
1

2
‖C−CW(t)(V(t))T ‖2F +

α

2
‖W(t)‖2F

+βTr(F(t)TL(t)F(t))−Tr(CTC) ≥−Tr(CTC).

(42)

Therefore, the sequence {f(F(t),W(t),V(t))}∞t=0 is de-
creasing and lower-bounded, and thus converges.

6. Experiments
In this section, we conduct extensive experiments to

verify the effectiveness of the Figer-CF. We compare our
method with nine state-of-the-art clustering methods, in-
cluding the WNMF [14], ONMF [5], CNMF [6], KNMF
[6], RMNMF [10], OPMC [18], MKKM-SR [23], EWNMF
[47], and GLS-MKNMF [32], on four widely used benck-
mark data sets, including the Jaffe, PIX, Semeion, and
COIL20. Three metrics, including the clustering accu-
racy (ACC), normalized mutual information (NMI), and
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Table 1. Clustering results (mean±standard deviation) of different methods on the Jaffe, PIX, Semeion and COIL20 data sets

Ja
ffe

Methods
2 Classes 4 Classes 6 Classes 8 Classes 10 Classes (Overall)

ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR
WNMF 0.998±0.008 0.986±0.046 0.998±0.008 0.959±0.060 0.915±0.109 0.959±0.060 0.895±0.044 0.856±0.060 0.895±0.044 0.921±0.056 0.912±0.049 0.922±0.052 0.906 0.894 0.906

RMNMF 1.000±0.000 1.000±0.000 1.000±0.000 0.984±0.021 0.959±0.053 0.984±0.021 0.949±0.033 0.909±0.052 0.949±0.033 0.898±0.073 0.882±0.055 0.907±0.058 0.822 0.831 0.836
CNMF 0.998±0.000 0.986±0.046 0.998±0.008 0.804±0.174 0.755±0.174 0.833±0.136 0.763±0.135 0.732±0.138 0.783±0.118 0.694±0.101 0.661±0.114 0.704±0.100 0.700 0.707 0.742
KNMF 0.998±0.008 0.986±0.046 0.998±0.008 0.804±0.174 0.755±0.174 0.833±0.136 0.835±0.081 0.832±0.070 0.848±0.068 0.792±0.073 0.823±0.043 0.815±0.057 0.817 0.824 0.827
ONMF 0.946±0.146 0.868±0.320 0.946±0.146 0.886±0.160 0.894±0.113 0.916±0.111 0.884±0.126 0.884±0.106 0.899±0.101 0.696±0.060 0.782±0.051 0.746±0.051 0.803 0.838 0.812

MKKM-SR 0.913±0.138 0.742±0.331 0.913±0.138 0.907±0.154 0.900±0.138 0.924±0.117 0.881±0.112 0.877±0.097 0.890±0.099 0.940±0.077 0.937±0.053 0.945±0.064 0.850 0.866 0.850
OPMC 1.000±0.000 1.000±0.000 1.000±0.000 0.968±0.078 0.955±0.089 0.968±0.078 0.896±0.088 0.875±0.071 0.906±0.074 0.865±0.066 0.897±0.035 0.884±0.051 0.808 0.854 0.913

EWNMF 1.000±0.000 1.000±0.000 1.000±0.000 0.948±0.056 0.900±0.104 0.948±0.056 0.927±0.045 0.890±0.069 0.927±0.045 0.929±0.033 0.908±0.035 0.929±0.033 0.953 0.934 0.953
GLS-MKNMF 1.000±0.000 1.000±0.000 1.000±0.000 0.991±0.020 0.978±0.047 0.991±0.020 0.978±0.011 0.957±0.021 0.978±0.011 0.953±0.047 0.938±0.039 0.955±0.029 0.859 0.896 0.878

Figer-CF 1.000±0.000 1.000±0.000 1.000±0.000 0.994±0.013 0.986±0.030 0.994±0.013 0.991±0.007 0.982±0.012 0.992±0.007 0.984±0.009 0.976±0.014 0.984±0.009 0.977 0.970 0.977

PI
X

Methods
2 Classes 4 Classes 6 Classes 8 Classes 10 Classes (Overall)

ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR
WNMF 0.940±0.102 0.814±0.283 0.940±0.102 0.928±0.078 0.894±0.091 0.928±0.078 0.850±0.116 0.860±0.083 0.873±0.089 0.809±0.040 0.852±0.021 0.839±0.027 0.740 0.839 0.790

RMNMF 0.995±0.014 0.976±0.076 0.995±0.016 0.965±0.044 0.935±0.071 0.965±0.044 0.877±0.090 0.870±0.089 0.885±0.086 0.840±0.078 0.853±0.051 0.865±0.051 0.750 0.769 0.770
CNMF 0.965±0.063 0.875±0.215 0.965±0.063 0.880±0.127 0.848±0.112 0.890±0.109 0.775±0.092 0.754±0.085 0.790±0.085 0.785±0.046 0.810±0.034 0.811±0.033 0.800 0.830 0.830
KNMF 0.945±0.104 0.838±0.288 0.945±0.104 0.898±0.134 0.882±0.117 0.915±0.099 0.863±0.098 0.878±0.060 0.885±0.070 0.833±0.086 0.878±0.047 0.863±0.060 0.690 0.809 0.740
ONMF 0.890±0.122 0.676±0.328 0.890±0.122 0.853±0.126 0.831±0.103 0.870±0.099 0.777±0.098 0.813±0.064 0.815±0.069 0.809±0.055 0.833±0.047 0.818±0.053 0.690 0.801 0.760

MKKM-SR 0.955±0.083 0.855±0.254 0.955±0.083 0.835±0.124 0.787±0.126 0.848±0.103 0.790±0.098 0.816±0.074 0.815±0.080 0.844±0.082 0.864±0.050 0.854±0.064 0.790 0.855 0.820
OPMC 0.595±0.142 0.107±0.318 0.595±0.142 0.728±0.092 0.621±0.134 0.735±0.089 0.703±0.102 0.671±0.089 0.717±0.089 0.710±0.057 0.712±0.060 0.728±0.056 0.620 0.668 0.640

EWNMF 0.940±0.102 0.814±0.283 0.940±0.102 0.948±0.049 0.907±0.075 0.948±0.049 0.853±0.115 0.879±0.069 0.885±0.081 0.828±0.071 0.855±0.042 0.858±0.048 0.810 0.892 0.860
GLS-MKNMF 0.945±0.104 0.838±0.288 0.945±0.104 0.965±0.034 0.934±0.071 0.965±0.034 0.942±0.036 0.907±0.050 0.942±0.036 0.924±0.050 0.906±0.028 0.929±0.036 0.920 0.914 0.920

Figer-CF 0.955±0.083 0.860±0.243 0.955±0.083 0.978±0.032 0.957±0.053 0.978±0.032 0.917±0.070 0.912±0.046 0.923±0.054 0.894±0.043 0.910±0.012 0.904±0.023 0.940 0.950 0.940

Se
m

ei
on

Methods
2 Classes 4 Classes 6 Classes 8 Classes 10 Classes (Overall)

ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR
WNMF 0.876±0.105 0.562±0.283 0.876±0.105 0.720±0.061 0.507±0.049 0.723±0.058 0.583±0.057 0.456±0.048 0.609±0.045 0.596±0.075 0.482±0.049 0.606±0.066 0.556 0.448 0.566

RMNMF 0.878±0.105 0.559±0.284 0.878±0.105 0.668±0.087 0.438±0.083 0.691±0.073 0.537±0.059 0.410±0.062 0.562±0.056 0.501±0.060 0.395±0.045 0.518±0.054 0.413 0.366 0.453
CNMF 0.882±0.100 0.562±0.287 0.882±0.100 0.703±0.089 0.499±0.062 0.719±0.065 0.575±0.061 0.453±0.061 0.610±0.053 0.535±0.048 0.444±0.035 0.557±0.039 0.452 0.380 0.452
KNMF 0.879±0.107 0.574±0.283 0.879±0.107 0.679±0.109 0.505±0.073 0.711±0.076 0.617±0.093 0.511±0.050 0.656±0.061 0.603±0.056 0.525±0.028 0.639±0.037 0.525 0.474 0.525
ONMF 0.871±0.116 0.555±0.305 0.871±0.116 0.685±0.084 0.468±0.067 0.703±0.053 0.606±0.074 0.470±0.062 0.630±0.063 0.556±0.068 0.456±0.039 0.578±0.056 0.508 0.428 0.529

MKKM-SR 0.797±0.175 0.430±0.358 0.797±0.175 0.686±0.062 0.474±0.059 0.695±0.053 0.607±0.068 0.476±0.052 0.629±0.052 0.600±0.041 0.505±0.023 0.612±0.040 0.418 0.383 0.449
OPMC 0.852±0.163 0.554±0.358 0.852±0.163 0.681±0.132 0.519±0.116 0.701±0.107 0.627±0.061 0.524±0.064 0.659±0.061 0.646±0.051 0.560±0.035 0.671±0.038 0.654 0.546 0.655

EWNMF 0.892±0.088 0.590±0.260 0.892±0.088 0.718±0.064 0.510±0.056 0.722±0.061 0.605±0.070 0.462±0.042 0.619±0.030 0.605±0.058 0.492±0.033 0.617±0.045 0.510 0.430 0.538
GLS-MKNMF 0.889±0.105 0.607±0.303 0.889±0.105 0.753±0.112 0.583±0.090 0.765±0.088 0.650±0.086 0.553±0.078 0.661±0.075 0.663±0.074 0.582±0.055 0.619±0.057 0.615 0.553 0.568

Figer-CF 0.894±0.105 0.629±0.301 0.894±0.106 0.776±0.118 0.642±0.096 0.788±0.092 0.673±0.088 0.609±0.081 0.702±0.074 0.682±0.054 0.649±0.036 0.716±0.035 0.635 0.626 0.682

C
O

IL
20

Methods
4 Classes 8 Classes 12 Classes 16 Classes 20 Classes (Overall)

ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR
WNMF 0.724±0.114 0.621±0.151 0.727±0.111 0.668±0.101 0.694±0.076 0.699±0.087 0.671±0.085 0.718±0.045 0.690±0.076 0.638±0.037 0.720±0.031 0.655±0.035 0.669 0.740 0.680

RMNMF 0.736±0.120 0.610±0.153 0.742±0.113 0.638±0.054 0.657±0.058 0.676±0.056 0.593±0.053 0.649±0.044 0.619±0.051 0.552±0.040 0.657±0.034 0.583±0.043 0.564 0.671 0.592
CNMF 0.732±0.077 0.604±0.112 0.732±0.077 0.667±0.100 0.686±0.090 0.691±0.086 0.582±0.035 0.634±0.033 0.605±0.039 0.578±0.039 0.657±0.034 0.601±0.038 0.526 0.653 0.565
KNMF 0.715±0.110 0.637±0.108 0.745±0.081 0.684±0.111 0.709±0.085 0.712±0.095 0.625±0.062 0.704±0.044 0.668±0.057 0.641±0.034 0.730±0.030 0.671±0.032 0.616 0.710 0.653
ONMF 0.639±0.123 0.534±0.156 0.669±0.108 0.673±0.099 0.687±0.106 0.700±0.096 0.612±0.057 0.687±0.046 0.652±0.053 0.584±0.042 0.708±0.031 0.620±0.041 0.570 0.713 0.594

MKKM-SR 0.606±0.126 0.723±0.051 0.647±0.089 0.690±0.083 0.646±0.103 0.708±0.078 0.654±0.042 0.655±0.078 0.669±0.041 0.626±0.039 0.582±0.026 0.650±0.038 0.631 0.744 0.659
OPMC 0.723±0.051 0.649±0.050 0.741±0.040 0.646±0.103 0.715±0.087 0.691±0.089 0.655±0.078 0.729±0.055 0.686±0.065 0.582±0.026 0.718±0.030 0.626±0.022 0.522 0.682 0.563

EWNMF 0.746±0.077 0.639±0.108 0.747±0.077 0.706±0.108 0.704±0.090 0.727±0.097 0.663±0.058 0.715±0.044 0.684±0.059 0.662±0.026 0.732±0.033 0.683±0.032 0.690 0.762 0.690
GLS-MKNMF 0.741±0.126 0.654±0.154 0.756±0.110 0.762±0.110 0.757±0.093 0.772±0.099 0.677±0.094 0.729±0.071 0.703±0.076 0.645±0.043 0.725±0.035 0.668±0.041 0.569 0.700 0.613

Figer-CF 0.751±0.123 0.677±0.148 0.764±0.108 0.745±0.085 0.765±0.079 0.767±0.074 0.708±0.046 0.769±0.042 0.725±0.050 0.663±0.051 0.763±0.026 0.689±0.048 0.652 0.760 0.665
The top three performances are boldfaced and highlighted in red, blue, and orange, respectively.

purity (PUR) are used in our experiments for evalua-
tion, whose details can be found in [36]. The de-
tails of the experiments are presented in rest of this sec-
tion. For purpose of reproducibility, we release the codes
of our paper at https://www.researchgate.net/
profile/Chong-Peng-8.

6.1. Experimental settings

As a common step of all methods, we apply the K-means
method to the coefficient matrix to obtain the final cluster-
ing results. Since the K-means is nonconvex, we follow [32]
and conduct 200 independent trials, among which the one
with the minimum objective value is used as the final re-
sult. For each data set, we follow [2, 32] and use its subsets
that consist of different classes for a more comprehensive
evaluation, where the size information can be found in Ta-
ble 1. For a certain size, we randomly select the classes to
construct 10 subsets, respectively, on which the averaged
performance is recorded and reported in Table 1. Since the
OPMC is a multi-view method, we use the original features
and the extracted LBP features to construct multi-view fea-
tures. For the multi-kernel methods, i.e., the MKKM-SR
and GLS-MKNMF, we follow their original parameter set-
tings [23,32]. For all the other methods, we tune the balanc-

ing parameters within S = {10−3, 10−2, · · · , 103}. For all
the single kernel-based methods, the RBF kernel is used and
the radial parameter is searched within S. For the Figer-CF,
we set A = 3 throughout our experiments unless otherwise
clarified. The baseline methods cover various types, such as
local learning, single- or multi-kernel learning, multi-view
learning, etc, which provide a comprehensive comparison.

6.2. Comparison of Clustering Performance

We report the clustering performance of all methods in
Table 1. In general, the proposed method has the best per-
formance on all data sets. In particular, the Figer-CF ob-
tains the top first, second, and third results in 47, 8, and
5 out of a total number of 60 cases, respectively, which is
the only method that is among the top three in all cases.
We discuss the detailed experimental results as follows. On
the Jaffe data, almost all methods obtain rather promising
performance on the smallest subsets. However, the base-
line methods have significantly degraded performance on
larger subsets, whereas the Figer-CF is still promising and
obtains the best results in all cases. Similar observations
can be found on the PIX data, where the Figer-CF and GLS-
MKNMF are the only two that have satisfying performance
on all subsets. On the Semeion data, the Figer-CF has the

26270

https://www.researchgate.net/profile/Chong-Peng-8
https://www.researchgate.net/profile/Chong-Peng-8


best performance in almost all cases, with improvements,
in general, by about 2-3% in ACC and PUR and 6-7% in
NMI, respectively, compared with the top second method.
On the COIL20 data, methods such as the EWNMF and
GLS-MKNMF have relatively better performance among
the baselines. However, both of them are inferior to the
Figer-CF and it is difficult to tell which of them is better. In
general, the Semeion and COIL20 data appear to be more
difficult, since they contain pairs of clusters such as {“0”,
“O”} and {“2”, “Z”}, which are quite similar and confus-
ing. In this case, it may help to reveal the underlying rela-
tionships of the data by seeking the local geometric struc-
tures of the data since the global relationships may provide
misleading information. All these observations confirm the
effectiveness and superiority of the Figer-CF.

6.3. Convergence Study

To empirically verify the convergent property of our
method, we show curves of the objective value sequences on
the Semeion and COIL20 data sets in Fig. 1, where the pa-
rameters are set according to Section 6.1. It is seen that the
objective value sequences of both data generally converge
within about 50 iterations, which confirms the effectiveness
and efficiency of the optimization algorithm.

Figure 1. Convergence curve of the objective value sequence.

6.4. Effects of High-order Neighbors

In this test, we empirically show the effects of high-order
neighbors using the COIL20 and Semeion data. In partic-
ular, we show the performance of the Figer-CF using PA

of orders from 1 to 3, respectively, and report the perfor-
mance in Fig. 2, where the other parameters are tuned to
the best accordingly. It is observed that the Figer-CF has
significantly improved performance in all metrics when a
higher-order PA is used, which confirms the effectiveness
of exploiting comprehensive and complementary neighbor
information. If the order tends to be even higher, the im-
provement tends to be tight. Considering the difficulty in
searching a proper A for the Figer-CF in practical sense, it
is effective and fairly convincing to suggest A = 3 in real-
world applications for both effectiveness and efficiency.

6.5. Parameter Sensitivity

We test how the balancing parameters affect the perfor-
mance of the Figer-CF. Without loss of generality and due

(a) COIL20 (b) Semeion

Figure 2. Effects of the high-order neighbors on the clustering ca-
pability of Figer-CF.

to space limit, we report the results on the Jaffe data. We
report the performance of the Figer-CF with respect to all
combinations of {α, β} ∈ S× S in Fig. 3. It is seen that the
Figer-CF generally has high performance in all metrics with
a broad range of parameter values. Similar observations can
be found on other data sets as well, which confirms that the
Figer-CF is rather insensitive to parameters. This property
is desired by unsupervised learning and is essentially im-
portant for potential applicability in real applications.

Figure 3. Performance changes with respect to different combina-
tions of parameters on the Jaffe data.

7. Conclusion
In this paper, we propose a novel concept factorization

method that uses the cross-order neighbor information of
the data to learn score and coefficient matrices with bipartite
graph partitioning, which fully exploits comprehensive and
complementary neighbor information, as well as explicit
cluster structure of the data. Our algorithm admits both
elegant theoretical guarantee for convergent property and
promising experimental performance in clustering, which
confirms the effectiveness and efficiency of the new method.
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