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Abstract

This paper presents a novel Kinematics and Trajectory
Prior Knowledge-Enhanced Transformer (KTPFormer),
which overcomes the weakness in existing transformer-
based methods for 3D human pose estimation that the
derivation of Q, K, V vectors in their self-attention mech-
anisms are all based on simple linear mapping. We propose
two prior attention modules, namely Kinematics Prior At-
tention (KPA) and Trajectory Prior Attention (TPA) to take
advantage of the known anatomical structure of the human
body and motion trajectory information, to facilitate effec-
tive learning of global dependencies and features in the
multi-head self-attention. KPA models kinematic relation-
ships in the human body by constructing a topology of kine-
matics, while TPA builds a trajectory topology to learn the
information of joint motion trajectory across frames. Yield-
ing Q, K, V vectors with prior knowledge, the two mod-
ules enable KTPFormer to model both spatial and tempo-
ral correlations simultaneously. Extensive experiments on
three benchmarks (Human3.6M, MPI-INF-3DHP and Hu-
manEva) show that KTPFormer achieves superior perfor-
mance in comparison to state-of-the-art methods. More
importantly, our KPA and TPA modules have lightweight
plug-and-play designs and can be integrated into various
transformer-based networks (i.e., diffusion-based) to im-
prove the performance with only a very small increase in
the computational overhead. The code is available at:
https://github.com/JihuaPeng/KTPFormer.

1. Introduction

3D human pose estimation aims to predict the 3D coordi-
nates of human body joints from the input of either monoc-
ular 2D images or video sequences. Because of the strong
ties to action recognition [20, 21], human-robot interaction
[13, 33] and virtual reality [9], the research of 3D human
pose estimation has received considerable attention in re-
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Figure 1. Top: the spatial local topology (fixed) plus the sim-
ulated spatial global topology (learnable) to form the kinematics
topology (learnable). Bottom: the temporal local topology (fixed)
plus the simulated temporal global topology (learnable) to form
the joint motion trajectory topology (learnable).

cent years. Transformer, a deep learning architecture, has
revolutionized first in natural language processing (NLP)
and later in other areas such as computer vision since its
introduction in 2017 [36]. The name ’transformer’ comes
from the fact that these architectures use a self-attention
mechanism to transform layers of inputs into layers of out-
puts in a way that allows the model to focus on (attend to)
certain inputs. In terms of 3D pose estimation, the trans-
former first processes an input video into a sequence of to-
kens, the basic units of processing namely 2D poses, and
then models the spatial-temporal relationship between to-
kens using multi-head self-attention (MHSA) mechanism.

The existing works of transformer-based methods for 3D
human pose estimation [17, 18, 30, 34, 42, 44, 46] mainly
focus on developing novel transformer encoders. They
model either the spatial correlation between joints within
each frame and the pose-to-pose or joint-to-joint temporal
correlation across frames. Regardless of spatial or temporal
MHSA calculation, the present transformer-based methods
all use linear embedding where 2D pose sequence are tok-
enized into high dimensional features and treated uniformly
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to compute the spatial correlation between joints and the
temporal correlation across frames in the spatial and tem-
poral MHSA, respectively. This may lead to the problem of
“attention collapse’, a phenomenon denoting a circumstance
wherein the self-attention becomes too focused on a limited
subset of input tokens while disregarding other segments
of the sequence. In contrast to previous works, with the
known anatomical structure of the human body as well as
joint motion trajectory across frames as a priori knowledge,
we propose a graph-based method to formulate such prior
knowledge-attention for better learning the spatial and tem-
poral correlations. Our graph-based prior attention mech-
anism is different from other existing graph-transformer
methods [7, 14, 45, 47]; without modifying the transformer
structure or introducing complex network, instead, we de-
sign plug-and-play modules to be placed in front of MHSA
modules of a vanilla transformer. Our method is simple yet
effective, highly flexible and adaptable, allowing it to be in-
tegrated into different transformer-based methods.

To be specific, we introduce two novel prior attention
modules, namely Kinematics Prior Attention (KPA) and
Trajectory Prior Attention (TPA), and the key concepts are
illustrated in Figure 1. KPA first constructs a spatial lo-
cal topology based on the anatomy of the human body, as
shown at the top of Figure 1. The way these joints are phys-
ically connected to each other is fixed and is represented by
solid lines. To introduce the kinematic relations among non-
connected joints, we use a fully connected spatial topology
to calculate the joint-to-joint attention weights, called sim-
ulated spatial global topology. In this topology, the strength
of the connectivity relationship between each joint (includ-
ing itself) is learnable, and thus we denote it with a dot-
ted line in Figure 1. We combine the spatial local topology
and the simulated spatial global topology to obtain a kine-
matics topology, where each joint has a learnable kinematic
relationship with each other. This kinematic topological in-
formation aims to provide a priori knowledge to the spatial
MHSA, enabling it to assign weights to joints based on the
kinematic relationships in different actions. Similarly, as
shown in the bottom of Figure 1, TPA connects the same
joint across consecutive frames to build the temporal local
topology. Next, we construct a temporal global topology
by exploiting learnable vectors (dotted line) to connect the
joints among all neighboring and non-neighboring frames,
which is equivalent to the computation of attention weights
among all frames by self-attention, called simulated tem-
poral global topology. Then, we combine the two topolo-
gies to obtain a new topology called joint motion trajectory
topology, which allows the network to learn both the tempo-
ral sequentiality and periodicity (joints in non-neighboring
frames have similar motions to each other) for the joint mo-
tion. The temporal tokens embedded with the trajectory in-
formation will be more effectively activated in the tempo-

ral MHSA, which enhances the temporal modeling ability
for MHSA. The KPA and TPA modules are combined with
vanilla MHSA and MLP to form the Kinematics and Trajec-
tory Prior Knowledge-Enhanced Transformer (KTPFormer)
for 3D pose estimation, as shown in Figure 2. In summary,
the contributions of this paper are as follows:

* We propose two novel prior attention modules, KPA and
TPA, which can be combined with MHSA and MLP in a
simple yet effective way, forming the KTPFormer for 3D
pose estimation.

* Our KTPFormer outperforms the state-of-the-art methods
on Human3.6M, MPI-INF-3DHP and HumanEva bench-
marks, respectively.

* KPA and TPA are designed as lightweight plug-and-
play modules, which can be integrated into various
transformer-based methods (including diffusion-based)
for 3D pose estimation. Extensive experiments show
that our method can effectively improve the performance
without largely increasing computational resources.

2. Related Work

Monocular 3D human pose estimation methods can be
broadly categorized into two approaches: (1) direct 3D
methods [16, 25, 27, 28, 35, 38] and (2) 2D-to-3D lift-
ing methods [2, 10, 22, 23, 29]. The second approach
first estimates 2D joint coordinates from input image us-
ing 2D human pose detectors [3, 26], next they are lifted
into 3D space. These methods can be further categorized as
transformer-based or graph-based.

Transformer-based networks. Transformer was first
proposed by Vaswani et al. [36] and showed remark-
able performance in natural language processing (NLP), as
the self-attention can model long-range dependencies and
also capture global features. Recently, several studies on
transformer-based methods for 3D human pose estimation
have been reported, with Poseformer [46] being the first
that predicts the 3D pose of the central frame by model-
ing spatial and temporal information. However, the compu-
tational burden is huge when the frame number increases.
PoseformerV2 [44] introduces a time-frequency feature to
the transformer structure, efficiently extends the input se-
quence length, and achieves a good trade-off between speed
and accuracy. MHFormer [18], a transformer-based net-
work, generates multiple hypotheses at the pose level and
calculates the target 3D pose by averaging. MixSTE [42]
stacks spatial and temporal transformer blocks to capture
spatial-temporal features alternatively and models the tra-
jectory of joints over frame sequence. STCFormer [34]
slices the input joint features into two partitions and uses
MHSA to encapsulate the spatial and temporal context in
parallel. D3DP [31], a diffusion-based method, recovers
the noisy 3D poses by assembling joint-by-joint multiple
hypotheses. By introducing new encoders for better mod-
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eling the spatial and temporal relations, these methods all
have unavoidably changed the internal structure or altered
the MHSA of the transformer, resulting in largely increased
network complexity.

Graph networks and graph-transformer methods.
With a strong capability of capturing dynamic relations,
graph neural networks are widely used in 3D human pose
estimation [1, 4, 5, 11, 19, 37, 39, 40, 43, 48]. Zhao et al.
[43] introduced a semantic graph convolutional network
(GCN) that involved a learnable mask to scale up the recep-
tive field of convolution filters, capturing semantic informa-
tion among local and global nodes. Ci et al. [5] proposed a
locally connected network (LCN) to enhance the represen-
tation capability over GCN. Xu and Takano [39] developed
a graph stacked hourglass network to learn different scales
of human skeletal representations. Yu et al. [40] utilized the
adaptive GCN [15] to model global correlations and learn
local joint representation by individually connected layers.

Recently, some studies combined graph and transformer,
introducing graph-transformer methods [7, 14, 45, 47].
PoseGTAC [47] uses graph atrous convolution to learn the
multi-scale information among 1-to-3 top neighbors and
utilizes the graph transformer layer to capture long-range
features. GraFormer [45] replaces the MLP in the trans-
former with learnable GCN layers to form the GraAttention
block, which also contains MHSA. ChebGConv [6] models
the implicit connection relations among non-neighboring
joints. Li et al. [14] introduces a graph POT, where each
element is the relative distance between a pair of joints,
which are being encoded as the attention bias in the MHSA
module. DiffPose [7] interlaces GCN layers [43] with
self-attention layers as a diffusion model, which can cap-
ture spatial features between joints based on the human
skeleton. Nevertheless, these graph-transformer methods
[7, 14, 45, 47] learn merely the spatial information of
individual pose, without considering temporal correlation
across frames. Moreover, they [7, 14, 45, 47] modify the
structure of the transformer by introducing the graph con-
volution, resulting in much larger and more complex net-
works.

3. Method

In this paper, we propose a novel Kinematics and Tra-
jectory Prior Knowledge-Enhanced Transformer (KTP-
Former), which combines kinematics and trajectory prior
attentions and MHSA in a direct but effective way. Our
KTPFormer can model both spatial and temporal informa-
tion simultaneously. Moreover, our method preserves the
inherent structure of the transformer and is more flexible.
Our KTPFormer utilizes the seq2seq pipeline for 3D hu-
man pose estimation, which can simultaneously predict 3D
pose sequence corresponding to the input 2D keypoint se-
quence. As shown in Figure 2, an input 2D pose sequence

Pry € RTXNX2 ig first fed into the Kinematics-Enhanced
Transformer, with 7" denotes the number of frames, N de-
notes the number of joints, and 2 is the channel size. KPA
injects the kinematic topological information into the 2D
pose Py € R™*2 in each frame, aiming to obtain high-
dimensional spatial tokens Hyy € RT*N*dm  Next, the
spatial MHSA transforms Hpy into matrics Qg, Kg, Vs
for learning the global correlation between joints. The
Trajectory-Enhanced Transformer takes a sequence of re-
shaped tokens Py € RY*T>dm a5 inputs. We stack two
TPA blocks with the residual connection to generate the
temporal tokens Hy7 € RV*T*dm with incorporated prior
information on joint motion trajectories. Next, the tempo-
ral MHSA transforms H 7 into Qr, K7, Vp for modeling
global coherence among frames. The output features from
Temporal MHSA are reshaped and fed into stacked spatio-
temporal transformers for encoding. Finally, the regression
head predicts the coordinates of the 3D pose sequence based
on the learned features.

3.1. Kinematics-Enhanced Transformer

Kinematics-Enhanced Transformer receives the input
2D keypoint sequence and transforms them into high-
dimensional spatial tokens. The 2D keypoint sequence first
goes through the KPA for embedding the prior knowledge
of kinematics, which is then fed into the spatial MHSA for
global correlation learning between joints.

To be specific, given a 2D pose sequence as Pry €
RT*N*2 " we regard each joint p; € R? of a 2D pose
Py € RV*2 ag a keypoint patch. Next, we define a learn-
able transformation matrix W € R2X%~ to map all key-
point patches Prpy into high-dimensional tokens Pry €
RT>*Nxdm 1n order to inject the prior information of kine-
matics into Pry, KPA first constructs a symmetric affin-
ity matrix Ay € RV*¥ based on the skeletal structure of
the human body, namely spatial local topology, as shown in
Figure 1. If two joints are physically connected in the hu-
man body structure, the corresponding element in the affin-
ity matrix Ay € RY*" is non-zero and 0 otherwise. The
affinity matrix Ay can allow each 2D keypoint to learn
anatomical structure information of the human body. Be-
sides, KPA also considers the implicit kinematic relation-
ships among adjacent and non-adjacent keypoints. Sim-
ilar to the self-attention in MHSA, we establish a fully
connected spatial topology, called simulated spatial global
topology, as shown in Figure 1. In this topology, all the
joints are interconnected by dotted lines, indicating that the
connectivity relationship between each joint is learnable.
The simulated spatial global topology is denoted as an affin-
ity matrix A N € RYXN where each element is learnable.
Lastly, we combine the spatial local topology Ay with the
simulated spatial global topology A to derive a kinematics
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Figure 2. Overview of Kinematics and Trajectory Prior Knowledge-Enhanced Transformer (KTPFormer). The input 2D pose sequence
Pry € RT*N*2 with T frames and N joints is first fed into the Kinematics-Enhanced Transformer. KPA injects the kinematic information
into the Pry, aiming to obtain high-dimensional spatial tokens Hrn € RT*NXdm Then, Hry is split into Q 5, K5, Vs, which are then
fed into the Spatial MHSA. The Trajectory-Enhanced Transformer takes a sequence of reshaped tokens Py € RY*T>dm a5 input. The
stacked TPA blocks with the residual connection yield the temporal tokens Hyr € RY*T>4m which are then sliced into Qr, K1, Vi

for the Temporal MHSA.

topology A, which is shown as:

Ay + A An + Ay

where / denotes the matrix transpose, Ax € RM*V is
a learnable affinity matrix. The reason why we construct
the Ax with the above formula is that the original spa-
tial local topology matrix Ay is also symmetric. In or-
der to ensure that different keypoints can learn different
kinematic knowledge, we introduce a learnable weight ma-
trix My € RNXdm and multiply it with tokens Pry €
RT*Nxdm by element-wise multiplication, which is an eco-
nomic and effective way. Thus, we can obtain the tokens
Hpry € RT*NXdm including the prior knowledge of kine-
matics. The formula is represented as:

Hry = (My ® Pry)Ag )

where © represents element-wise multiplication. Moreover,
we add the learnable spatial positional embedding to Hr .
After that, Hyy € RT*N*dm g transformed into queries
Qs € RTXNxdm keys Kg € RT*NXdm and values
Vg € RT*NXdm by a linear transformation matrix. Then,
we design a spatial MHSA (M H S Ag) to model global spa-
tial correlation between keypoints within an identical frame.

Each attention head (i = 1, ..., h) can be represented as:

Qs(K5) i
head; = Softmaz(——=~)V¢ 3)

f ( \/a ) S
where / indicates the matrix transpose. All the attention
heads h are concatenated together to form the M HSAg:

MHSAs(Qs, Ks,Vg) = cat(heady, ..., headp,)Ws (4)

where Wg € R9mXdm i the linear transformation ma-
trix. Concurrently, Hpx as a residual adds the output of
MHS Ag to form the new output Hg € RT*N*dm which
is then fed into the layer normalization (LN) and MLP fol-
lowed by a residual connection and LN. The formula can be
represented as:

Hg = MHSAs5(Qs,Ks,Vs) + Hry (5)

Pyr = MLP(LN(Hs)) + Hs (6)

where Py € RV*T*dm 5 the output of the Kinematics-
Enhanced Transformer after being reshaped.

3.2. Trajectory-Enhanced Transformer

Trajectory-Enhanced Transformer aims to integrate the
prior trajectory information of joint motion across frames

1126



into a sequence of tokens Py € RV*T>dm 'in which each
joint is regarded as an individual token in the time dimen-
sion. TPA first connects the identical keypoints (including
itself) across neighboring frames to construct the temporal
local topology, as shown in Figure 1, which is denoted as
the symmetric affinity matrix Az € RT*T. In order to
enhance the global attention of temporal coherence in the
MHSA, we simulate a temporal global topology that con-
siders the implicit temporal correlation among neighbor-
ing and non-neighboring frames. These keypoints belong-
ing to the identical trajectory among neighboring and non-
neighboring frames are connected by the learnable vector
(dotted line) to form the simulated temporal global topol-
ogy, as shown in Figure 1. This topology can be expressed
in the form of a learnable matrix AT € RT*T Thus, the
equation of joint motion trajectory topology can be repre-
sented as:

(Ar + AT) + (Ar + AT)/
2

Ap = (N

where / denotes the matrix transpose, Az € RT*7 is a
learnable affinity matrix. Then, we transform Py to em-
beddings Pyr € RV*TXdm by the linear transformation.
Also, we utilize a learnable weight matrix My € RT*dm
to allow different keypoints for different prior knowledge
learning. The formula of one TPA is represented as:

TPA(Py7) := (Mp © Pyp)Ag ®)

We stack two TPA blocks with a residual connection to ob-
tain the temporal tokens H 7 € RY*TXdm a5 follows:

Hyr = TPA(TPA(Pyr)) + Pyt 9)

The learnable temporal positional embedding is then added
to Hyp. After that, the Hyp € RV*XTXdm i5 converted
into queries Q7 € RNXTXdm keys Kp € RN*XTxdm
and values Vi € RVXTXdm by the linear transformation.
We use a temporal MHSA (M HS A7) to model the global
temporal correlation between joints across all frames as fol-

lows: ) L
Qr(K7r)

head; = Softmax( Va

Wi (10)

MHSAT(QT, I(T7 VT) = cat(headl, ceey headh)WT
1D

where Wy € R%m*dm ig the linear transformation matrix.
Similar to M HS Ag, we can obtain the final output Hg7:

Hr = MHSAp(Qr, Kr,Vr) + Hnr (12)

Hgy = MLP(LN(Hr)) + Hr (13)

where Hsy € RN*TXdm is the output of Trajectory-
Enhanced Transformer.

3.3. Stacked Spatio-Temporal Encoders

After being reshaped, Hgr is fed into the stacked spatio-
temporal encoders which consist of alternating spatial and
temporal transformers. The number of stacks is L. The
sequential features are reshaped according to the type of the
MHSA before fed into the encoder (spatial or temporal).

3.4. Regression Head

We utilize the linear layer as a regression head to predict
the 3D pose sequence P;p € RT*N*3 The overall loss
function for our network is given as:

L=Lw+ ALy + ALy (14)

where Ly denotes the weighted mean per-joint position er-
ror (WMPJPE) loss [42], L is the temporal consistency
loss [10], and £, indicates the mean per joint velocity error
(MPJVE) loss [29]. Here A and A, are hyper-parameters.

4. Experiments
4.1. Datasets and Protocols

Datasets. We evaluated our model on three public datasets,
namely Human3.6M [12], MPI-INF-3DHP [24] and Hu-
manEva [32]. Human3.6M is an indoor scenes dataset with
3.6 million video frames. It has 11 professional actors,
performing 15 actions under 4 synchronized camera views.
Following previous work [34, 42], we used subjects 1, 5, 6,
7 and 8 for training, and subjects 9 and 11 for testing. MPI-
INF-3DHP is also a public large-scale dataset. Following
the setting of [34, 42], we used the area under the curve
(AUC), percentage of correct keypoints (PCK) and MPJPE
as evaluation metrics. HumanEva is a smaller dataset. To
have a fair comparison with [42, 46], we evaluated our
method for actions (Walk and Jog) of subjects S1, S2, S3.

Protocol. Protocol#1 is denoted as the mean per-joint
position error (MPJPE), which is the average euclidean dis-
tance in millimeters (mm) between the predicted and the
ground-truth 3D joint coordinates. Protocol#2 refers to the
reconstruction error after the predicted 3D pose is aligned
to the ground-truth 3D pose using procrustes analysis [8],
denoted as P-MPJPE (mm).

Implementation Details. We implemented our method
in the Pytorch framework on one GeForce RTX 3090 GPU.
The input 2D keypoints were detected by 2D pose detec-
tor [3] or 2D ground truth. The W in WMPJPE follows
the setting of MixSTE [42]. We set the number of stacked
spatio-temporal encoders L to 7. Thus, the encoders contain
14 spatial and temporal transformer layers [36] with num-
ber of heads h=8, feature size C'=512. During the training
stage, we use the Adam optimizer to train our model with a
batch size of 7. The learning rate is initialized to 0.00007
and decayed by 0.99 per epoch. Recently, diffusion mod-
els have been introduced in 3D pose estimation [7, 31] and
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Table 1. Quantitative comparison results with the state-of-the-art methods on Human3.6M. The 2D poses obtained by CPN [3] are used as
inputs. Top table: evaluation results of MPJPE (mm); Bottom table: evaluation results of P-MPJPE (mm);

MPJPE (CPN) Publication | Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. | Avg
UGCN [37] (T=96)t ECCV’20 | 402 425 426 4l.1 46.7 56.7 414 423 562 604 463 422 46.2 31.7 31.0 | 445
PoseFormer [46] (T=81)T ICCV’21 | 415 448 398 425 465 51.6 421 420 533 60.7 455 433 46.1 31.8 322 | 443
StridedFormer [17] (T=351)f  TMM’22 | 40.3 433 402 423 456 523 418 405 559 606 442 430 442 30.0 302 | 437
GraFormer [45] CVPR’22 452 50.8 480 50.0 54.9 65.0 482 47.1 602 70.0 51.6 48.7 54.1 39.7 43.1 51.8
MHFormer [18] (T'=351)1 CVPR’22 39.2 431 40.1 409 449 512 40.6 413 535 603 43.7 41.1 43.8 29.8 30.6 43.0
P-STMO [30] (T'=243)1 ECCV’22 389 4277 404 411 45.6 49.7 409 399 555 594 44.9 422 42.7 294 294 42.8
MixSTE [42] (T=81)} CVPR’22 | 398 430 386 40.1 434 50.6 40.6 414 522 567 438 408 43.9 294 303 | 424
MixSTE [42] (T'=243)t CVPR’22 | 37.6 409 373 397 423 499 40.1 398 517 550 421 39.8 41.0 27.9 279 | 409
DUE [41] (T'=300)1 MM’'22 379 419 368 395 408 49.2  40.1 407 479 533 402 41.1 40.3 30.8 28.6 | 40.6
GLA-GCN [40] (T'=243)} ICCV’23 | 413 443 408 418 459 54.1 421 415 578 629 450 428 459 29.4 299 | 444
POT [14] AAAI'23 | 479 500 47.1 513 512 59.5 487 469 560 619 51.1 48.9 543 40.0 429 | 505
STCFormer [34] (T'=81)f CVPR’23 | 40.6 430 383 402 435 526 403 401 518 577 428 398 423 28.0 295 | 420
STCFormer [34] (T'=243)1 CVPR’23 384 412 368 38.0 42.7 505 387 382 525 56.8 41.8 38.4 40.2 26.2 27.7 40.5
DiffPose [7] (1I'=243)+* CVPR’23 332 36.6 33.0 356 37.6 45.1 35.7 355 464 499 37.3 35.6 36.5 244 24.1 36.9
D3DP [31] (T'=243)}* ICCVv’23 33.0 348 31.7 331 37.5 437 348 33.6 457 478 37.0 35.0 35.0 243 24.1 354
Ours (T'=81)T 39.1 419 373 401 44.0 51.3 398 41.0 514 560 430 410 42.6 28.8 295 | 41.8
Ours (T'=243)t 373 392 359 376 425 482 38,6 39.0 514 559 416 390 40.0 27.0 274 | 40.1
Ours (T'=243)* 30.1 321 29.1 306 354 39.3 328 309 431 455 347 332 32.7 22.1 23.0 | 33.0
P-MPJPE (CPN) Publication | Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. | Avg
UGCN [37] (T=96)t ECCV’20 | 31.8 343 354 335 354 417 311 316 444 490 364 322 35.0 24.9 23.0 | 345
PoseFormer [46] (T'=81) ICCV 21 341 36.1 344 372 364 422 344 336 450 525 374 338 37.8 25.6 273 | 36.5
StridedFormer [17] (T=351)f ~ TMM’22 | 327 355 325 354 359 416 330 319 451 50. 363 335 35.1 239 250 | 352
P-STMO [30] (I'=243) ECCV’22 | 313 352 329 339 354 393 325 315 446 482 363 329 344 23.8 239 | 344
MixSTE [42] (T'=81)F CVPR’22 320 342 317 337 34.4 392 320 31.8 429 469 355 32.0 34.4 23.6 252 339
MixSTE [42] (I'=243)F CVPR’22 30.8 33.1 303 318 33.1 39.1 31.1 305 425 445 34.0 30.8 32.7 22.1 229 32.6
DUE [41] (T'=300)t MM’22 303 346 29.6 317 316 389 31.8 319 392 4238 32.1 32.6 314 25.1 238 | 325
GLA-GCN [40] (T'=243)} ICCV’23 | 324 353 326 342 350 421 321 319 455 495 36.1 324 35.6 235 247 | 348
STCFormer [34] (T=81)} CVPR’23 | 304 338 31.1 317 335 39.5 30.8 30.0 418 458 343 30.1 32.8 21.9 234 | 327
STCFormer [34] (T'=243)t CVPR’23 | 293 330 307 306 327 382 297 288 422 450 333 294 315 20.9 223 | 31.8
D3DP [31] (T=243)1* ICCV’23 | 275 294 266 277 292 343 275 262 373 390 303 277 28.2 19.6 203 | 287
Ours (T'=81)T 306 334 301 319 337 382 306 307 409 4438 344 305 327 223 240 | 326
Ours (T'=243) 30.1 323 29.6 308 323 373 300 302 410 453 336 299 314 215 226 | 319
Ours (7'=243)1* 24.1 267 242 249 27.3 30.6 252 234 341 359 28.1 253 25.9 17.8 18.8 26.2

T is the number of input frames. (f) denotes using temporal information, and (*) indicates the diffusion-based methods. Red: Best results. Blue: Runner-up results.

have achieved significant improvements in performance, as
the diffusion process can be viewed as an augmentation
method for pose data. To demonstrate the adaptability of
our method, we introduced a diffusion process to our net-
work, following the setting of D3DP [31], which also uses
the transformer-based network as the backbone. We used
KTPFormer as the denoiser in the D3DP [31]. For the de-
sign of the remaining diffusion process, our experimental
parameters were set to be the same as D3DP [31].

4.2. Comparison with State-of-the-art Methods

Results based on Human3.6M. We compared our results
with those of recent state-of-the-art methods based on the
dataset Human3.6M. As shown in Table 1, our method
(diffusion-based) achieves the state-of-the-art (SOTA) re-
sult 33.0mm in MPJPE and 26.2mm in P-MPJPE using
the 2D poses detected by CPN [3] as inputs. Our method
(diffusion-based) outperforms D3DP [31] by 2.4mm under
MPJPE and 2.5mm under P-MPJPE with the same settings
(the number of frames, hypotheses, and iterations) as D3DP
[31]. This demonstrates that our network can serve as an
excellent backbone for diffusion-based methods, effectively
improving the performance for 3D pose estimation. Be-
sides, we obtain the best results 40.1mm under 7'=243 set-
ting and 41.8mm under 7'=81 setting in MPJPE among all
methods that are not diffusion-based.

Table 2 compares our results with those of SOTA mod-
els using ground-truth 2D poses as inputs. Our method

(diffusion-based) achieves the SOTA result 18.1mm, with
the same settings (the number of frames, hypotheses, and
iterations) as D3DP [31]. On the other hand, we obtain the
best result 19.0mm under 7'=243 setting and 22.2mm under
T'=81 setting in MPJPE without diffusion process. Com-
pared to GLA-GCN [40], there is a noticeable improve-
ment (21.0—19.0mm) with 7=243. Under T'=81 setting,
our method outperforms the second-best result by 3.5mm.

Results based on MPI-INF-3DHP. We evaluated the
performance on MPI-INF-3DHP dataset to verify the gen-
eralization capability of our method. Following previous
work [34, 44], we trained our model with ground-truth 2D
poses as inputs. Table 3 shows the comparison results
on the MPI-INF-3DHP test set. Our method with 7'=81
achieves the to-date best result with PCK of 98.9%, AUC of
85.9% and MPJPE of 16.7mm, outperforming the existing
SOTA models by 0.2% in PCK, 2.0% in AUC and 6.4mm
in MPJPE. Moreover, our method with 7'=27 also surpasses
all other methods in all three metrics. These results demon-
strate the strong generalization capability of our method.

Results based on HumanEva. Table 4 shows the per-
formance comparison between ours and other methods on
HumanEva dataset. Our method yields the best result of
15.3mm under T=27. Also, our method is superior to other
algorithms under 7=81. Due to the short video length in
HumanEva, our method gives better results under 7'=27
than T'=81. These results highlight the effectiveness of our
method on small datasets.
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Table 2. Quantitative comparison results of MPJPE (mm) with the state-of-the-art methods on Human3.6M using ground-truth (GT) 2D

poses as inputs.

MPJPE (GT) Publication | Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. | Avg
UGCN [37] (T'=96)T ECCV’20 |23.0 257 228 226 24.1 306 249 245 31.1 350 256 243 25.1 19.8 184 | 25.6
PoseGTAC [47] IUCAI'21 | 372 422 32,6 38.6 380 440 407 352 41.0 455 382 395 38.2 29.8 33.0 | 382
PoseFormer [46] (T'=81) ICCV’21 30.0 336 299 310 302 333 348 314 378 386 31.7 315 29.0 233 23.1 313
StridedFormer [17] (T=351)F  TMM’22 | 27.1 294 265 27.1 28.6 33.0 307 268 382 347 29.1 29.8 26.8 19.1 19.8 | 285
GraFormer [45] CVPR’22 | 320 38.0 304 344 347 433 352 314 380 462 342 357 36.1 27.4 30.6 | 352
MHFormer [18] (I'=351) CVPR’22 | 27.7 321 29.1 289 300 339 330 312 370 393 30.0 31.0 29.4 222 23.0 | 305
P-STMO [30] (T'=243)+ ECCV’22 | 285 301 286 279 298 332 313 278 360 374 297 295 28.1 21.0 21.0 | 293
DUE [41] (T'=300) MM’22 22.1 231 201 227 213 24.1 236 21.6 263 2438 217 214 21.8 16.7 187 | 22.0
MixSTE [42] (T=81)t CVPR’22 | 25,6 278 245 257 249 299 286 274 299 29.0 26.1 25.0 25.2 18.7 199 | 259
MIixSTE [42] (T'=243)+ CVPR’22 | 216 220 204 210 208 243 247 219 269 249 212 215 20.8 14.7 157 | 216
POT [14] AAAT'23 | 329 383 283 338 349 387 372 307 345 397 339 347 343 26.1 289 | 33.8
STCFormer [34] (T'=81)1 CVPR’23 | 262 265 234 246 250 286 283 246 309 337 257 253 24.6 18.6 19.7 | 257
STCFormer [34] (T'=243) CVPR’23 | 214 226 21.0 213 238 260 242 200 289 28.0 223 214 20.1 14.2 15.0 | 220
GLA-GCN [40] (T'=243)t ICCV’23 | 20.1 212 200 196 215 267 233 198 27.0 294 208  20.1 19.2 12.8 13.8 | 21.0
DiffPose [7] (T'=243)+* CVPR’23 186 193 180 184 18.3 21,5 215 191 236 223 18.6 18.8 18.3 12.8 139 18.9
D3DP [31] (I'=243)* ICCV’23 187 182 184 17.8 18.6 209 202 177 238 218 18.5 174 174 13.1 13.6 184
Ours (T=81)t 225 224 213 214 212 255 242 224 244 275 227 214 21.7 16.3 173 | 222
Ours (7=243)1 19.6 186 185 18.1 18.7 22.1 208 183 228 224 18.8 18.1 184 13.9 15.2 19.0
Ours (7'=243)+* 188 174 181 177 18.3 206 19.6 177 233 220 18.7 17.0 16.8 12.4 13.5 18.1

T is the number of input frames. (+) denotes using temporal information, and (*) indicates the diffusion-based methods. Red: Best results. Blue: Runner-up results.

Table 3. Performance comparisons on MPI-INF-3DHP

Method Publication | PCKT AUCT MPIPE]
UGCN [37] (T'=96) ECCV’20 86.9 62.1 68.1
PoseFormer [46] (T=9) ICCV’21 88.6 56.4 77.1
MHFormer [18] (7=9) CVPR’22 93.8 63.3 58.0
MixSTE [42] (T'=27) CVPR’22 94.4 66.5 54.9
P-STMO [30] (T'=81) ECCV’22 97.9 75.8 322
Diffpose [7] (T'=81) CVPR’23 98.0 75.9 29.1
D3DP [31] (T'=243) ICCV’23 98.0 79.1 28.1
PoseFormerV2 [44] (I'=81)  CVPR’23 97.9 78.8 27.8
GLA-GCN [40] (T'=81) ICCV’23 98.5 79.1 27.7
STCFormer [34] (T'=27) CVPR’23 98.4 834 242
STCFormer [34] (T=81) CVPR’23 98.7 83.9 23.1
Ours (T=27) 98.9 84.4 19.2
Ours (7=81) 98.9 85.9 16.7

Metric 1 denotes the higher, the better, | denotes the lower, the better.

Table 4. The MPJPE evaluation results on HumanEva testset.

Method Walk Jog Avg

S1 S2 S3 S1 S2 83
TCN [29] (T'=81) 131 10.1 398 [ 20.7 139 156 | 189
PoseFormer [46] (T'=43) | 16.3 11.0 47.1 | 250 152 151 | 21.6
MixSTE [42] (T'=43) 203 224 348|273 321 343|285
Ours (T'=43) 165 139 199|253 159 165 | 18.0
Ours (T'=27) 123 11,5 195|209 13.1 145|153

Table 5. Results of ablation study of each module in our KTP-
Former on Human3.6M dataset.

Method MPJPE (mm) Parameters (M) FLOPs (M)
Baseline 21.8 33.6506 139038
+KPA(w/o prior) 21.5 33.6501 139042
+KPA(w/o global) 20.7 33.6501 139042
+KPA 20.0 33.6501 139042
+TPA(w/o prior) 21.4 33.6527 139055
+TPA(w/o global) 20.5 33.6527 139055
+TPA 19.7 33.6527 139055
+KPA(w/o prior)+TPA(w/o prior) 21.4 33.6522 139059
+KPA(w/o global)+TPA(w/o global) 20.0 33.6522 139059
+KPA+TPA 19.0 33.6522 139059

Table 6. Results of ablation study involving different combinations
of KPA and TPA in the network.

Method MPJPE (mm) Parameters (M) FLOPs (M)
Baseline 21.8 33.6506 139038
United Mode (UMD) 20.0 33.6522 139059
Parallel Mode (PMD) 19.8 33.6512 139051
Separate Mode-S (SMD-S) 20.4 33.6512 139051
Separate Mode (SMD) 19.0 33.6522 139059

4.3. Ablation Study

Effect of each module To verify the effectiveness of the
proposed modules, we conducted ablation experiments on
Human3.6M (7T=243) using ground-truth 2D poses as in-
puts. Table 5 presents the results of ablation study of each
module. Our baseline network utilizes a linear layer to lift
the 2D pose sequence to the high-dimensional space and
then exploits the stacked spatio-temporal encoders (L=8) to
predict the 3D pose sequence. As shown, the incorpora-
tion of KPA and TPA brings 1.8mm and 2.1mm of MPJPE
drops, respectively. The prior knowledge of KPA and TPA
contribute 1.5mm and 1.7mm of error drop, respectively.
The global topologies of KPA and TPA yield reduction in
MPJPE of 0.7mm and 0.8mm, respectively. With both KPA
and TPA modules, the performance has improved 2.8mm.
More remarkably, the number of parameters and FLOPs
merely increase by 0.0016M and 21M, respectively, show-
ing that our method is both effective and efficient.

Effect on different combinations of KPA and TPA.
We analyzed the impacts to performance for four different
combinations of KPA and TPA, including the United Mode
(UMD), the Separate Mode (SMD), the Separate Mode-
S and the Parallel Mode (PMD). UMD indicates that the
output of the KPA is fed into the two TPA blocks with a
residual connection, followed by stacked spatio-temporal
encoders. SMD represents that KPA is followed by spa-
tial MHSA and two TPA blocks with a residual connec-
tion are followed by temporal MHSA. The SMD-S differs
from the SMD in that only one TPA block is followed by
temporal MHSA. For PMD, the input is fed into TPA and
Kinematics-Enhanced Transformer simultaneously, and the
outputs of them are then added together and fed into tem-
poral MHSA. Table 6 shows the comparison results of Hu-
man3.6M with T'=243 frames between the four modes. The
MPIPE result of UMD is worse than that of SMD because
the features from KPA are fed directly into TPA, which
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Table 7. Comparative results for various 3D pose estimators
trained with and without KPA and TPA on Human3.6M dataset.

Method MPJPE (mm) Parameters (M) FLOPs (M)
PoseFormer [46] (T=81) 313 9.558 815.522
+KPA+TPA 28.8 (29 9.560 (002 815.885 (+0363)
StridedTransformer [17] (T'=351) 28.5 3.979 801.093
+KPA+TPA 27.4 1D 3.980 +00D 801.859 +0760)
MHFormer [ 18] (T=243) 30.9 24767 4826.854
+KPA+TPA 29.1 ¢1®) 24,773 +000) 4829.873 (+3.019)
MIixSTE [42] (T=243) 21.6 33.650 139038.488
+KPA+TPA 19.0 (20 33.652 *002 139059.638 (!9
STCFormer [34] (T=81) 25.7 4747 6535.219
+KPA+TPA 25.1 00 4.748 +001 6541.565 (+0340)

leads to the confusion of spatial and temporal information.
The comparison between PMD and SMD illustrates that
TPA is more suitable to inject the trajectory information into
high-dimensional tokens, rather than the initial 2D pose se-
quence. Besides, KPA and TPA should be independently
followed by spatial and temporal MHSA, without interfer-
ing with each other. The comparison between the SMD-S
and SMD indicates that the stacked TPA blocks can inject
the prior information into pose tokens more effectively.

4.4. Qualitative Analysis and Discussion

We visualize in Figure 3 the 3D pose estimation results and
attention maps so as to validate the efficacy of our method
in comparison to MixSTE [42]. As shown, the spatial and
temporal attention outputs from different heads are both av-
eraged to show the distribution of attention weights of joints
and frames. Figure 3(a) illustrates the phenomenon of at-
tention collapse where the attention weights become highly
concentrated on the right and left foot regions with other
joints (i.e., torso and right arm) being ignored in the spatial
attention map of MixSTE [42], leading to poor predicted
results of 3D pose (top of Figure 3). In contrast, the spa-
tial attention weights (Figure 3(b)) are activated by KPA
in regions of right arm, right leg and torso. In particular,
the three joints of the right arm exhibit stronger attention
weights in the thorax column, owing to the anatomical con-
nection between the right hand and the torso. The attention
allocation is, therefore, more reasonable (Figure 3(b)), con-
tributing to an enhanced performance of 3D pose predicted
by our method. Moreover, Figure 3(c) depicts the averaged
temporal attention weights of the three joints of right arm.
In contrast, TPA (Figure 3(d)) yields stronger temporal cor-
relations along the diagonal as it connects the consecutive
frames and small range of non-adjacent frames. In cases
when input video records human motion of normal speed
and the video has a high frame rate (e.g., 50 fps), the joints
within a small range of frames would likely exhibit very
small motion variations. Hence, such enhanced temporal
attention can improve prediction accuracy.

Adaptable to Different 3D Pose Estimators. Our
KPA and TPA are generic and can be applied in various
transformer-based 3D pose estimators. To verify the adapt-
ability, we selected five transformer-based 3D pose estima-

MixSTE Ours

Ground Truth

Right Leg

[0] Hip
(1] RHip

[2] RKnee

[3] R Foot

[4] LHip

[5] LKnee

[6] L Foot

[7) spine

(8] Thorax

[9] Neck

[10] Head

[11] L Shoulder
[12] L Elbow
[13] L Wrist
[14] R Shoulder

--
1 | Torso
.

| Right Arm

Right Arm in
the Thorax

(a) Spatial Attention Map (MixSTE)  (b) Spatial Attention Map (KPA) Column

[15] R Elbow
[16] R Wrist Right Arm in
Selected

Frame Range

Figure 3. Comparison of visualization results and attention maps
between ours and MixSTE [42]. The x-axis and y-axis correspond
to the queries and the predicted outputs, respectively.

tors as backbones. We removed the linear embedding be-
fore the first spatial encoder and put KPA in front of the
first MHSA in these models. We used TPA to encode the
features of different poses across frames on [17, 18, 46] and
different joints across frames on [34, 42]. We trained these
models on the Human3.6M dataset using 2D ground-truth
poses as inputs. As shown in Table 7, our method brings
about noticeable improvements in all the models in terms
of MPJPE (mm), with very slight increases in the num-
ber of parameters and FLOPs, indicating that our KPA and
TPA modules are lightweight and plug-and-play to different
models for 3D pose estimation.

5. Conclusion

In this paper, we develop a Kinematics and Trajectory Prior
Knowledge-Enhanced Transformer (KTPFormer), which
explores two novel prior attention mechanisms (KPA and
TPA) for 3D pose estimation. The KPA and TPA can en-
hance the capabilities of modeling global correlations in the
self-attention mechanisms effectively. Experimental results
on three benchmarks demonstrate that our method is effec-
tive in improving the performance with only a very small in-
crease in the computational overhead. Moreover, our KPA
and TPA can be integrated into various transformer-based
3D pose estimators as lightweight plug-and-play modules.
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