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Abstract

Monocular 3D detection is a challenging task due to the
lack of accurate 3D information. Existing approaches typ-
ically rely on geometry constraints and dense depth esti-
mates to facilitate the learning, but often fail to fully ex-
ploit the benefits of three-dimensional feature extraction in
frustum and 3D space. In this paper, we propose Occu-
pancyM3D, a method of learning occupancy for monocu-
lar 3D detection. It directly learns occupancy in frustum
and 3D space, leading to more discriminative and informa-
tive 3D features and representations. Specifically, by using
synchronized raw sparse LiDAR point clouds, we define the
space status and generate voxel-based occupancy labels.
We formulate occupancy prediction as a simple classifica-
tion problem and design associated occupancy losses. Re-
sulting occupancy estimates are employed to enhance orig-
inal frustum/3D features. As a result, experiments on KITTI
and Waymo open datasets demonstrate that the proposed
method achieves a new state of the art and surpasses other
methods by a significant margin.

1. Introduction

Three dimensional object detection is a critical task in many
real-world applications, such as self-driving and robot nav-
igation. Early methods [52, 58, 78] typically rely on Li-
DAR sensors because they can produce sparse yet accu-
rate 3D point measurements. In contrast, cameras provide
dense texture features but lack 3D information. Recently,
monocular-based methods [36, 39, 49, 53] for 3D detection,
also known as monocular 3D detection, have gained signifi-
cant attention from both industry and academia due to their
cost-effectiveness and deployment-friendly nature.
Recovering accurate 3D information from a single RGB
image poses a challenge. While previous researches have
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Figure 1. Overall design. We introduce occupancy learning for
monocular 3D detection. Best viewed in color.

employed geometry constraints [7, 27, 36, 45] and dense
depth estimates [38, 53, 67] to facilitate 3D reasoning, they
often overlook the importance of discriminative and infor-
mative 3D features in 3D space, which are essential for ef-
fective 3D detection. They mainly focus on improving fea-
tures in 2D space, with little attention paid to better feature
encoding and representation in the frustum and 3D space.

Towards this goal, in this paper we propose to learn occu-
pancy in frustum and 3D space, to obtain more discrimina-
tive and informative 3D features/representations for monoc-
ular 3D detection. Specifically, we employ synchronized
raw sparse LiDAR point clouds to generate voxel-based oc-
cupancy labels in frustum and 3D space during the training
stage. Concerning the sparsity of LiDAR points, we de-
fine three occupancy statuses: free, occupied, and unknown.
Based on this, we voxelize the 3D space and use ray tracing
on each LiDAR point to obtain occupancy labels. With the
occupancy labels, we can enforce explicit 3D supervision
on intermediate 3D features. It allows the network to learn
voxelized occupancy for current 3D space, which enhances
the original 3D features. This process is also performed in
the frustum space, enabling a more fine-grained manner in
extracting three-dimensional features for near objects due to
the perspective nature of camera imagery. Overall, we call
the proposed occupancy learning method OccupancyM3D,
and illustrate the framework overview in Figure 1.

To demonstrate the effectiveness of our method, we con-
duct experiments on the competitive KITTI and Waymo
open datasets. As a result, the proposed method achieves
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state-of-the-art results with a significant margin over other
methods. Our contributions can be summarized as follows:

* We emphasize the importance of feature encoding and
representation in the frustum and 3D space for monoc-
ular 3D detection, and we propose to learn occupancy in
both space.

* We propose a method to generate occupancy labels us-
ing synchronized raw sparse LiDAR points and introduce
corresponding occupancy losses, enabling the network to
learn voxelized occupancy in both frustum and 3D space.
This occupancy learning process facilitates the extraction
of discriminative 3D features in the network.

* Experiments demonstrate the superiority of the proposed
method. Evaluated on challenging KITTI and Waymo
open datasets, our method achieves new state-of-the-art
(SOTA) results and outperforms other methods by a sig-
nificant margin.

2. Related Work
2.1. LiDAR Based 3D Object Detection

LiDAR-based methods [19, 26, 56, 68, 69, 71, 77] cur-
rently dominate 3D object detection accuracy because of
their precise depth measurements. Due to the unordered
nature of point clouds, LiDAR-based methods are required
to organize the input data. There are four main streams
based on the input data representation: point-based, voxel-
based, range-view-based, and hybrid-based. PointNet fam-
ilies [50, 51] are effective methods for feature extrac-
tion from raw point clouds, allowing point-based methods
[52, 55, 59, 72] to directly perform 3D detection. Voxel-
based methods [13, 70, 73, 77, 78] organize point clouds
into voxel grids, making them compatible with regular con-
volutional neural networks. Range-view-based methods
[1, 5, 15] convert point clouds into range-view to accom-
modate the LiDAR scanning mode. Hybrid-based methods
[8,46,57,71] use a combination of different representations
to leverage their individual strengths. There is still a sig-
nificant performance gap between monocular and LiDAR-
based methods, which encourages researchers to advance
monocular 3D detection.

2.2. Monocular 3D Object Detection

Significant progress has been made in advancing monocular
3D detection in recent years. The ill-posed problem of re-
covering instance level 3D information from a single image
is challenging and important, attracting many researches.
This is also the core sub-problem in monocular 3D detec-
tion. Early works [9, 45] resort to using scene priors and ge-
ometric projections to resolve objects’ 3D locations. More
recent monocular methods [2, 27, 29, 31, 35, 40, 76] employ
more geometry constraints and extra priors like CAD mod-
els to achieve this goal. AutoShape [35] incorporates shape-

aware 2D/3D constraints into the 3D detection framework
by learning distinguished 2D and 3D keypoints. MonoJSG
[31] reformulates the instance depth estimation as a pro-
gressive refinement problem and propose a joint semantic
and geometric cost volume to model the depth error. As
RGB images lack explicit depth information, many works
rely on dense depth estimates. Some methods [37, 38, 67]
directly convert depth map to pseudo LiDAR or 3D coor-
dinate patches, and some works [53] use depth distribu-
tions to lift 2D image features to 3D space. Therefore,
previous well-designed LiDAR 3D detectors can be easily
employed on such explicit 3D features. Other researches
[11,12,14,47,49, 64] also take advantage of depth maps or
LiDAR point clouds as guidance for feature extraction and
auxiliary information. While previous works have lever-
aged geometry constraints and dense depth estimates, they
have not fully explored feature encoding and representation
in the frustum and 3D space. To address this, our method
focuses on learning occupancy for monocular 3D detection.

2.3. 3D Scene Representations

Recent researches [41, 43, 75] rapidly advance implicit rep-
resentations. Implicit representations have the advantage of
arbitrary-resolution on modeling the 3D scene. This na-
ture is beneficial for fine-grained tasks such as 3D recon-
struction and semantic segmentation. Different from them,
monocular 3D detection is an instance level task, and we ex-
plore explicit occupancy learning using fixed-sized voxels.
Implicit occupancy representations for this task can be ex-
plored in future works, which is an interesting and promis-
ing topic. Additionally, many bird’s-eye-view (BEV) based
works [20, 28, 30, 34, 53, 54] have been proposed recently.
These works commonly employ BEV representations and
obtain great success, especially for multi-camera BEV de-
tection. The most related work to ours is CaDDN [53]. We
follow its architecture design except for the proposed oc-
cupancy learning module, and we replace its 2D backbone
with lightweight DLA34 [74].

Since occupancy can serve as a general representation
for scene perception and understanding. There is a burst of
related works recently. SimpleOccupancy [16] adopts occu-
pancy for better depth estimation. OccDepth [42] explores
the occupancy in a stereo setting for semantic occupancy
prediction. TPVFormer [22] employs sparse 3D occupancy
labels from LiDAR as the supervision to obtain 3D features.
OccNet [63] uses a decoder with various voxel based atten-
tion to reconstruct height information, accumulating occu-
pancy labels from point cloud sequences. Different from
them, we concentrate on 3D detection and takes a step far-
ther to explore the effectiveness of occupancy in monocu-
lar 3D detection. Please note that our work focuses on the
monocular setting, and extending the method to the multi-
camera setup is a potential avenue for future researches.
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Figure 2. Network overview. Compared to previous works, our method employs two newly-proposed components for learning occupancy
in frustum and 3D space. All network blocks in the proposed parts consist of vanilla 3D convolutions. Please refer to Section 3.1 for
detailed feature passing description. For occupancy in frustum and 3D space and their network blocks, please see Section 3.2.1; For
occupancy label generation, please see Section 3.2.2; For occupancy losses, please see Section 3.2.3; Best viewed in color with zoom in.

3. OccupancyM3D

3.1. Preliminary and Overview

Task Definition. We first describe the preliminary of this
task and the method. At inference, monocular 3D detec-
tion takes only a single RGB image and outputs interested
amodal 3D bounding boxes in the current scene. At the
training stage, our method requires RGB images, 3D box la-
bels annotated on LiDAR points and synchronized LiDAR
data. It is worth noting that the system has been calibrated,
and the camera intrinsics and extrinsics between the camera
and LiDAR are available.

Network Overview. We present the network overview
of our method in Figure 2. First, a single RGB image is
fed into the DLLA34 [74] backbone network to extract fea-
tures. Then, we use these features to produce categorical
depth distributions [53], which lifts 2D features to frustum
space. After that, we employ the depth predictions and
backbone features to generate frustum features. They are
used for learning occupancy in frustum space, and then are
transformed to voxelized 3D features using grid-sampling.
Such voxelized 3D features are employed to study occu-
pancy in 3D space. Occupancy learning in both frustum
and 3D spaces can produce reasonable occupancy estimates
that enhance the original features. The final enhanced vox-
elized 3D features are passed to the detection module to ob-
tain final 3D detection results.

At the training stage, occupancy estimates are supervised

by the generated occupancy labels in frustum and 3D space,
respectively, using the proposed occupancy losses. We de-

tail the occupancy learning in following sections.
3.2. Occupancy Learning

We consider a frustum voxel or regular 3D voxel to be occu-
pied if it contains part of an object. We denote the resulting
voxel states as frustum occupancy and 3D occupancy, re-
spectively. In this section, we introduce occupancy learning
for monocular 3D detection. It is organized as four parts:
occupancy in frustum/3D space, occupancy labels, occu-
pancy losses, and occupancy and depth.

3.2.1 Occupancy in Frustum Space and 3D Space

After extracting backbone features, we employ a depth head
to obtain dense category depth [53]. To save GPU mem-
ory, we use a convolution layer to reduce the number of
feature channels, and the resulting feature is lifted to a
frustum feature Fru; € RWrXHrxDXC with the assis-
tance of depth estimates. Then we extract frustum feature
Frup € RWrxXHrxDXC 44 fo]lows:

Fruz = fi(Fruy) (D

where f1 denotes two 3D convolutions followed by ReLU
activate functions. Then we use a 3D convolution layer fo
and sigmoid function to obtain frustum occupancy Ogy €
RWrxHrxDx1 which is supervised by corresponding la-
bels Of,.,, as described in Section 3.2.2 and Section 3.2.3.

Ofru = SlngId(fg (]:—“I‘UQ )) (2)

The frustum occupancy indicates the feature density in the
frustum space, thus inherently can be employed to weight
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original frustum features for achieving enhanced frustum
feature Frug € RWrxHrxDXC a4 follows:

F‘I‘US == Ofru ®© F‘I'U2 (3)

where ® denotes the Hadamard product (element-wise mul-
tiplication). The resulted frustum feature Frug is trans-
formed to regular voxelized feature V; € RX XY xZxC yija
grid-sampling [53]. The occupancy learning process is then
repeated in the regular 3D space.

V2 = f3(V1), O3d = SlngId(f4(V2)), V3 = O3d®V2
“)
To better encode 3D features in the regular 3D space, we
use a 3D hourglass-like design [6] in f3, and f4 is a 3D
convolution. Finally, we have more informative 3D voxel
feature Vg € RX*YXZXC for the detection module.
What is the rationale behind learning occupancy in both
Jrustum and 3D space? Occupancy learning in both frus-
tum and 3D space is beneficial because they have differ-
ent nature. Frustum space has a resolution that depends on
camera intrinsics and the downsample factor of the back-
bone network, while voxelized 3D space has a resolution
that is decided by the pre-defined voxel size and detection
range. Frustum voxels are irregular and vary in size based
on the distance to the camera, which results in fine-grained
voxels for objects that are closer and coarse-grained voxels
for objects that are far away. In contrast, regular 3D voxels
have the same size throughout the 3D space. On the other
hand, frustum space is more fit to camera imagery, but ob-
jects in the frustum space cannot precisely represent the real
3D geometry. Thus the feature extraction and occupancy in
frustum space have distortion for objects/scenes. Therefore,
occupancy learning in both frustum and 3D space is com-
plementary, and can result in more informative representa-
tions and features.

3.2.2 Occupancy Labels

Given a set of sparse LiDAR points P € RY*3 where
N is the number of points and 3 is the coordinate dimen-
sion (X,Y, Z), we generate corresponding occupancy la-
bels. The process is illustrated in Figure 3, and is operated
on every LiDAR point. More formally, we first define three
space status and represent them with numbers: free:0, oc-
cupied:1, unknown:-1. We then describe the occupancy
label generation process in the frustum and 3D space, re-
spectively.

Occupancy label in frustum space: Let us denote the
frustum occupancy label as O, € RWF*HrxD ' yhere
W and Hp are feature resolution, and D is the depth cat-
egory. We first project LIDAR points onto the image plane
to form a category depth index map. Each valid projected
point has a category depth index, while invalid points (no

Occupied voxel

>,_~7 Unknown voxel

Free voxel

Virtual ra
Camera  Virtual ray LIDAR point
Occupancy label in frustum space
Occupied voxel
Unknown voxel
Free voxel

Camera Virtual ray LIDAR point

Occupancy label in 3D space

Figure 3. Occupancy label generation in frustum and 3D space.
Best viewed in color with zoom in.

LiDAR points projections) are given negative indexes of
—1. This index map is then downsampled to fit the fea-
ture resolution, resulting in Ind € RWrxHr  Benefit from
the camera projection nature, we can easily distinguish the
space status as follows:

1 Zf Indi,j >—landd= ]:l’ldLj7

O;rui,j,d = 0 ’Lf Il’ldi)j >—landd< Indm,

-1 otherwise.

)
where ¢, j,d € Wg, Hp, D. Note that we do not consider
unknown voxels in both the occupancy labels and occu-
pancy losses. We use the known voxels, i.e., the free and
occupied voxels, to perform occupancy learning.

Occupancy label in 3D space: We denote O3, €<
RX*YXZ a5 the 3D occupancy label, where X, Y, Z are de-
termined by the pre-defined voxel size and detection range.
We voxelize LiDAR points within the grid and set the vox-
els containing points to 1, and those without points to —1.
In this way, occupied voxels can be easily achieved. To ob-
tain the free voxels, we utilize ray tracing from each LiDAR
point to the camera, where intersected voxels are set as free,
filled by 0. We summarize the occupancy label in 3D space
as follows:

1 Zf V013dz,y,z > 0’
gdw,y,z = 0 Zf R( ;dm,%z) N Raypo’int%cam
-1 otherwise.

(6)
where z,y,z € X,Y,Z. In this equation, Volgq de-
notes the voxelized grid. Volzg > 0 when it is occu-
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A h v Inout APpgv (IoU=0.7)| R4 AP3p (IoU=0.7)| R0
Pproaches enue pu Easy Moderate Hard | Easy Moderate  Hard
Kinematic3D [3] ECCV20 | Video | 26.69 17.52 13.10 | 19.07 12.72 9.17
DM [66] ECCV22 Video | 31.71 22.89 19.97 | 22.94 16.82 14.65
Monodle [39] CVPR21 Image | 24.79 18.89 16.00 | 17.23 12.26 10.29
MonoFlex [76] CVPR21 Image | 28.23 19.75 16.89 | 19.94 13.89 12.07
CaDDN [53] CVPR21 Image | 27.94 18.91 17.19 | 19.17 13.41 11.46
GUP Net [36] ICCcv21 Image | 30.29 21.19 18.20 | 22.26 15.02 13.12
AutoShape [35] Iccv2i Image | 30.66 20.08 1595 | 22.47 14.17 11.36
PCT [65] NeurIPS21 | Image | 29.65 19.03 15.92 | 21.00 13.37 11.31
MonoDTR [21] CVPR22 | Image | 28.59 20.38 17.14 | 21.99 15.39 12.73
MonoJSG [31] CVPR22 | Image | 32.59 21.26 18.18 | 24.69 16.14 13.64
DEVIANT [25] ECCV22 | Image | 29.65 20.44 17.43 | 21.88 14.46 11.89
DID-M3D [49] ECCV22 | Image | 32.95 22.76 19.83 | 24.40 16.29 13.75
MonoDDE [29] CVPR22 | Image | 33.58 23.46 20.37 | 24.93 17.14 15.10
Cube R-CNN [4] CVPR23 | Image | 31.70 21.20 18.43 | 23.59 15.01 12.56
NeuROCS T [44] CVPR23 | Image | 37.27 24.49 20.89 | 29.89 18.94 15.90
MonoUNI [23] NeurlPS23 | Image | 33.28 23.05 19.39 | 24.75 16.73 13.49
OccupancyM3D ‘ - Image | 35.38 24.18 21.37 | 25.55 17.02 14.79

Table 1. Comparisons on KITTI fest set for Car category. The red refers to the highest result and blue is the second-highest result. Our
method outperforms other methods including monocular and video-based methods.

pied by LiDAR points. R(-) refers to the voxel range and
R(O3di,j,4) N RaYpoint—scam denotes that the voxel at in-
dex i, j, d intersects with a ray from LiDAR points to the
camera. In this way, 3D occupancy labels are generated.
When generating voxel-based occupancy labels, there is
a quantization error that arises due to the discretization pro-
cess. A smaller voxel size results in lower quantization er-
ror, providing more fine-grained and accurate information.
However, it requires more computation and GPU resources.

3.2.3 Occupancy Losses

*

We use generated occupancy labels Of,.,, and O3 to super-
vised the predicted occupancy Og,, and O34, respectively.
We regard occupancy prediction as a simple classification
problem and use focal loss [32] as the classification loss.
Only valid voxels, i.e., free and occupied voxels, contribute
to the loss, and unknown voxels are ignored. We first obtain
valid masks Mgy, € RWFXHFXD gnd Mgy € RX*XY*Z,
Mgy = true if Of,, > —1 otherwise false. Maq is
obtained using the similar way.
Therefore, the occupancy loss in frustum space is:

Efru = FL(OEU [Mfru]; Ofru [Mfru]) (7)

where FL(+) refers to focal loss and [-] is the selection via
mask. Similarly, we can obtain 3D occupancy loss as fol-
lows:

L34 = FL(034[M3a], O34[M3a]) )
The final occupancy loss is their sum:
£occupancy = £fr'u, + ACi’)d (9)

The occupancy loss allows the network to learn informative
and discriminative features and representations, thus benefit
downstream tasks. Therefore, the final loss of the network
is:

L= Lorg + )\Eoccupancy (10)

where L, denotes the original detection and depth losses
in CaDDN [53] and A is the occupancy loss weighting fac-
tor, which is set to 1 by default.

3.2.4 Occupancy and Depth

Occupancy has some similarities with 2D depth map, es-
pecially the frustum occupancy. They both can represent
object geometry surface in the space. However, depth map
is two-dimensional while occupancy is three-dimensional.
Occupancy is beyond the depth and can base on it. It is able
to express dense features of objects but not only the sur-
face. For unknown space due to occlusion, the occupancy
can infer reasonable results. Moreover, learning occupancy
in frustum and 3D space allows the network to study more
informative features under a higher dimension compared to
2D space.

Occupancy and depth are not mutually exclusive repre-
sentations. In fact, they complement each other in the 3D
object detection task. Without depth, the network has to
deal with a large search space, making it challenging to
learn reasonable occupancy features. Incorporating depth
estimation provides the network with a good starting point
and facilitates learning the occupancy features. Therefore,
it is recommended to utilize both depth and occupancy in-
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v 3D mAP / mAPH (loU = 0.7) 3D mAP / mAPH (loU = 0.5)
Methods M€ ] Overall  0-30m  30-50m 50m-co| Overall  0-30m  30-50m 50m-oco
Comparison on LEVEL 1
PatchNet[38] | ECCV20 | 039/0.37  1.67/1.63 0.13/0.12 0.03/0.03| 2.92/2.74 10.03/9.75 1.09/0.96 0.23/0.18
CaDDN [53] | CVPR2I | 5.03/4.99 14.54/14.43 1.47/1.45 0.10/0.10|17.54/17.31 45.00/44.46 9.24/9.11 0.64/0.62
PCT [65] NeurIPS21| 0.89/0.88  3.18/3.15 0.27/0.27 0.07/0.07| 4.20/4.15 14.70/14.54 1.78/1.75 0.39/0.39
MonoJSG [31] | CVPR22 | 0.97/0.95 4.65/4.59 0.55/0.53 0.10/0.09| 5.65/5.47 20.86/20.26 3.91/3.79 0.97/0.92
DEVIANT [25] | ECCV22 | 2.69/2.67  6.95/6.90 0.99/0.98 0.02/0.02|10.98/10.89 26.85/26.64 5.13/5.08 0.18/0.18
DID-M3D [49] | ECCV22 | - - -1- - |20.66/20.47 40.92/40.60 15.63/15.48 5.35/5.24

NeuROCS ' [44]| CVPR23 | 2.44/243  6.35/631 0.97/0.97 0.04/0.04| /- -I- - -I-

MonoUNI [23] | NeurlPS23| 3.20/3.16 ~ 8.61/8.50 0.87/0.86 0.13/0.12]10.98/10.73 26.63/26.30 4.04/3.98 0.57/0.55
OccupancyM3D| - |10.61/10.53 29.18/28.96 4.49/4.46 0.41/0.40|28.99/28.66 61.24/60.63 23.25/23.00 3.65/3.59

Comparison on LEVEL 2

PatchNet[38] | ECCV20 | 038036  1.67/1.63 0.13/0.11 0.03/0.03| 2.42/2.28 10.01/9.73 1.07/0.94 0.22/0.16
CaDDN [53] | CVPR2I | 4.49/4.45 14.50/14.38 1.42/1.41 0.09/0.09|16.51/16.28 44.87/44.33 8.99/8.86 0.58/0.55
PCT [65] NeurIPS21| 0.66/0.66 ~ 3.18/3.15 0.27/0.26 0.07/0.07| 4.03/3.99 14.67/14.51 1.74/L.71 0.36/0.35
MonoJSG [31] | CVPR22 | 0.91/0.89  4.64/4.65 0.55/0.53 0.09/0.09| 5.34/5.17 20.79/20.19 3.79/3.67 0.85/0.82
DEVIANT [25] | ECCV22 | 252/2.50  6.93/6.87 0.95/0.94 0.02/0.02|10.29/10.20 26.75/26.54 4.95/4.90 0.16/0.16
DID-M3D[49] | ECCV22 | /- /- -I- /- |19.37/19.19 40.77/40.46 15.18/15.04 4.69/4.59
NeuROCS ' [44]| CVPR23 | 2.29/228  6.32/629 0.94/0.93 0.03/0.03| /- - /- -I-

MonoUNI [23] | NeurIPS23| 3.04/3.00  8.59/8.48 0.85/0.84 0.12/0.12|10.38/10.24 26.57/26.24 3.95/3.89 0.53/0.51

OccupancyM3D | -

10.02/9.94 28.38/28.17 4.38/4.34 0.36/0.36‘27.21/26.90 61.09/60.49 22.59/22.34 3.18/3.13

Table 2. Results on WaymoOD val set for Vehicle category. The red refers to the highest result and blue is the second-highest result. Our
method outperforms other methods by significant margins on most metrics. Note that our method has the detection range limitation of
[2,59.6](meters), while the perspective-view based method DID-M3D [49] does not have this shortcoming. Thus our method performs

worse for objects within [50m, co] under IoU=0.5 criterion.

formation to achieve better representations and features for
monocular 3D detection.

4. Experiments
4.1. Implementation Details

We employ PyTorch [48] for implementation. The net-
work is trained on 4 NVIDIA 3080Ti (12G) GPUs, with
a total batch size of 8 for 80 epochs. We use Adam [24]
optimizer with initial learning rate 0.001 and employ the
one-cycle learning rate policy [61]. We use pre-trained
DLA34 [74] backbone from [47]. We employ flip and
crop data augmentation [36]. For KITTI [17], we fix the
input image to 1280 x 384, detection range [2,46.8] X
[—30.08,30.08] x [—3.0,1.0](meter) for x,y, z axes un-
der the LiDAR coordinate system, respectively. We use
voxel size [0.16,0.16, 0.16](meter). For Waymo [62], we
downsample the input RGB image from 1920 x 1280 to
960 x 640 to meet GPU memory. We use detection range
[2,59.6] x [—25.6,25.6] x [—2.0,2.0](meter) for x,y, z
axes due to the larger depth domain on Waymo. We use
voxel size [0.16,0.16, 0.16](meter).

4.2. Datasets and Metrics

Following the fashion in previous works, we conduct exper-
iments on competitive KITTI and Waymo open datasets.
KITTI: KITTI [17] is a widely employed benchmark for
autonomous driving. KITTI3D object dataset consists of
7,481 training samples and 7,518 testing samples, where
labels on fest set keep secret and the final performance is
evaluated on KITTI official website. To conduct ablations,
the training samples are further divided into a train set and
a val set [10]. They individually contain 3,512 and 3,769
samples, respectively. KITTI has three categories: Car,
Pedestrian, and Cyclist. According to difficulties (2D box
height, occlusion and truncation levels), KITTI divides ob-
jects into Easy, Moderate, and Hard. Following common
practice [35, 53, 60], we use APp gy |Rao and AP3p|R4o un-
der IoU threshold of 0.7 to evaluate the performance.
Waymo: Waymo open dataset (WaymoOD) [62] is a large
modern dataset for autonomous driving. It has 798 se-
quences for training and 202 sequences for validation. Fol-
lowing previous works [49, 53], we use the front camera of
the multi-camera rig and provide performance comparison
on val set for the vehicle category. To make fair compar-
isons, we use one third samples of training sequences to
train the network due to the large-scale and high frame rate
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A h Vi Inout Pedestrian APggv/APsp(IoU=0.5)|ry, | Cyclist APggv/APsp(IoU=0.5)|R4o
Pproaches enue pu Easy Moderate Hard Easy Moderate Hard
DfM [66] ‘ ECCV22 | Video -/13.70 -/8.71 -/1.32 ‘ -/8.98 -/5.75 -/4.88
Monodle [39] CVPR21 Image | 10.73/9.64 6.96/6.55 6.20/5.44 | 5.34/459 3.28/2.66  2.83/2.45
DDMP-3D [64] CVPR21 Image 5.53/4.93 4.02/3.55 3.36/3.01 | 4.92/4.18 3.14/250  2.44/2.32
MonoRUn [7] CVPR21 Image | 11.70/10.88 7.59/6.78 6.34/5.83 | 1.14/1.01 0.73/0.61  0.66/0.48
MonoEF [79] CVPR2] Image | 4.61/4.27 3.05/2.79 2.85/2.21 | 2.36/1.80 1.18/0.92 1.15/0.71
MonoFlex [76] CVPR21 Image | 10.36/9.43 7.36/6.31 6.29/5.26 | 4.41/4.17 2.67/235  2.50/2.04
CaDDN [53] CVPR21 Image | 14.72/12.87 9.41/8.14 8.17/6.76 | 9.67/7.00 5.38/3.41  4.75/3.30
GUP Net [36] ICCv21 Image | 15.62/14.95 10.37/9.76  8.79/8.41 | 6.94/5.58 3.85/3.21 3.64/2.66
AutoShape [35] Iccv2i Image -15.46 -/3.74 -/3.03 -/5.99 -/3.06 -/2.70
MonoCon [33] AAAI22 Image -/13.10 -/8.41 -/6.94 -/2.80 -/1.92 -/1.55
HomoLoss [18] CVPR22 | Image | 13.26/11.87 8.81/7.66 7.41/6.82 | 6.81/548 4.09/3.50  3.78/2.99
MonoJSG [31] CVPR22 | Image -/11.02 -/7.49 -/6.41 -/5.45 -/3.21 -/2.57
DEVIANT [25] ECCV22 | Image | 14.49/13.43 9.77/8.65 8.28/7.69 | 6.42/5.05 3.97/3.13  3.51/2.59
Cube R-CNN [4] CVPR23 | Image | 11.67/11.17 7.65/6.95 6.60/5.87 | 5.01/3.65 3.35/2.67  3.23/2.28
MonoUNI [23] NeurlPS23 | Image | 16.54/15.78 10.90/10.34  9.17/8.74 | 8.25/7.34 5.03/4.28  4.50/3.78
OccupancyM3D ‘ - Image | 16.54/14.68  10.65/9.15  9.16/7.80 | 8.58/7.37 4.35/3.56  3.55/2.84

Table 3. Comparisons on KITTI zest set for Pedestrian and Cyclist categories. The red refers to the highest result and blue is the second-

highest result. Our method achieves new state-of-the-art results.

of this dataset. Waymo divides objects to LEVEL 1 and
LEVEL 2 according to the LiDAR point number within ob-
jects. For metrics, we employ the official mAP and mAPH
under LEVEL 1 and LEVEL 2.

4.3. Results on KITTI and Waymo Datasets

We provide the performance comparisons on KITTI and
WaymoOD. Table 1 shows the results of Car category on
KITTT test set. Our method outperforms other methods
including video-based methods. For example, the pro-
posed method exceeds CaDDN [53] under all metrics, e.g.,
25.55/17.02/14.79 vs. 19.17/13.41/11.46 APsp. Please
note that NeuROCS [44] requires instance masks for train-
ing and does not report results of Pedestrian and Cyclist
on KITTI test set. Such irregularly shaped objects are
challenging to NOCS prediction. Our method outperforms
DID-M3D [49] by a margin of 2.43/1.42/1.54 APggy, and
performs better that Cube R-CNN [4] and MonoUNTI [23].
When compared to the video-based method DfM [66], Oc-
cupancyM3D also shows better performance, e.g., 24.18 vs.
22.89 APpgy under the moderate setting. In Table 3, we
provide comparisons on other categories, namely, Pedes-
trian and Cyclist. The results demonstrate the superiority of
our method on different categories. Concerning the overall
performance on all categories, our method achieves a state-
of-the-art on KITTI test set for monocular 3D detection.
We also evaluate our method on Waymo open dataset
(WaymoOD) [62] and obtain promising results. As shown
in Table 2, our method surpasses other methods with a
significant margin. For example, under LEVEL 1 setting,
OccupancyM3D outperforms CaDDN [53] by 5.58/5.54

mAP/mAPH (10.61/10.53 vs. 5.03/4.99) and 11.55/11.35
mAP/mAPH (28.99/28.66 vs. 17.54/17.31) with IoU 0.7
and 0.5 criterions, respectively. Compared to DID-M3D
[49], under IoU criterion 0.5, our method outperforms it
by 8.33/8.19 mAP/mAPH (28.99/28.66 vs. 20.66/20.47)
and 7.84/7.71 mAP/mAPH (27.21/26.90 vs. 19.37/19.19)
with LEVEL 1 and 2 settings, respectively. This success
can be attributed to the fact that occupancy learning ben-
efits from the diverse scenes present in large datasets. In
other words, large datasets especially favor the proposed
occupancy learning method. Interestingly, concerning ob-
jects within [50m, oo], our method performs worse than
DID-M3D [49]. It is because our method is voxel-based,
which has a detection range limitation ([2,59.6](meters)
in our method). By contrast, DID-M3D is a perspective-
based method, indicating that it does not have this limitation
and can detect more faraway objects. We encourage future
works to address this range limitation in our method.

4.4. Ablations

Following common practice in previous works, we perform
ablations on KITTI val set to validate the effectiveness of
each component. We compare the performance on Car cat-
egory under IoU criterion 0.7.

We provide the main ablation in Table 4. It can be
easily seen that occupancy learning significantly benefit
the final detection performance. When enforcing occu-
pancy learning in frustum space, the detection AP3p in-
creases from 21.04/17.05/15.01 to 24.69/17.79/15.16 (Exp.
(a)—(b)). On the other hand, when enforcing occupancy
learning in 3D space, the detection AP3p is boosted to
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Figure 4. Qualitative results of occupancy predictions and 3D detections on KITTI val set. In 3D detections, Red boxes are our results
and Green boxes denote ground-truths. The LiDAR point clouds in 3D detections are used only for visualization. We can see that the
proposed method generates reasonable occupancy predictions for the current scene, which benefits downstream monocular 3D detection
task. However, our method may fail to estimate heavily occluded objects (see right objects of the bottom picture). Most monocular 3D
detection failure cases stem from the poor occupancy estimation. Best viewed in color with zoom in.

APBEV/APSD (IOU:O.7)|R40

E. | OL-FS  OL-3DS Easy Moderate Hard

(a) 30.32/21.04  24.58/17.05  22.02/15.01
(b) v 35.46/24.69  25.46/17.79  22.96/15.16
©) v 33.15/24.64  25.45/18.88  22.68/16.38
() v v 35.72/26.87  26.60/19.96  23.68/17.15

Table 4. Main ablation. “E.” in the table is the experiment ID;
“OL-FS” refers to occupancy learning in frustum space; “OL-
3DS” denotes occupancy learning in 3D space.

24.64/18.88/16.38 (Exp. (c)). Finally, the model obtains
5.83/2.91/2.14 APsp gains (Exp. (a)—(d)) by employing
occupancy learning in both frustum and 3D space. This
main ablation demonstrates the effectiveness of our method.

4.5. Qualitative Results

We present qualitative results of occupancy predictions and
3D detections in Figure 4. Our method can predict reason-
able occupancy for the current scene, especially for fore-
ground objects. This indicates the potential of occupancy
learning in downstream tasks. Nevertheless, we can see that
the occupancy estimates are not very accurate for heavily
occluded objects (see right objects of the bottom picture),
which leaves room for improvement in future works.

5. Limitation and Future Work

One significant drawback of this work is the voxel size lim-
itation. Large voxels in explicit voxel-based representation
can reduce computation overhead and GPU memory, but at
the cost of failing to precisely describe the 3D geometry
of the scene due to quantization errors. Conversely, smaller
voxel sizes are able to express fine-grained 3D geometry but
come at the significant expense of increased computation

overhead and GPU memory usage. On the other hand, the
voxel-based method has limited detection ranges and most
detection failure cases stem from poor occupancy estima-
tion. This work mainly focuses on occupancy learning in
the monocular 3D detection task, and the exploration of its
application in more downstream tasks such as multi-camera
detection/segmentation and indoor 3D detection is less ex-
plored. We believe that it is an interesting and promising
topic and encourage future works to alleviate the above lim-
itations to advance the self-driving community.

6. Conclusion

In this paper, we propose to learn occupancy for monocular
3D detection, to obtain more discriminative and informa-
tive 3D features. To perform occupancy learning, we design
occupancy labels by using synchronized raw sparse LIDAR
point clouds and introduce corresponding occupancy losses.
Ablations verify the effectiveness of each proposed compo-
nent. To the best of our knowledge, this is the first work
that introduces occupancy learning to monocular 3D detec-
tion. We conduct experiments on the challenging KITTI
and Waymo open datasets. The results demonstrate that the
proposed method achieves new state-of-the-art results and
outperforms other methods by a large margin.
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