This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

MAP: MAsk-Pruning for Source-Free Model Intellectual Property Protection

Boyang Peng'} Sanging Qu'*, Yong Wu!, Tianpei Zou', Lianghua He?,
Alois Knoll?, Guang Chen'", Changjun Jiang!

!Tongji University, ? Technical University of Munich

Abstract

Deep learning has achieved remarkable progress in var-
ious applications, heightening the importance of safeguard-
ing the intellectual property (IP) of well-trained models. It
entails not only authorizing usage but also ensuring the de-
ployment of models in authorized data domains, i.e., making
models exclusive to certain target domains. Previous meth-
ods necessitate concurrent access to source training data
and target unauthorized data when performing IP protec-
tion, making them risky and inefficient for decentralized pri-
vate data. In this paper, we target a practical setting where
only a well-trained source model is available and investi-
gate how we can realize IP protection. To achieve this, we
propose a novel MAsk Pruning (MAP) framework. MAP
stems from an intuitive hypothesis, i.e., there are target-
related parameters in a well-trained model, locating and
pruning them is the key to IP protection. Technically, MAP
freezes the source model and learns a target-specific binary
mask to prevent unauthorized data usage while minimizing
performance degradation on authorized data. Moreover, we
introduce a new metric aimed at achieving a better balance
between source and target performance degradation. To
verify the effectiveness and versatility, we have evaluated
MAP in a variety of scenarios, including vanilla source-
available, practical source-free, and challenging data-free.
Extensive experiments indicate that MAP yields new state-
of-the-art performance. Code will be available at ht tps :
//github.com/ispc—1ab/MAP.

1. Introduction

With the growing popularity of deep learning in various
applications (such as autonomous driving, medical robotics,
virtual reality, etc), the commercial significance of this tech-
nology has soared. However, obtaining well-trained mod-
els is a resource-intensive process. It requires considerable
time, labor, and substantial investment in terms of dedi-
cated architecture design [12, 18], large-scale high-quality
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Figure 1. An illustration of model IP protection in source-free
and data-free situations. (a) The original model is well-trained in
the authorized (source) domain, with a wide generalization area
that allows illegal access to the model through unauthorized (tar-
get) domains. (b) Two methods are shown: (1) Source-free IP
protection, which removes an unauthorized domain from the gen-
eralization area without using source datasets; and (2) Data-Free
IP protection, which cannot access any datasets but reduces the
generalization area, preventing illegal knowledge transfer.

data [10, 21], and expensive computational resources [58].
Consequently, safeguarding the intellectual property (IP) of
well-trained models has received significant concern.

Previous studies on IP protection mainly focus on own-
ership verification [3, 23, 47] and usage authorization [16,
38], 1.e., verifying who owns the model and authorizing who
has permission to use it. Despite some effectiveness, these
methods are vulnerable to fine-tuning or re-training. More-
over, authorized users retain the freedom to apply the model
to any data without restrictions. Consequently, they effort-
lessly transfer high-performance models to similar tasks,
leading to hidden infringement. Therefore, comprehensive
IP protection requires a thorough consideration of applica-
bility authorization. It entails not only authorizing usage but
also preventing the usage of unauthorized data.

The primary challenge lies in the fact that the gener-
alization region of well-trained models typically encom-
passes some unauthorized domains (as depicted in Fig. |
(a)). It arises from the models’ innate ability to capture
domain-invariant features, thereby leading to potential ap-
plicability IP infringements. An intuitive solution is to
make the generalization bound of models more explicit
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and narrower, i.e., optimizing models to prioritize domain-
dependent features and confining their applicability exclu-
sively to authorized domains. To achieve this, NTL [49]
first remolds the methodology in domain adaptation with
an opposite objective. It amplifies the maximum mean dif-
ference (MMD) between the source (authorized) and tar-
get (unauthorized) domains, thereby effectively constrain-
ing the generalization scope of the models. Different from
NTL, CUTI-domain [50] constructs middle domains with
combined source and target features, which then act as bar-
riers to block illegal transfers from authorized to unautho-
rized domains. Regardless of promising results, these meth-
ods require concurrent access to both source and target data
when performing IP protection, rendering them unsuitable
for decentralized private data scenarios. Moreover, they
typically demand retraining from scratch to restrict the gen-
eralization boundary, which is highly inefficient since we
may not have prior knowledge of all unauthorized data at
the outset, leading to substantial resource waste.

In this paper, we target a practical but challenging setting
where a well-trained source model is provided instead of
source raw data, and investigate how we can realize source-
free IP protection. To achieve this, we first introduce our In-
verse Transfer Parameter Hypothesis inspired by the lottery
ticket hypothesis [13]. We argue that well-trained models
contain parameters exclusively associated with specific do-
mains. Through deliberate pruning of these parameters, we
effectively eliminate the generalization capability to these
domains while minimizing the impact on other domains.
To materialize this idea, we propose a novel MAsk Prun-
ing (MAP) framework. MAP freezes the source model and
learns a target-specific binary mask to prevent unauthorized
data usage while minimizing performance degradation on
authorized data. For a fair comparison, we first compare our
MAP framework with existing methods when source data is
available, denoted as SA-MAP. Subsequently, we evaluate
MAP in source-free situations. Inspired by data-free knowl-
edge distillation, we synthesize pseudo-source samples and
amalgamate them with target data to train a target-specific
mask for safeguarding the source model. This solution is
denoted as SF-MAP. Moreover, we take a step further and
explore a more challenging data-free setting, where both
source and target data are unavailable. Building upon SF-
MAP, we introduce a diversity generator for synthesizing
auxiliary domains with diverse style features to mimic un-
available target data. We refer to this solution as DF-MAP.
For performance evaluation, current methods only focus on
performance drop on target (unauthorized) domain, but ig-
nore the preservation of source domain performance. To
address this, we introduce a new metric Source & Target
Drop (ST-D) to fill this gap. We have conducted extensive
experiments on several datasets, the results demonstrate the
effectiveness of our MAP framework. The key contribu-

tions are summarized as follows:

* To the best of our knowledge, we are the first to exploit
and achieve source-free and data-free model IP protec-
tion settings. These settings consolidate the prevailing re-
quirements for both model IP and data privacy protection.

* We propose a novel and versatile MAsking Pruning
(MAP) framework for model IP protection. MAP stems
from our Inverse Transfer Parameter Hypothesis, i.e.,
well-trained models contain parameters exclusively as-
sociated with specific domains, pruning these parameters
would assist us in model IP protection.

» Extensive experiments on several datasets, ranging from
source-available, source-free, to data-free settings, have
verified and demonstrated the effectiveness of our MAP
framework. Moreover, we introduce a new metric for
thorough performance evaluation.

2. Related Work

Model Intellectual Property Protection. To gain
improper benefits and collect private information in the
model, some individuals have developed attack methods,
such as the inference attack [2, 31, 54], model inversion
attack [14, 45, 57], adversarial example attack [34, 55] and
others [1, 33]. Therefore, the protection of model intellec-
tual property rights has become important. Recent research
has focused on ownership verification and usage authoriza-
tion to preserve model intellectual property [49]. Tradi-
tional ownership verification methods [25, 56] employ wa-
termarks to establish ownership by comparing results with
and without watermarks. However, these techniques are
also susceptible to certain watermark removal [5, 17] tech-
niques. Usage authorization typically involves encrypting
the entire or a portion of the network using a pre-set private
key for access control purposes [16, 38].

As a usage authorization method, NTL [49] builds an
estimator with the characteristic kernel from Reproduction
Kernel Hilbert Spaces (RKHSs) to approximate the Maxi-
mum Mean Discrepancy (MMD) between two distributions
to achieve the effect of reducing generalization to a certain
domain. According to [50], CUTI-Domain generates a mid-
dle domain with source style and target semantic attributes
to limit generalization region on both the middle and target
domains. [48] enhances network performance by defining
a divergence ball around the training distribution, covering
neighboring distributions, and maximizing model risk on all
domains except the training domain. However, the privacy
protection policy results in difficulties in getting user source
domain database data, which disables the above methods.
To address this challenge, in this paper, we propose source-
free and target-free model IP protection tasks.

Unstructured Parameter Pruning. Neural network
pruning reduces redundant parameters in the model to al-
leviate storage pressure. It is done in two ways: unstruc-
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Figure 2. Overall architecture of MAP. Please note that this architecture presents the complete DF-MAP, from which SA-MAP and SF-MAP
are derived. (a) The Generation Module, displayed in the left part, consists of three generators. The Diversity Generator (G 4) synthesizes
auxiliary samples to generate neighbor domains with multiple style features. The Fresh Generator (G ) generates synthetic novel featured
samples, while Memory Generator (G,) replays samples with features from previous images. In SF-MAP, the Diversity Generator (G g)
is removed, and existing target domain data is utilized for training. In SA-MAP, the entire Generation Module is eliminated, and existing
source domain data is further leveraged, as detailed in the supplementary material. (b) The right part illustrates the mask-pruning process.
A well-trained original source network fs distills knowledge into the target network f;, which shares the same architecture. We initialize
and fix them with the same checkpoint, then update a Learnable Binary Mask (M ) with consistency loss calculated from synthetic samples.
The MAP limits a target domain generalization region while retaining source domain performance, leading to a beneficial outcome.

tured or structured [19]. Structured pruning removes filters,
while unstructured pruning removes partial weights, result-
ing in fine-grained sparsity. Unstructured pruning is more
effective, but sparse tensor computations save runtime, and
compressed sparse row forms add overhead [53].

There are several advanced methods for unstructure
pruning. For example, [35] proposes a method that builds
upon the concepts of network quantization and pruning,
which enhances the network performance for a new task
by utilizing binary masks that are either applied to unmod-
ified weights on an existing network. As the basis of our
hypothesis, the lottery hypothesis [13] illustrates that a ran-
domly initialized, dense neural network has a sub-network
that matches the test accuracy of the original network after
at most the same number of iterations trained independently.

Source-Free Domain Adaptation. Domain adaptation
addresses domain shifts by learning domain-invariant fea-
tures between source and target domains [51]. In terms of
source-free learning, our work is similar to source-free do-
main adaptation, which is getting more attention due to the
data privacy policy [28]. [6] first considers prevention ac-
cess to the source data in domain adaptation and then ad-
justs the source pre-trained classifier on all test data. Sev-
eral approaches are used to apply the source classifier to
unlabeled target domains [8, 46], and the current source-
free adaptation paradigm does not exploit target labels by
default [26, 29, 42]. Some schemes adopt the paradigm
based on data generation [24, 30, 39], while others adopt

the paradigm based on feature clustering [26, 27, 40, 41].
Our technique follows the former paradigm, which synthe-
sizes a pseudo-source domain with prior information.

3. Methodology

In this paper, we designate the source domain as the
authorized domain and the target domain as the unautho-
rized domain. Firstly, Section 3.1 defines the problem and
our Inverse Transfer Parameter Hypothesis. Then Sec-
tion 3.2, Section 3.3, and Section 3.4 present our MAsk-
Pruning (MAP) framework in source-available, source-free,
and data-free situations, respectively.

3.1. Problem Definition

Formally, we consider a source network f; : X5 —
Vs trained on the source domain Dy = {(xs,ys)||xs ~
P%,ys ~ Py}, a target network f; @ X — )y, and tar-
get domain D; = {(z,ys)||x¢ ~ Ph,y: ~ P} }. Px and
Py are the distribution of X and ), respectively. The goal
of source-available IP protection is to fine-tune f; while
minimizing the generalization region of f; on target domain
D; by using f, with {z, 52} and {z}, 4}, in other
words, degrade the performance of f; on D, while preserv-
ing its performance on Dy [49, 50]. Due to increasingly
stringent privacy protection policies, access to the D, or D;
database of a user is more and more difficult [28]. Thus, we
introduce IP protection for source-free and data-free scenar-
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ios. The objective of source-free model IP protection is to
minimize the f; generalization region of a designated target
domain D; by utilizing f, with {z}Y*,. Data-free model
IP protection is an extreme case. The objective is to min-
imize the generalization bound of f; by solely utilizing f5,
without access to D, and D;.

To mitigate the risk of losing valuable knowledge stored
in the model parameters, we initiate our approach with un-
structured pruning of the model. The lottery ticket hypoth-
esis, proposed by [13], is widely acknowledged as a funda-
mental concept in the field of model pruning. Building upon
this foundation, we extend our Inverse Transfer Parameter
Hypothesis as Hypothesis 1 in alignment with the principles
presented in [13].

Hypothesis 1 (Inverse Transfer Parameter Hypothesis).
For a dense neural network fs well-trained on the source
domain Dy, there exists a sub-network fg; like this: while
fsupb achieves the same test accuracy as fs on Dy, its per-
formance significantly degrades on the target domain D;.
The pruned parameters of fs relative to fs., are crucial in
determining its generalization capacity to D;.

3.2. Source-Avaliable Model IP Protection

To verify the soundness of Hypothesis 1, we first design
the source-available MAsk Pruning (SA-MAP). f; has the
same architecture as f5 and is initialized with a well-trained
checkpoint of D,. To maximize the risk of the target domain
and minimize it in the source domain, we prune the f;’s
parameters by updating a binary mask M (6,,) of it and get
a sub-network f,; by optimizing the objective:

N,
LN
Lsa(fi Xe, Ve, X D0) = 5 D KL (07[lys)
S =1
| (1)
—min{\ - N, ZKL (ptTHyt) ,al
=1

where K L(-) presents the Kullback-Leibler divergence,
{a,y2}Ne and {z%,yi}Y, mean N,/N; data and labels
sampled from source domain D, and target domain D;, re-
spectively. p; = fi(x,), and pI = f;(x;). o and \ are the
upper bound and scaling factor, respectively, which aim to
limit the over-degradation of domain-invariant knowledge.
Weseta =1.0and A = 0.1.

3.3. Source-Free Model IP Protection

Under the source-free setting, we have no access to
{a%, 42} . To address this, we construct a replay-based
source generator module to synthesize N pseudo-source
domain data {z%, y”}+, . As illustrated in Fig. 2, SE-MAP
is deformed by removing the Diversity Generator module

and employing unlabeled target data.

Algorithm 1 SF-MAP in Source-Free Model IP Protection

Require: The target dataset Ay, source network fs(x;6;),
target network f;(x;60;), pre-trained model parame-
ters 6y, fresh generator G;(z;6;), memory generator
Gm(z;0p,), encoder E,,(x;0.), mask M (6yr), gaus-
sian noise zy and z,.
Initialize 6, and 6; with 6y and fix them
while not converged do
Generate sample z; = Gf(z5), T = G (2m)
Update 0 by = as Eq. (2)
Concatenate synthetic data 2, by x; and x,,
Update 6,,, and 6., by z’, as Eq. (3)
Update 6, using z,, and z; as Eq. (4)
end while
return Learned mask parameters 0/

D AN Al

Source generator module is composed of two generators
to synthesize source feature samples, the fresh generator G ¢
synthesizes samples with novel features, and the memory
generator GG, replays samples with origin features. Before
sampling, we first train the fresh generator G ¢ as Eq. (2).
The objective of G’y is to bring novel information to f;. To
make Gy synthesize the source-style samples, we leverage
the loss function of Eq. (2). The first two items of Eq. (2)
derive from [4], called predictive entropy and activation loss
terms. These terms are designed to encourage the generator
to produce high-valued activation maps and prediction vec-
tors with low entropy, that is, to keep the generated samples
consistent with the characteristics of the origin samples. As
for the third item, JS denotes the Jensen-Shannon diver-
gence, encouraging f; to obtain consistent results with f;.

1
Lr= > [t log (p) — AaH () + TS (9 [1p1)]

i=1
@)
where pl, = fi(zf), and p; = fi(zy). zp = Gr(zf)
means the generated novel sample by a gaussian noise
zp ~ N(0,1), while ¢, = argmaz (p¥). H(-) denotes
the entropy of the class label distribution.

Along with the fresh generator Gy, we optimize the
memory generator G, and encoder E,, as Eq. (3), which
aims to replay the features from earlier distributions. To
preserve the original features, we utilize the L1 distance to
measure the similarity between the generated samples and
reconstructed samples. The loss is defined as follows:

N
Lo = S0 = el + DA Fulavell)
i=1

leL
3)
where || - ||; means the L1 distance. L is the selected
layer set of fs. Zpe = Dp(Fm(2)) means reconstructed
sample from the encoder-decoder structure. 2, denotes
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the input synthetic sample concatenated by x; and x,.
T = G (2, ) means memory sample, and z,, ~ N(0,1).

After the generation process, we choose unlabeled target
samples {zi}N and synthetic source samples {z” }fv/ to
train the target model f; based on Hypothesis 1, which is
detailed in Algorithm 1. Adhering to the procedure in SA-
MAP, we still employ the binary mask pruning strategy and
update a M (6r) of f; as follows:

N/
1 X

= ﬁ Z KL (p| p5)
=1

Ny

Lsr(fe. fs: Xg, X

—min{\ - ZKL P ypsa) -8} @
Ypsd = fs(@), if conf(p?) > A
- L3, fs(Aug; (z1)),  otherwise,

where p! = fu(a), i = fu(@l), o = fulwy), p¥ =
fs(z), respectively. To improve pseudo labels y,q, We
utilize a set of ¢ data augmentation Aug;, when the predic-
tion confidence conf(p?') is lower than a threshold A. \ and
[ denote a scaling factor and an upper bound, respectively.
Weset A =0.1and 8 = 1.0.

3.4. Data-Free Model IP Protection

When faced with challenging data-free situations, we
adopt an exploratory approach to reduce the generalization
region. Inspired by [52], we design a diversity generator G4
with learnable mean shift §,, and variance shift 6, to extend
the pseudo source samples to neighborhood domains D,,pp,
of variant directions. The objective is to create as many
neighboring domains as feasible to cover the most target
domains and limit the generalization region. After genera-
tion, we concatenate samples with distinct directions as the
whole pseudo auxiliary domain.

The latent vector z; of i-th sample z; from the dataset
X is generated by the feature extractor g; : X — R? of
the source model f, = hy(gs(x)), where hy : R4 — RF
means the classifier, d and £ mean the dimension of latent
space and class number, respectively. This component is
designed to learn and capture potential features for the gen-
erator G4 in a higher-dimensional feature space. Eq. (5) ap-
plies mutual information (MI) minimization to ensure vari-
ation between produced and original samples, ensuring dis-
tinct style features.

N

1 , Lo :
Lyr = NZ[IOgQ(Zi | i) — ~ > logq () | 2)] (5)

i=1 j=1

However, the semantic information between the same
classes should be consistent. So we enhance the semantic
consistency by minimizing the class-conditional maximum

mean discrepancy (MMD) [44] in the latent space to en-
hance the semantic relation of the origin input sample x and
the generated sample x4 in Eq. (0), and x, = G4(x).

c 1 L
eem—éz F f)_@zqﬁ(?j‘;@’)
k=1 j=1

i Mg

(6)
where z* and z*’ denote the latent vector of class k of = and
Z4. q(+) means an approximate distribution and ¢(-) means
a kernel function. N, and N}, are the number of origin and
generated samples for class k, respectively.

To generate diverse feature samples, we constrain differ-
ent generation directions ng;,- of the gradient for the gener-
ation process detailed in supplementary material. The opti-
mization process follows the gradient because it is the most
efficient way to reach the goal. In this case, all the generated
domains will follow the same gradient direction [49]. So
we restrict the gradient to get neighborhood domains with
diverse directions. We split the generator network G4 into
ngir parts. We limit direction ¢ by freezing the first ¢ param-
eters of convolutional layers. The gradient of the convolu-
tional layer parameters is frozen during training, limiting
the model’s learning capabilities in that direction.

4. Experiments
4.1. Implementation Details

Experiment Setup. Building upon existing works,
we select representative benchmarks in transfer learn-
ing—the digit benchmarks (MNIST (MN) [11], USPS
(US) [20], SVHN (SN) [36], MNIST-M (MM) [15]) and CI-
FAR10 [22], STL10 [9] VisDA-2017 [37] for object recog-
nition. For IP protection task, we employ the VGG11 [43],
VGG13 [43], and VGG19 [43] backbones, which is the
same as [50]. The ablation study additionally evaluates
on ResNet50 [18], ResNet101 [18], SwinT [32] and Xcep-
tion [7] backbones. We mainly compare our MAP with the
NTL [49] and CUTI [50] baselines. We leverage the uni-
tive checkpoints trained on supervised learning (SL) to ini-
tialize. To fairly compare in the source-free scenario, we
replace the source and target data with synthetic samples
with the generator in Section 3.3 for all baselines. Ex-
periments are performed on Python 3.8.16, PyTorch 1.7.1,
CUDA 11.0, and NVIDIA GeForce RTX 3090 GPU. For
each set of trials, we set the learning rate to le-4, and the
batch size to 32.

Evaluation Metric. Existing works [49, 50] leverage
the Source/Target Drop metric (Drops/Drop;), by quanti-
fying the accuracy drop in the processed model compared
to the original source model f; accuracy (Accs/Acct), to
verify the effectiveness. However, these two separate met-
rics make it difficult to evaluate the effectiveness of the
method as a whole because performance degradation on il-
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legal target domains has the risk of destroying source do-
main knowledge. In order to realize the trade-off, we pro-
pose ST-D as Eq. (7). A lower ST-D denotes enhanced IP
protection, with a minimal drop on the source domain and a
maximum on the target.

Drops | Accs

ST.D = — %Ps [ 2CCs
Drop; | Accy

)

4.2. Result of MAP in Source-Available Situation

We first conduct experiments in the source-available sit-
uation to verify the effectiveness of our Hypothesis 1. As
stated before,

we introduce the SA-MAP and optimize a binary mask
to realize model IP protection and compare NTL, CUTI,
and SA-MAP on digit datasets. Results in Table 1 show
that SA-MAP achieves better Source Drop (-0.3%) and ST-
D (-0.004), indicating the most deterioration in the target
domain and the least in the source domain. It is notewor-
thy that SA-MAP even outperforms the origin model in the
source domain (-0.3%). We speculate this may be the result
of pruning, which removes redundant parameters.

Fig. 3 assess method performance on CIFAR10, STL10,
and VisDA-2017 benchmarks independently. We exploit
VGG13 on CIFAR10—STL10 experiment, and VGG19 on
VisDA-2017 (T—V). For a fair comparison, we utilize the
same training recipe in [50].

A clear observation is that the pre-trained source model
has good generalization performance on these three unau-
thorized tasks, seriously challenging the model IP. After
performing protection, both baseline methods and our SA-
MAP effectively reduce the performance on the target do-
main. SA-MAP achieves comparable or better results com-
pared to baseline methods, which basically demonstrates
our Hypothesis 1.

4.3. Result of MAP in Source-Free Situation

We then perform model IP protection in the challeng-
ing source-free situation and present our SF-MAP solution.
We train NTL, CUTI, and SF-MAP with the same samples
from Section 3.3 for fairness. Table 2 illustrates a consider-
able source drop of NTL (68.9%) and CUTI (87.4%) lead to

SA-MAP

present the accuracy of the corresponding methods in the

Methods | Soure | Source Drop| Target Dropt  ST-D|
MT | 15(1.5%) 509 (77.6%) 0.019
US | -0.2(-02%) 46.3(84.0%) -0.024
NTL[49] | SN | 08(0.9%)  50.0(852%) 0.011
MM | 20(21%)  59.7(792%) 0.027
| Mean | 1.0(1.1%)  5L7(81.5%) 0.013
MT 0 (0%) 52.7(80.0%) 0O
US | -0.1(-01%) 423 (78.6%) -0.013
CUTI[50] | SN | 03(03%) 483 (82.3%) 0.036
MM | 08(0.8%)  60.1(80.0%) 0.010
| Mean | 03(03%)  50.9(80.2%) 0.004
MT | -0.1(-01%) 51.0(77.8%) -0.013
Us 0 (0%) 452(82.1%) 0
S’(*O'l\fsp SN | -0.8(-0.9%) 49.6(84.4%) -0.012
! MM | -0.1(-0.1%) 60.4(80.2%) -0.012
| Mean | -0.3(-0.3%) 51.6(81.1%) -0.004

Table 1. SA-MAP results in source-available situation. Note that
the detailed version, likes the form of Table 2, is in the supplemen-
tary. The ‘]’ denotes a smaller number giving a better result, and
the ‘1’ means the opposite. The best performances are bolded.

1.01 and 1.08 ST-D, respectively. While SF-MAP achieves
better Source Drop (8.8%) and ST-D (0.24). The backbone
in Fig. 4 is configured to correspond with the experimen-
tal setup described in Section 4.2. In particular, SF-MAP
exhibits higher performance with relative degradations of
38.0%, 51.7%, and 64.9%, respectively.

We attribute impressive results to the binary mask prun-
ing strategy. Arbitrary scaling of network parameters us-
ing continuous masks or direct adjustments has the potential
to catastrophic forgetting. Precisely eliminating parameters
through a binary mask offers a more effective and elegant
solution for IP protection, while concurrently preventing the
loss of the network’s existing knowledge.

4.4. Result of MAP in Data-Free Situation

We next present our DF-MAP in the extremely challeng-
ing data-free setting. Section 4.3 indicates that the current
techniques are not suited to source-free scenarios. Due to
the absence of relevant research to our best knowledge, we
refrain from specifying or constructing the baseline in the

23590



Methods ‘ Source/Target MT usS SN MM ‘ Source Drop] Target Drop? ST-D|
MT 98.9/41.3 96.3/38.9 36.3/19.0 649/11.1 57.6 (58.2%) 49.5 (65.1%) 0.89
us 90.0/33.2 99.7/40.0 32.8/6.8 42.4710.8 59.7 (59.9%) 38.1 (69.2%) 0.86
NTL [49] SN 68.2/20.5 75.0/32.7 92.0/19.4 32.8/9.2 72.6 (78.9%) 37.9 (64.5%) 1.22
MM 97.5/11.3 88.3/30.7 40.2/19.0 96.8/20.6 76.2 (78.7%) 55.0 (73.0%) 1.08
‘ Mean / / / ‘ 66.5 (68.9%) 45.1 (68.0%) 1.01
MT 98.9/13.0 96.3/14.1 36.3/19.0 649/11.2 85.9 (86.9%) 51.1 (77.5%) 1.12
us 90.0/10.7 99.7/1.8 32.8/6.6 42.4/10.6 91.9 (92.2%) 53.1 (83.1%) 1.11
CUTI [50] SN 68.2/9.3 75.0/14.1 92.0/13.6 32.8/94 78.4 (85.2%) 47.7 (81.4%) 1.05
MM 97.5/11.4 88.3/14.1 40.2/19.0 96.8/14.2 82.6 (85.3%) 60.5 (80.3%) 1.06
‘ Mean / / / ‘ 84.7 (87.4%) 53.1 (80.6%) 1.08
MT 99.2/90.2 96.3/59.9 36.7/19.4 64.8/24.5 9.0 (9.0%) 31.3 (47.5%) 0.19
SE-MAP us 90.0/67.3 99.7/83.5 328/7.1 42.4730.8 16.2 (16.2%) 20.0 (36.3%) 0.45
(ours) SN 68.2/34.8 75.0/52.5 91.4/87.2 32.8/32.0 4.2 (4.6%) 25.0 (32.2%) 0.12
MM 97.6/93.3 88.5/49.0 40.2/22.1 97.0/91.8 5.2(5.4%) 19.6 (27.4%) 0.20
‘ Mean ‘ / / / ‘ 8.7 (8.8%) 24.0 (35.9%) 0.24

Table 2. SE-MAP results in source-free situation. The left of ‘/* represents the origin source model accuracy with supervised learning, and
the right of ‘/* denotes the accuracy of NTL, CUTI, and SF-MAP trained on the source-free setting. We synthesize samples with source
domain features as pseudo-source domains and train with target data. The best performances are bolded.
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Figure 4. The accuracy of SL, NTL, CUTI, and SF-MAP on CIFAR10—STL10, and VisDA-2017 (T—V). The

s and

presents the accuracy of the source domain, target domain, and relative degradation, respectively.

data-free situation. Table 3 indicates DF-MAP achieved IP
protection by achieving a lower decrease in source domains
and a higher drop in target domains, as illustrated by ST-D
being less than 1.0 for all sets of experiments.

4.5. Result of Ownership Verification

After the above, we additionally conduct an ownership
verification experiment of MAP using digit datasets and
VGGI11 backbone. Following existing work [49], we ap-
ply a watermark to source domain samples, treating it as an
unauthorized auxiliary domain. As shown in Table 4, MAP
performed 1.9% better than the second, which demonstrates
the utility of this model IP protection approach.

4.6. Ablation Study

Backbone. To verify the generality of MAP for differ-
ent network architectures, we examine it for several back-
bones, including VGG11, VGG13, VGG19 [43], ResNet18,
ResNet34 [18], Swin-Transformer [32], and Xception [7].
Experiments are conducted on STL10 — CIFAR10. We
evaluate model accuracy on the target domain with minimal
source domain influence. Fig. 5 (a) illustrates that SE-MAP
achieves consistently lower accuracy in unauthorized tar-

725
ol 589
503 80
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39.
40 69 362 38 2 60 .3
8.1

30 4.6 38

14 0.7 40 318 933
20 5.7 143 p5.2°"

N 175

10 20 I
0 |

VGGI1 VGGI3 VGGI9 ResNetl8ResNet34 SwinT — Xcep MT—US CIFAR—STL T-V

= Target SL = Target SF Loss | =Loss 2 ®Loss SF

Figure 5. (a) (left) The accuracy (%) of origin SL and the SF-MAP
model with different backbones on target of STL10 — CIFAR10
datasets. (b) (right) The accuracy (%) of SF-MAP with different
losses on the target domain of MT — US, CIFAR10 — STL10,
and VisDA-2017 (T — V).

get domains than the origin model in supervised learning,
demonstrating its universality for different backbones.
Loss Function. Eq. (4) suggests Lsr shaped as £1+ Lo,
where £1 = KL (p!|| p}) and L3 = =KL (p] ||ypsa). We
conduct ablation studies to verify each loss component’s
contribution. We utilize £1, L5, and Lgp to train SF-
MAP on MN—US, CIFAR10—STL10, and VisDA-2017
(T—V). According to Fig. 5 (b), the result on £; has the
minimum drop to the target domain due to poor simulation
of its features. The result on Lgp shows the greatest target
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Methods | Source/Target | MT US SN MM | Source Drop  TargetDropt  ST-D|
MT 99.1/95.0 96.8/72.0 37.1/15.1 67.5/14.7 4.1 (4.1%) 33.2 (37.8%) 0.11
DE-MAP UsS 89.4/83.8 99.8/99.5 34.9/31.0 33.8/16.8 0.3 (0.3%) 8.8 (10.3%) 0.03
(ours) SN 58.6/46.6 70.9/59.2 91.5/76.3 29.5/24.2 15.2 (16.6%) 9.7 (18.2%) 0.91
MM 98.8/94.8 84.4/61.3 40.2/28.8 96.5/94.7 1.8 (1.9%) 12.8 (17.2%) 0.11
| Meam |/ / / /| 54G7%  161(209%) 027

Table 3. DF-MAP results in the data-free situation. The right of /> denotes the accuracy of DF-MAP is trained on the data-free setting,
which cannot attain any data or labels. The ‘]’ means a smaller number gives a better result, and the “}” means the opposite.

Source ‘ Avg Drop
| SL NTL CUTI  MAP
MT 02 879 877 88.6
Us 0.1 857 930 92.5
SN 08 664 469 415
MM 44 839 796 79.2
CIFAR 0 274 384 56.2
STL 6.7 548 620 60.1
VisDA | 0.1 0.1 224 19.1
Mean | -03 580 614 63.3

Table 4. Ownership verification of SA-MAP. Avg Drop presents
the accuracy drop between source domain and watermarked auxil-
iary domain. Note that the detailed version is in the supplementary.

drop without affecting the source domain, but Ly signifi-
cantly degrades source performance, as detailed in the sup-
plementary. The L£gp is more accurate than £ in recogniz-
ing domain-invariant characteristics, eliminating redundant
parameters, and degrading the target domain performance.

Visualization. Fig. 6 (a) illustrates the MN—US experi-
ment convergence analysis diagram. With SF-MAP, source,
and target domain model performance is more balanced.
The fact that NTL changes all model parameters may lead
to forgetting the source feature and inferior results. In the
absence of the real source domain, CUTI’s middle domain
may aggravate forgetting origin source features since syn-
thesized source domains may have unobserved style fea-
tures. Fig. 6 (b) illustrates the T-SNE figures of MN—MM.
The origin supervised learning (SL) model, NTL, CUTI,
and SF-MAP results are exhibited with the source domain
MNIST in blue and the target domain MNISTM in red. As
illustrated in Fig. 6 (b), SF-MAP’s source domain data re-
tains better clustering information than other approaches,
while the target domain is corrupted.

5. Conclusion

Attacks on neural networks have led to a great need for
model IP protection. To address the challenge, we present
MAP, a mask-pruning-based model IP protection method
stemming from our Inverse Transfer Parameter Hypothe-
sis, and its expansion forms (SA-MAP, SF-MAP, and DF-
MAP) under source-available, source-free, and data-free
conditions. SA-MAP updates a learnable binary mask to
prune target-related parameters. Based on SA-MAP, SF-

100 100

—— SF-MAP
NTL
— CcuTt

80

60 —— SF-MAP
NTL

— cutt

2 40

Source Accuracy

Target Accuracy

Figure 6. Visualization analysis. (a) (top) Converge analysis di-
agram. The convergence of the source accuracy and the target
accuracy in the training process is exhibited. (b) (bottom) T-SNE
visualization diagram of SL, NTL, CUTI, and SF-MAP.

MAP uses replay-based generation to synthesize pseudo
source samples. We further suggest a diversity generator in
DF-MAP to construct neighborhood domains with unique
styles. To trade off source and target domains’ evaluation,
the S7-D metric is proposed. Experiments conducted on
digit datasets, CIFAR10, STL10, and VisDA, demonstrate
that MAP significantly diminishes model generalization re-
gion in source-available, source-free, and data-free situa-
tions, while still maintaining source domain performance,
ensuring the effectiveness of model IP protection.
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