
Scene Adaptive Sparse Transformer for Event-based Object Detection

Yansong Peng1,* Hebei Li1,* Yueyi Zhang1,† Xiaoyan Sun1,2 Feng Wu1,2

1University of Science and Technology of China
2Institute of Artificial Intelligence, Hefei Comprehensive National Science Center

{pengyansong, lihebei}@mail.ustc.edu.cn, {zhyuey, sunxiaoyan, fengwu}@ustc.edu.cn

Abstract

While recent Transformer-based approaches have shown
impressive performances on event-based object detection
tasks, their high computational costs still diminish the low
power consumption advantage of event cameras. Image-
based works attempt to reduce these costs by introduc-
ing sparse Transformers. However, they display inade-
quate sparsity and adaptability when applied to event-based
object detection, since these approaches cannot balance
the fine granularity of token-level sparsification and the
efficiency of window-based Transformers, leading to re-
duced performance and efficiency. Furthermore, they lack
scene-specific sparsity optimization, resulting in informa-
tion loss and a lower recall rate. To overcome these limi-
tations, we propose the Scene Adaptive Sparse Transformer
(SAST). SAST enables window-token co-sparsification, sig-
nificantly enhancing fault tolerance and reducing compu-
tational overhead. Leveraging the innovative scoring and
selection modules, along with the Masked Sparse Window
Self-Attention, SAST showcases remarkable scene-aware
adaptability: It focuses only on important objects and dy-
namically optimizes sparsity level according to scene com-
plexity, maintaining a remarkable balance between perfor-
mance and computational cost. The evaluation results show
that SAST outperforms all other dense and sparse networks
in both performance and efficiency on two large-scale
event-based object detection datasets (1Mpx and Gen1).
Code: https://github.com/Peterande/SAST.

1. Introduction
Event cameras asynchronously capture the illumination
changes of each pixel in a bionic way and possess several
advantages, such as high temporal resolution (>10K fps)
and a wide dynamic range (>120 dB) [12]. Unlike frame
cameras that capture the whole scene at a fixed rate, event
cameras exclusively record sparse event streams when ob-

*Joint first author †Corresponding author

40

42

44

46

48

50

1 10 100

40

42

44

46

48

50

1 10 100

40

42

44

46

48

50

1 10 100

40

42

44

46

48

50

1 10 100
40

42

44

46

48

50

1 10 100

Original Events: Sparse Scene & Dense SceneOriginal Events: Sparse Scene & Dense Scene

m
A

P
 (

%
)

Ours
Dense Transformers

AEC

GET

RVT-T

RVT-S

RVT-B

Sparse Transformers

AViT

SAST (Ours)

SAST-CB (Ours)

SViT SViT 

40

42

44

46

48

50

1 10 100

40

42

44

46

48

50

1 10 100

40

42

44

46

48

50

1 10 100

40

42

44

46

48

50

1 10 100

40

42

44

46

48

50

1 10 100

40

42

44

46

48

50

1 10 100

40

42

44

46

48

50

1 10 100

40

42

44

46

48

50

1 10 100

A- FLOPs (G)

40

42

44

46

48

50

1 10 100

40

42

44

46

48

50

1 10 100
10 2

SAST (Ours): Sparse Windows & TokensSAST (Ours): Sparse Windows & Tokens

Dense Transformers: Dense Windows & Tokens

Figure 1. Detection performance vs. computational cost on
1Mpx, with marker size indicating model size. SAST exhibits su-
periority by employing window-token co-sparsification and scene-
specific sparsity optimization, maintaining low computation while
delivering high performance across varying scenes.

jects are in motion, resulting in no events generated in static
scenes. This distinctive trait enables event cameras to oper-
ate with low power consumption (<10 mW) [12].

Building on these unique advantages of event cameras,
event-based object detection excels in challenging motion
and lighting conditions, and offers energy-efficient solu-
tions in power-constrained environments [20, 28, 31, 41, 43,
63]. However, as the raw events are asynchronous, tradi-
tional Image-based networks can not be directly applied to
them. To overcome this problem, prior works often convert
events into Image-like representations, such as event voxel
[67], event histogram [39], and time surface [26, 51] first.
Features are extracted from these representations using dif-
ferent neural network architectures, including CNN-based
[10, 13, 14, 33], SNN-based [6, 9, 27, 34, 59], and GNN-
based networks [30, 49]. Recently, many innovative works
have demonstrated that Vision Transformers can achieve su-
perior performance on event-based object detection tasks
[15, 16, 42]. However, the quadratic computational com-
plexity of self-attention in Transformers hinders model scal-
ability [52], which challenges the balance between perfor-
mance and efficiency for event-based object detection. The
high power consumption of such dense operation also di-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

16794



minishes the low power consumption advantage of event
cameras. Additionally, we observe that due to the high spar-
sity of events, a majority of the computational cost of the
Transformer is unnecessary. Especially for high-resolution
event streams, such as those in the 1Mpx [43] dataset, while
higher resolution brings more detail, event sparsity can fluc-
tuate by several hundred times. During self-attention com-
putations, the blank regions without any events are also en-
coded as tokens and participate in calculations. Our goal is
to reduce this unnecessary computational overhead.

We revisit the mainstream Image-based sparse Trans-
formers, which are also designed to reduce the computa-
tional overhead of self-attention. Most of them achieve
token-level sparsification based on global self-attention
[2, 3, 22, 24, 35, 40, 45, 61]. Some studies among them
achieve adaptive sparsification [35, 61], but they are un-
able to choose the optimal sparsity for individual sam-
ples. What’s more, despite computing much fewer tokens
than the original ViT [8], they still require significantly
more computational resources than window-based Trans-
formers [36, 37, 54, 65] that leverage compute-efficient
window self-attention. Consequently, the computational
cost remains a barrier for high-resolution object detection
tasks. SparseViT (SViT) [4] proposes a sparse window-
based Transformer architecture. However, it relies on a
manually selected window pruning ratio, which may dis-
card important windows containing objects. This results
in poor robustness in certain scenarios, particularly when
many objects smaller than the window scale are present.

In this work, we introduce Scene Adaptive Sparse Trans-
former (SAST) for event-based object detection. SAST
achieves window-token co-sparsification in a window-
based Transformer architecture. As shown in Fig. 1,
SAST greatly reduces computational overhead (A-FLOPs:
Attention-related FLOPs, exclusive of the computations in-
curred by convolutional layers.), while simultaneously en-
hancing performance. Moreover, it leverages the scoring
and selection modules, realizing scene-specific sparsity op-
timization which can adaptively choose the optimal sparsifi-
cation strategy based on the complexity of different scenes.
We also propose the Masked Sparse Window Self-Attention
(MS-WSA), which efficiently performs self-attention on se-
lected tokens with unequal window sizes and isolates all
context leakage to achieve optimal performance. Our main
contributions are summarized in the following.

• We develop a highly efficient and powerful SAST for
event-based object detection, which maintains a remark-
able balance between performance and efficiency.

• We propose innovative scoring and selection modules,
which assess the importance of each window and token
and perform co-sparsification on them.

• We devise the MS-WSA, which efficiently performs win-
dow self-attention on selected tokens with unequal win-

dow sizes and avoids context leakage.
• Experimental results on 1Mpx and Gen1 datasets demon-

strate the superiority of SAST, surpassing all dense and
sparse networks.

2. Related Work
Vision Transformers. The Vision Transformer (ViT) [8]
stands as a seminal work providing a vision backbone that
applies self-attention to images. Based on that, many ViT
variants have emerged to enhance performance and effi-
ciency. For example, linear Transformers [5, 44, 56, 60]
are explored for finding the approximation of self-attention.
Other works [17, 29, 36, 54, 62] introduce localized self-
attention or hierarchical Transformer architectures.
Sparse Transformers. Sparse Transformers are proposed
to improve the efficiency of ViTs by selectively comput-
ing self-attention on partial tokens. Most of them achieve
token-level sparsification based on traditional ViT [2, 3, 22,
24, 35, 40, 45, 61]. However, these sparsified networks
still require significantly more computational resources than
window-based Transformers [36, 54]. SViT [4] proposes
a window-level sparse Transformer based on Swin Trans-
former [36]. However, its manually selected window prun-
ing ratio leads to the unwanted discarding of important win-
dows. If the scene is dense or the objects are smaller than
the window scale, performance will suffer severely.
Event-Based Transformers. Transformer networks have
achieved high performance across various event-based
tasks, including but not limited to classification [48], object
detection [15, 42], and semantic segmentation [16]. How-
ever, due to its high computational complexity, many early
attempts only incorporate self-attention operations on fea-
ture maps derived from CNN backbones [23, 53, 58, 66].
Recently, alternative approaches [15, 42, 48, 57, 64] us-
ing efficient window Transformers aim to extract features
from event representations directly [26, 39, 51, 67]. How-
ever, a substantial computational burden of self-attention
still exists for high-resolution tasks [15, 16], which limits
the model’s scalability and performance [52].
Event-Based Object Detection The early efforts in event-
based object detection involve converting event streams into
images and feeding them into existing Image-based detec-
tors [1, 25]. Significant strides were made with the advent
of benchmark large-scale datasets 1Mpx [43] and Gen1 [7].
They paved the way for the development of innovative net-
works such as RED [43] and ASTMNet [28], which intro-
duce memory mechanisms to fully exploit the spatiotempo-
ral information within event data. Some approaches based
on SNNs and GNNs were also proposed [6, 49], but their
performance still lags behind CNN-based methods. Re-
cently, remarkable performance has been achieved by RVT
[15], HMNet [16], and GET [42] using Transformer net-
works. However, these networks still involve significant re-

16795



Selected Tokens Partitioned Tokens Selected Windows

S
A

S
T

 
L

ay
er

C
o

nv

L
S

T
M

(b) SAST Block

S
A

S
T

B
lock

S
A

S
T

B
lock

S
A

S
T

B
lock

S
A

S
T

B
lock

E
vents

F
P

N

H
ead

D
etectio

n
R

esults

C
o

nv
ertor

(a) SAST

S
co

rin
g 

M
od

ule

M
S

-W
S

A

 P
artitio

n

W
ind

ow
 

S
electio

n

T
ok

en
 

S
electio

n

S
parse

M
L

P

R
ev

erse

S
catter

(c) SAST Layer
C

B

pedestrian
pedestrian

pedestrian two-wheeler

S
A

S
T

 
L

ay
er

Figure 2. (a) The hierarchical architecture of SAST. Four SAST blocks extract multi-scale features from sparse tokens transformed from
events. (b) The architecture of SAST block, which contains two successive SAST layers. (c) The architecture of SAST layer. In an
SAST layer, tokens are partitioned into windows and scored by the scoring module first. The selection module selects important windows
and tokens. Then, the selected tokens within selected windows are sequentially processed through MS-WSA, a sparse MLP layer, and an
optional CB operation. Finally, processed tokens are scattered back and reversed from windows. Norm layers are omitted for simplification.

dundancy in self-attention computations of sparse events.

3. Method
3.1. Main Architecture

The overall architecture of SAST is shown in Fig. 2(a). The
asynchronous events are initially converted into event voxel
representations [67]. These event voxels are fed into four
hierarchical SAST blocks illustrated in Fig. 2(b) to extract
multi-scale features. Within the first block, a convolutional
layer, as in ViT [8], transforms the event voxel into tokens.
Subsequently, the sinusoidal positional encoding is added to
the tokens. Two successive SAST layers extract spatial fea-
tures from these tokens. At the end of the SAST block, an
LSTM layer propagates temporal information, with its out-
put sent to subsequent layers. In the following blocks, to-
kens undergo a convolutional layer first to reduce the spatial
resolution, the remaining process being the same as in the
first block. The extracted features from the second, third,
and fourth blocks are relayed to the Feature Pyramid Net-
work (FPN). The FPN then forwards the processed features
to the detection head, yielding the final detection results.

3.2. SAST Layer

As shown in Fig. 2(c), in an SAST layer, all the tokens are
partitioned into windows first. After that, a scoring mod-
ule scores the partitioned tokens, determining their impor-
tance. The selection module selects important windows and

tokens inside windows sequentially based on these scores.
The token selection results are shared between SAST lay-
ers within the same block. Next, the Masked Sparse Win-
dow Self-Attention (MS-WSA) is performed on selected to-
kens within selected windows. The attention-enhanced to-
kens are sequentially processed by a sparse MLP layer and
an optional context broadcasting (CB) operation [19]. The
sparse MLP layer indicates that sparse connections are es-
tablished exclusively on selected tokens, thereby benefiting
from sparsification and reducing computational load. Fi-
nally, the processed tokens are scattered back and reversed
from windows to their original shape.

The SAST layer achieves sparsification on both win-
dows and tokens, ensuring efficiency and preventing impor-
tant windows containing objects from being discarded. Its
scene-aware adaptability also guides the network to focus
more on important areas, resulting in better performance.
What’s more, the computational cost of SAST is fully dy-
namic across different scenes, while maintaining an over-
all low level. The SAST layer is compatible with different
Transformer architectures, which means it can be plugged
as a universal layer in any hierarchical Transformer. We
then detail the three main components of the SAST layer:
the scoring module, the selection module, and MS-WSA.

3.3. Scoring Module

As illustrated in Fig. 3(a), the scoring module is designed to
score each token, determining its importance. Unlike other

16796



Weighted 

Tokens

(b) Selection Module

Token Scores St

Window
Selector

Token
Selector

(a) Scoring Module

Window Scores Sw
Token
Response R
Token
Response R

Control 
Factor F
Control 
Factor F

E
v
en

t V
o
xel

Event Sparsity r

E
xpL

P
oo

l r1Partitioned

Tokens T

Selected 

Tokens Ts

Response Unit

T∗T∗T∗

Initial 

Scores

C
o

unt

SiSi Competition Unit

R     F

STP Weighting

R     F

STP Weighting

p-Norm Softmaxp-Norm Softmax

Linear ReLULinear ReLU

Figure 3. The architecture of scoring and selection modules. (a) The scoring module scores each window and token. The scoring
process is regulated based on event sparsity, with windows and tokens competing to limit selections. (b) The selection module uses two
filters to select important windows and tokens sequentially based on their scores.

sparse Transformers obtaining scores directly from the to-
ken value or attention map, SAST has a controllable and
learned scoring module for reasonable scoring.

Initially, the partitioned tokens T are sent to a response
unit to obtain their token responses R. The response unit
consists of a linear layer followed by a ReLU layer. On
a parallel branch, due to multi-scale design, the original
event voxel is downsampled by a pooling layer first to
match the receptive field of tokens. Event sparsity r is ob-
tained by calculating and concatenating B non-zero ratios
(r1, r2, ..., rB) of different voxel bins. Each ratio reflects
the sparsity of a specific subset of events with unique time
ranges and polarities. Then, the event sparsity r is projected
to the same dimension as the tokens through the Exponen-
tial Linear layer (ExpL), resulting in the control factor F .
Based on the definition of the token response R and the con-
trol factor F , the initial score Si is defined as:

Si = a · R
F

= a · ReLU(WR · T + bR)

exp(WF ) · r
, (1)

where WR and bR represent the weight and bias of the linear
layer in the response unit, while WF represents the weight
of the ExpL. The function exp(·) denotes the exponential
operation, which is involved to ensure that the control fac-
tor F is positive. a is a hyper-parameter controlling the
absolute sparsity level of SAST. According to our observa-
tion, tokens corresponding to more important objects tend
to have higher initial scores.

To make the response unit and the ExpL learnable, we
apply Spatial-Temporal-Polar (STP) weighting to the par-
titioned tokens T . A Sigmoid layer transforms the token
response R and the control factor F into spatial weight Ws

and temporal-polar weight Wtp. The weighted tokens T∗
are produced through the product of these weights, as de-
scribed by the equation:

T∗ = Wtp ·Ws · T = Sigmoid(R) · Sigmoid(F ) · T. (2)

The STP weighting process allows the model to empha-
size tokens based on their spatial and temporal-polar con-

text, aligning the network’s sparse processing with the most
salient features across both domains.

3.4. Selection Module

As illustrated in Fig. 3(b), the selection module is designed
to select important tokens and windows. However, the ini-
tial scores derived from normalized tokens show insufficient
contrast for effective differentiation. Therefore, the compe-
tition unit is designed to intensify the competition among
the Si. It first calculates the p-norm of the Si, obtaining the
normalized score for each token and window, respectively.
The choice of p determines the exponential relationship be-
tween the normalized score and event sparsity. Softmax op-
eration is further applied to amplify the disparities between
normalized scores, making the dominance of some values
more pronounced. The intensified scores are calculated us-
ing the equations:

St = Softmax(||Si||cp)
Sw = Softmax(||Si||c, w

p /Nt)
(3)

where St and Sw are the token scores and window scores,
respectively. ||.||cp denotes computing p-norm along the
channel dimension, and ||.||c,w

p denotes computing p-norm
along both the channel and window dimensions. The divi-
sion by Nt serves to scale the normalized window scores by
the number of tokens in a window.

If the scene is sparse, fewer scores dominate, making it
easier to select less important windows and tokens. Con-
versely, in dense scenes, the score distribution is relatively
uniform, preserving more windows and tokens to prevent
the loss of important object information. Then, the selection
module specifies two thresholds µt and µw for the selection
process, defined as:

µt =
b

Nt
, µw =

b

Nw
, (4)

where Nt is the number of tokens in a window, and Nw is
the number of windows. b is a parameter in the range [0.9,1]

16797



Q

K

V

Ts Tp TA

MHSA with Column Masking 

A= Mask +QK TA= Mask +QK T Softmax(A) Softmax(A) 

Figure 4. Masked Sparse Window Self-Attention (MS-WSA).
An illustration of MS-WSA with window size equal to 2×2. Three
and two tokens are selected from two windows. Due to the col-
umn masking, the padded token marked as a grey dot does not
contribute to the attention map.

that controls the strictness of selection. Therefore, µt and
µw correspond to values slightly smaller than the mean of
token and window scores. Scores exceeding the threshold
reflect their significance, ensuring that the selected propor-
tion aligns with scene complexity.

In Fig. 3(b), weighted tokens T∗ undergo an initial selec-
tion by a window selector that retains tokens from windows
with scores Sw exceeding µw. Then, a token selector further
refines this selection, keeping tokens with scores St surpass
µt. The final selected tokens are represented as Ts.

3.5. Masked Sparse Window Self-Attention

Traditional WSA is designed for equal-sized windows, con-
ducting parallel matrix multiplication on them. As a result,
it cannot be applied to selected tokens with unequal win-
dow sizes. Therefore, we design MS-WSA to efficiently
perform self-attention on selected tokens, integrating corre-
lations among them and isolating context leakages.

As shown in Fig. 4, MS-WSA first pads the selected
tokens Ts within each window to the same length. The
padding operation involves selecting a minimal number of
tokens from the filtered-out tokens. The padded tokens
are represented as Tp. Afterward, we apply multi-head
self-attention (MHSA) [55] in parallel to selected windows
containing padded tokens. However, the tokens used for
padding, originally unselected, also contribute to the atten-
tion map calculation. Moreover, the padding number is de-
termined by the largest window in the batch. These uncer-
tainties lead to contextual leakage both among tokens and
across different batches. To isolate these context leakages,
MS-WSA includes an additional masking operation when
calculating the attention map. The overall MS-WSA pro-
cess can be described as:

Tp = Pad(Ts)

Q,K, V = TpW
Q, TpW

K , TpW
V

TA = UnPad(Softmax(Mask +QKT )V ),

(5)

where Pad(·) indicates the padding operation. WQ, WK ,
and WV are linear weights to transform padded tokens into
query Q, key K, and value V . The Mask matches the at-
tention map A = QKT in size and contains large negative

values in the columns corresponding to the tokens used for
padding, while other values are set to zero. The masking
operation cuts off the influence of unselected tokens in the
Softmax process. After a matrix multiplication operation
between the post Softmax attention map and V , the tokens
at padded locations are removed by the UnPad(·) operation,
resulting in attention-enhanced tokens TA.

After performing MS-WSA, the attention-enhanced to-
kens TA sequentially undergo a sparse MLP layer and an
optional context broadcasting (CB) operation [19]. The CB
operation can be expressed as:

CB(T̃ (n)) =
1

2
T̃ (n) +

1

2N

N∑
n=1

T̃ (n) for n = 1, . . . , N,

(6)
where T̃ (n) represents the nth output token of the sparse
MLP layer. N is the total number of selected tokens. The
CB operation broadcasts information among selected to-
kens, enriching their information density to ensure that they
will be consistently selected in subsequent layers. It does
not incur additional computation but leads to a looser sparsi-
fication preference for SAST. Finally, the processed tokens
are scattered back to the original partitioned tokens T and
reversed from windows to their original shape.

4. Experiments

Initially, we outline the experimental setup, detailing the
datasets used, evaluation metrics, and various implementa-
tion specifics. Next, we compare SAST with other state-of-
the-art works on two large-scale event-based object detec-
tion datasets. We also compare SAST with baseline variants
and other sparsification methods. Finally, we offer insights
through ablation studies, visualizations, and statistical re-
sults to thoroughly examine the effectiveness of our pro-
posed sparsification approach.

4.1. Experimental Setup

Datasets. The 1Mpx dataset, commonly used for event-
based object detection, consists of 14.65 hours of events,
with a large resolution of 1280 × 720 pixels. It includes 7
labeled object classes. We follow previous works [15, 28,
43], utilizing 3 classes: car, pedestrian, and two-wheeler
for performance comparison. This dataset has a labeling
frequency of 60 Hz and contains over 25M bounding boxes.
The Gen1 dataset comprises 39 hours of events. It has a
smaller resolution of 304×240 pixels and contains 2 object
classes. The labeling frequency for this dataset is 20 Hz.
Metrics. We use the COCO mean average precision (mAP)
[32] as the main metric. To measure computational com-
plexity, we compute the average FLOPs (Floating Point Op-
erations Per Second) over the first 1000 samples in the test
sets of 1Mpx and Gen1, referring to Sparse DETR [47]

16798



1Mpx Gen1
Methods Backbone mAP (%) FLOPs (G) mAP (%) FLOPs (G) Params (M)
SAM [31] ResNet50 [18] 23.9 19.0 35.5 6.0 >20
YOLOv3 DVS [20] Darknet-53 [46] 34.6 34.8 31.2 11.1 >60
RED [43] ResNet50 [18] 43.0 19.0 40.0 6.0 24.1
ASTMNet [28] VGG16 [50] 48.3 75.7 46.7 29.3 >100
AEC [41] CSP-Darknet-53 [21] 48.4 58.2 47.0 20.9 46.5
AEC [41] Deformable-DETR [68] 45.9 >50 44.5 >20 40.0
GET [42] GET [42] 48.4 10.6 (6.3) 47.9 3.6 (2.2) 21.9
RVT [15] Swin Transformer[36] 46.7 10.4 (6.6) 44.4 3.6 (2.3) 18.5
RVT [15] ConvNeXt [38] 45.5 10.4 (6.6) 42.3 3.6 (2.3) 18.7
RVT [15] (baseline) MaxViT [54] 47.4 10.3 (6.5) 47.2 3.5 (2.2) 18.5
Ours SAST 48.3 (+0.9) 5.6 (1.8, -72%) 47.9 (+0.7) 2.1 (0.8, -64%) 18.9
Ours SAST-CB 48.7 (+1.3) 6.4 (2.6, -60%) 48.2 (+1.0) 2.4 (1.1, -50%) 18.9

Table 1. Detection performance compared with state-of-the-art methods on 1Mpx and Gen1. The reported FLOPs belongs to the backbone.
Values in brackets (·) indicate the A-FLOPs, excluding operations from convolutional layers, and is precisely the value we aim to reduce.

that calculates the FLOPs for the first 100 samples in the
MS COCO dataset. Additionally, we report the average
Attention-related FLOPs (A-FLOPs), which excludes the
computations incurred by convolutional layers during cal-
culation. The model’s size is measured through its param-
eter count. We also compare the inference time (runtime)
with baseline variants and different sparsification methods.
Implementation Details. We adopt the predefined train,
validation, and test splits of 1Mpx and Gen1 datasets. The
accumulation time of each sample is chosen as 50 ms. We
also follow the dataset preprocessing methods of previous
works [15, 28, 42, 43], such as removing misleading small
bounding boxes and downsampling the events in the 1Mpx
dataset into 640 × 360 for a fair comparison. We choose
RVT-B (RVT) [15] as the baseline and apply different spar-
sification methods to its MaxViT backbone, while maintain-
ing consistency in the design of other layers (FPN, Head,
and LSTM). The partition strategy is the same as RVT, di-
viding tokens into windows and grids (a window type) in
two successive SAST layers. The augmentation strategies
include zoom-in, zoom-out, and horizontal flipping. We uti-
lize eight NVIDIA TITAN Xp GPUs for training. For the
testing phase, we only use one NVIDIA TITAN Xp GPU.

4.2. Experimental Results

Comparison with SOTAs. We evaluate SAST on the 1Mpx
and Gen1 datasets. The results compared with state-of-the-
art works are reported in Tab. 1. To facilitate distinction,
we define the model as SAST-CB when the optional CB
operation is utilized.

On the 1Mpx dataset, our methods outperform all
Transformer-based networks, including AEC (Deformable-
DETR as the backbone), GET [42], and RVT [15] using
different backbones [36, 38, 54]. SAST achieves a 48.3%
mAP with only 28% of the A-FLOPs of RVT. However, in
comparison to all works involving pure convolutional net-

Methods mAP (%) A-FLOPs (G) runtime∗ (ms)
RVT-T [15] 41.5 1.8 14.5
RVT-S [15] 44.1 3.8 15.3
RVT [15] (baseline) 47.4 6.5 16.0
AViT [61] 44.5 23.4 37.0
SViT [4] 45.3 3.3 14.3
SparseTT [11] 47.6 6.5 16.1
SAST (Ours) 48.3 1.8 19.7

Table 2. Detection performance on 1Mpx using RVT variants and
different sparsification methods. SAST achieves optimal perfor-
mance with the least computational expense. ∗: All the runtime is
tested on one NVIDIA TITAN Xp GPU.

works, SAST falls slightly below AEC (CSP-Darknet-53 as
the backbone), which utilizes a more complex event rep-
resentation, introduces additional data augmentations, and
has 9.4 times more FLOPs. SAST-CB achieves a superior
result of 48.7% mAP, surpassing all other state-of-the-art
networks with merely 11% of AEC’s FLOPs and 40% of
the A-FLOPs compared to RVT.

On the Gen1 dataset, both SAST and SAST-CB are supe-
rior to all other methods, achieving 47.9% and 48.2% mAP,
which is 0.7% and 1.0% higher than RVT. Moreover, the
FLOPs and A-FLOPs of SAST are only 60% and 36% of
RVT, respectively. In comparison to the pure convolutional
network AEC (CSP-Darknet-53 as the backbone), SAST
and SAST-CB achieve 0.9% and 1.2% performance gain
with just 10% and 11% of the FLOPs.
Comparison with RVT variants & sparse Transformers.
As shown in Tab. 2, we further compare SAST with RVT
variants and sparse Transformers on the 1Mpx dataset.

RVT variants reduce A-FLOPs significantly by scaling
down the model size, at the cost of substantial performance
decline. AViT [35] implements token-level sparsification
based on ViT. However, the computational complexity of
its global self-attention after sparsification remains high.
Its A-FLOPs exceeds 260% of the baseline, with a per-

16799



0

5

10

15

20

25

30

0 1 2 3 4

0

5

10

15

20

25

30

0 1 2 3 4

… …
/

/
…

/
/

A
-F

L
O

P
s 

(G
)

Event Sparsity (%)

47.6
6.5

44.5 
23.4

45.3 
3.3

48.3
1.8

SViT SparseTTAViT SAST
mAP (%)
A-FLOPs (G)

…
/

/
…

/
/

Figure 5. The computational complexity of different networks un-
der scenes with varying event sparsity in 1Mpx. Each point repre-
sents an event sample. SAST adaptively adjusts its sparsity based
on the scene complexity.

formance decrease of 2.9%. SViT [4], which builds upon
window-based Swin-Transformer [36], achieves window-
level sparsification at a manually set window pruning ratio
(set to 50% as in the paper), lacking adaptability. Although
its A-FLOPs is only 50.8% of RVT’s, due to the removal
of a fixed number of windows in all scenarios, its perfor-
mance dropped by 2.1%. SparseTT [11] achieves a 0.2%
performance gain by sparsifying the attention map. How-
ever, such mask-based sparsification does not actually re-
duce computational costs. Our proposed SAST, thanks to
its outstanding scene-adaptive sparsification, achieves the
highest mAP of 48.3%, with only 7.7% A-FLOPs of AViT
and 54.5% A-FLOPs of SViT.

In Fig. 5, we illustrate the computational complexity (A-
FLOPs) for the first 1000 samples in the 1Mpx dataset. It
can be observed that both RVT and SViT maintain constant
A-FLOPs regardless of changes in the scene. AViT shows
some level of adaptability, which remains evenly distributed
around its average A-FLOPs. Our proposed SAST shows
remarkable scene-aware adaptability. It has very low A-
FLOPs in sparse scenes while dynamically optimizing the
sparsity level to maintain high performance in dense scenes.

4.3. Ablation Studies

To analyze the proposed sparse Transformer SAST, we con-
duct a series of ablative experiments on the 1Mpx dataset.
Scoring Method. We interchanged our scoring mod-
ule with various established methods from existing sparse
Transformers while maintaining consistency in other archi-
tectural designs. The scoring module of SAST, as high-
lighted by the superior mAP of 48.3% in Tab. 3, outper-
forms other scoring methods. Leveraging STP weighting
across both spatial and temporal-polar domains, SAST pro-
vides a more effective and context-aware approach for eval-
uating token importance.

Scoring Methods Source mAP (%) Params (M)
L2 Activation SparseViT [4] 45.1 18.6
Attention Mask SparseTT [11] 45.8 18.6
Head Scores AS-ViT [35] 46.8 18.7
Head Importance SPViT [24] 46.5 18.9
Scoring Module SAST (Ours) 48.3 18.9

Table 3. Detection performance on 1Mpx by using different scor-
ing methods. The scoring module of SAST surpasses other estab-
lished scoring methods in sparse Transformers.

Selection Target mAP (%) A-FLOPs (G) runtime (ms)
Window 46.3 3.7 20.1
Token 47.7 3.0 21.7
Window & Token 48.3 1.8 19.7

Table 4. Detection performance on 1Mpx across different selec-
tion targets. Selection on both windows and tokens forces the net-
work to focus on the most salient and crucial features, resulting in
improved performance.

Methods Context Leakage mAP (%) A-FLOPs (G)
SA Yes (batch) 40.7 16.5
S-SA Yes (token) 44.2 20.5
MS-SA No Leakage 46.6 21.2
WSA N/A N/A N/A
S-WSA Yes (token) 46.2 2.0
MS-WSA No Leakage 48.3 1.8

Table 5. Detection performance on 1Mpx using different self-
attention methods. MS-WSA efficiently performs WSA on se-
lected tokens with unequal window sizes, optimizing performance
by preventing context leakage between batches and tokens.

Selection Method. We compare different selection meth-
ods by training two SAST variants that only select windows
and tokens, respectively. As shown in Tab. 4, applying se-
lection to both windows and tokens achieves the highest
mAP of 48.3% and the lowest A-FLOPs of 1.8G. This strat-
egy limits the amount of information the model can use,
which forces the model to concentrate on the most salient
and crucial features. Consequently, it can lead to a more
efficient representation where the model learns to compress
token information more densely.
Self-Attention Method. We compare different self-
attention methods by applying them to selected tokens with
varying window sizes. It can be seen from Tab. 5 that
standard self-attention (SA) needs to process all tokens to-
gether, leading to context leakage across different batches
and adversely affecting performance. Sparse Self-Attention
(S-SA) employs padding to isolate tokens from different
batches, but still results in context leakage between selected
and padded tokens. Masked Sparse Self-Attention (MS-
SA) further includes masking operation, which prevents
both types of context leakage. However, as global self-
attention, it still has high A-FLOPs. Window Self-Attention
(WSA) can not be applied to windows of unequal size; after

16800



Top: Score Heatmaps        Original Events with DetectionsTop: Score Heatmaps        

Small Scale (1st. SAST Block) → Large Scale (3rd. SAST Block)Original Events with Detections Small Scale (1st. SAST Block) → Large Scale (3rd. SAST Block)Original Events with Detections Small Scale (1st. SAST Block) → Large Scale (3rd. SAST Block)Original Events with Detections Small Scale (1st. SAST Block) → Large Scale (3rd. SAST Block)Original Events with Detections

 Bottom: Selected Windows and Tokens Bottom: Selected Windows and Tokens Bottom: Selected Windows and Tokens  Bottom: Selected Windows and Tokens Bottom: Selected Windows and Tokens Bottom: Selected Windows and Tokens

Original Events with Detections

Figure 6. Visualizations of original events, score heatmaps, and selection results under four scenes in 1Mpx. As the network progresses
through subsequent SAST blocks, featuring multiple downsampling stages, the scale (receptive field) of tokens expands.

0

20

40

60

0 1 2 3

Mean5 Scenes in the 1Mpx Dataset 

R
et

ai
ni

ng
 R

at
io

 (
%

)

0

20

40

60

0 1 2 3
Event Sparsity (%)

0

20

40

60

0 1 2 3

Figure 7. The averaged token retaining ratio of SAST across five
scenes containing different objects in 1Mpx. Each △ corresponds
to an event sample. The evident fluctuations and clusters demon-
strate the model’s scene-aware adaptability.

padding, Sparse Window Self-Attention (S-WSA) becomes
usable but introduces context leakage between tokens, re-
sulting in performance degradation. Only by applying MS-
WSA, which isolates all context leakage and is fully paral-
lel, is it possible to achieve optimal performance with the
least computational complexity.

4.4. Adaptability Analysis

Visualizations. We train SAST on the 1Mpx dataset and in-
fer it on four typical scenes in the test set for visualizations.
The event sparsity and scene complexity increase across the
four scenes progressively. In Fig. 6, we provide visualiza-
tions of the original events, score heatmaps, and the selec-
tion results of windows and tokens. For the score heatmaps
and selection results, figures from left to right depict the
transition from first to third SAST blocks. In a later block,
the number of tokens decreases, and their scale (receptive
field) enlarges. These intuitive visualizations allow us to as-
sess the model’s adaptability more comprehensively. From
the visualizations of score heatmaps, we observe that the
network demonstrates its scene-aware adaptability to assign
important tokens higher scores. From the visualizations of
window and token selection results, in complex scenes, the

network proactively reduces the sparsity level to retain more
important tokens.
Token Retaining Ratio. The scatter plot in Fig. 7 illus-
trates the relationship between the token retaining ratio and
event sparsity across five scenes in the 1Mpx dataset. The
general trend in the figure shows that SAST retains more to-
kens as event sparsity increases, demonstrating its ability to
optimize the sparsity level based on the scene complexity.
Furthermore, there are significant fluctuations in token re-
taining ratios at equivalent event sparsity. This reveals that
SAST’s optimization is not only based on the event sparsity
but also on the distinct characteristics of each scene, such as
the classes, numbers, and sizes of objects within the scene.
This is also evidenced by the pronounced clustering of sam-
ples from distinct scenes, indicating that SAST can perceive
the underlying patterns of different scenes, adaptively tun-
ing its sparsity strategy accordingly. In essence, the scat-
ter plot demonstrates that SAST can dynamically tailor its
sparsity level to the specific demands of each scene, thereby
exhibiting scene-aware adaptability.

5. Conclusion
In this paper, we provide a novel vision Transformer for
event-based object detection, called Scene Adaptive Sparse
Transformer (SAST). SAST’s adaptive sparsification mech-
anism enables window-token co-sparsification, significantly
reducing the computational overhead. Utilizing the novel
scoring module, selection module, and MS-WSA, SAST
showcases scene-aware adaptability, dynamically optimiz-
ing its sparsity across different scenes for high performance.
Our results confirm the effectiveness of SAST, achieving
state-of-the-art mAP on the 1Mpx and Gen1 datasets while
maintaining remarkable computational efficiency.

6. Acknowledgement
This work was in part supported by the National Nat-
ural Science Foundation of China (NSFC) under grants
62032006 and 62021001.

16801



References
[1] Marco Cannici, Marco Ciccone, Andrea Romanoni, and

Matteo Matteucci. Asynchronous convolutional networks for
object detection in neuromorphic cameras. In CVPRW, 2019.
2

[2] Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang,
and Zhangyang Wang. Chasing sparsity in vision transform-
ers: An end-to-end exploration. In NeurIPS, 2021. 2

[3] Xiang Chen, Hao Li, Mingqiang Li, and Jinshan Pan. Learn-
ing a sparse transformer network for effective image derain-
ing. In CVPR, 2023. 2

[4] Xuanyao Chen, Zhijian Liu, Haotian Tang, Li Yi, Hang
Zhao, and Song Han. Sparsevit: Revisiting activation
sparsity for efficient high-resolution vision transformer. In
CVPR, 2023. 2, 6, 7

[5] Krzysztof Marcin Choromanski, Valerii Likhosherstov,
David Dohan, Xingyou Song, Andreea Gane, Tamás Sarlós,
Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin,
Lukasz Kaiser, David Benjamin Belanger, Lucy J. Colwell,
and Adrian Weller. Rethinking attention with performers. In
ICLR, 2021. 2

[6] Loic Cordone, Benoı̂t Miramond, and Phillipe Thierion. Ob-
ject detection with spiking neural networks on automotive
event data. In Proceedings of the IEEE International Joint
Conference on Neural Networks (IJCNN), 2022. 1, 2

[7] Pierre de Tournemire, Davide Nitti, Etienne Perot, Da-
vide Migliore, and Amos. Sironi. A large scale event-
based detection dataset for automotive. arXiv preprint
arXiv:2001.08499, 2020. 2

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. ICLR, 2021. 2, 3

[9] Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier,
Tiejun Huang, and Yonghong Tian. Incorporating learnable
membrane time constant to enhance learning of spiking neu-
ral networks. In ICCV, 2021. 1

[10] Tobias Fischer and Michael Milford. Event-based visual
place recognition with ensembles of temporal windows.
IEEE Robotics and Automation Letters, 2020. 1

[11] Zhihong Fu, Zehua Fu, Qingjie Liu, Wenrui Cai, and Yun-
hong Wang. Sparsett: Visual tracking with sparse transform-
ers. In IJCAI, 2022. 6, 7

[12] Guillermo Gallego, Tobi Delbrück, and Garrick Orchard,
et al. Event-based vision: A survey. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022. 1

[13] Shan Gao, Guangqian Guo, and C. L. Philip Chen. Event-
based incremental broad learning system for object classifi-
cation. In IEEE/CVF International Conference on Computer
Vision Workshop (ICCVW), 2019. 1

[14] Daniel Gehrig, Antonio Loquercio, Konstantinos G. Derpa-
nis, and Davide Scaramuzza. End-to-end learning of rep-
resentations for asynchronous event-based data. In ICCV,
2019. 1

[15] Mathias Gehrig and Davide Scaramuzza. Recurrent vision
transformers for object detection with event cameras. In
CVPR, 2023. 1, 2, 5, 6

[16] Ryuhei Hamaguchi, Yasutaka Furukawa, Masaki Onishi, and
Ken Sakurada. Hierarchical neural memory network for low
latency event processing. In CVPR, 2023. 1, 2

[17] Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu,
and Yunhe Wang. Transformer in transformer. arXiv preprint
arXiv: 2103.00112, 2021. 2

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2015. 6

[19] Nam Hyeon-Woo, Kim Yu-Ji, Byeongho Heo, Doonyoon
Han, Seong Joon Oh, and Tae-Hyun Oh. Scratching visual
transformer’s back with uniform attention. In ICCV, 2023.
3, 5

[20] Zhuangyi Jiang, Pengfei Xia, Kai Huang, Walter Stechele,
Guang Chen, Zhenshan Bing, and Alois Knoll. Mixed frame-
/event-driven fast pedestrian detection. In ICRA, 2019. 1, 6

[21] Glenn Jocher. ultralytics/yolov5: v6.0 - yolov5n ’nano’ mod-
els, roboflow integration, tensorflow export, opencv dnn sup-
port. Zenodo, 2021. 6

[22] Sehoon Kim, Sheng Shen, David Thorsley, Amir Gholami,
Joseph Hassoun, and Kurt Keutzer. Learned token pruning
for transformers. SIGKDD, 2021. 2

[23] Taewoo Kim, Yujeong Chae, Hyun-Kurl Jang, and Kuk-Jin
Yoon. Event-based video frame interpolation with cross-
modal asymmetric bidirectional motion fields. In CVPR,
2023. 2

[24] Zhenglun Kong, Peiyan Dong, Xiaolong Ma, Xin Meng, Wei
Niu, Mengshu Sun, Xuan Shen, Geng Yuan, Bin Ren, Hao
Tang, et al. Spvit: Enabling faster vision transformers via
latency-aware soft token pruning. In ECCV, 2022. 2, 7

[25] Xavier Lagorce, Cédric Meyer, Sio-Hoi Ieng, David Filliat,
and Ryad Benosman. Asynchronous event-based multiker-
nel algorithm for high-speed visual features tracking. IEEE
Transactions on Neural Networks and Learning Systems,
2015. 2

[26] Xavier Lagorce, Garrick Orchard, Francesco Galluppi,
Bertram E. Shi, and Ryad B. Benosman. Hots: A hierarchy
of event-based time-surfaces for pattern recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
2017. 1, 2

[27] Junhaeng Lee, Tobi Delbrück, and Michael Pfeiffer. Training
deep spiking neural networks using backpropagation. Fron-
tiers in Neuroscience, 2016. 1

[28] Jianing Li, Jia Li, Lin Zhu, Xijie Xiang, Tiejun Huang, and
Yonghong Tian. Asynchronous spatio-temporal memory net-
work for continuous event-based object detection. IEEE
Transactions on Image Processing, 2022. 1, 2, 5, 6

[29] Yawei Li, Kai Zhang, Jiezhang Cao, Radu Timofte, and Luc
Van Gool. Localvit: Bringing locality to vision transformers.
arXiv preprint arXiv:2104.05707, 2021. 2

[30] Yijin Li, Han Zhou, Bangbang Yang, Ye Zhang, Zhaopeng
Cui, Hujun Bao, and Guofeng Zhang. Graph-based asyn-
chronous event processing for rapid object recognition. In
ICCV, 2021. 1

16802



[31] Zichen Liang, Guang Chen, Zhijun Li, Peigen Liu, and Alois
Knoll. Event-based object detection with lightweight spatial
attention mechanism. In The IEEE International Conference
on Advanced Robotics and Mechatronics (ICARM), 2021. 1,
6

[32] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft coco: Common objects in
context. In ECCV, 2014. 5

[33] Mengyun Liu, Na Qi, Yunhui Shi, and Baocai Yin. An atten-
tion fusion network for event-based vehicle object detection.
In ICIP, 2021. 1

[34] Qianhui Liu, Dong Xing, Huajin Tang, De Ma, and Gang
Pan. Event-based action recognition using motion informa-
tion and spiking neural networks. In IJCAI, 2021. 1

[35] Xiangcheng Liu, Tianyi Wu, and Guodong Guo. Adaptive
sparse vit: Towards learnable adaptive token pruning by fully
exploiting self-attention. In CVPR, 2022. 2, 6, 7

[36] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, 2021. 2, 6, 7

[37] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie,
Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu
Wei, and Baining Guo. Swin transformer v2: Scaling up
capacity and resolution. In CVPR, 2022. 2

[38] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. CVPR, 2022. 6

[39] Diederik Paul Moeys, Federico Corradi, Emmett Kerr,
Philip Vance, Gautham Das, Daniel Neil, Dermot Kerr, and
Tobi Delbrück. Steering a predator robot using a mixed
frame/event-driven convolutional neural network. In The In-
ternational Conference on Event-based Control, Communi-
cation, and Signal Processing (EBCCSP), 2016. 1, 2

[40] Bowen Pan, Yifan Jiang, Rameswar Panda, Zhangyang
Wang, Rogério Feris, and Aude Oliva. Ia-red2:
Interpretability-aware redundancy reduction for vision trans-
formers. In NeurIPS, 2021. 2

[41] Yansong Peng, Yueyi Zhang, Peilin Xiao, Xiaoyan Sun, and
Feng Wu. Better and faster: Adaptive event conversion for
event-based object detection. In AAAI, 2023. 1, 6

[42] Yansong Peng, Yueyi Zhang, Zhiwei Xiong, Xiaoyan Sun,
and Feng Wu. Get: Group event transformer for event-based
vision. In ICCV, 2023. 1, 2, 6

[43] Etienne Perot, Pierre de Tournemire, Davide Nitti, Jonathan
Masci, and Amos Sironi. Learning to detect objects with a 1
megapixel event camera. In NeurIPS, 2020. 1, 2, 5, 6

[44] Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yunshen
Wei, Baohong Lv, Junjie Yan, Lingpeng Kong, and Yiran
Zhong. cosformer: Rethinking softmax in attention. In
ICLR, 2022. 2

[45] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie
Zhou, and Cho-Jui Hsieh. Dynamicvit: Efficient vision
transformers with dynamic token sparsification. In NeurIPS,
2021. 2

[46] Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement. In CVPR, 2018. 6

[47] Byungseok Roh, JaeWoong Shin, Wuhyun Shin, and Sae-
hoon Kim. Sparse detr: Efficient end-to-end object detection
with learnable sparsity. In ICLR, 2022. 5

[48] Alberto Sabater, Luis Montesano, and Ana C. Murillo. Event
transformer. a sparse-aware solution for efficient event data
processing. In CVPRW, 2022. 2

[49] Simon Schaefer, Daniel Gehrig, and Davide Scaramuzza.
Aegnn: Asynchronous event-based graph neural networks.
In CVPR, 2022. 1, 2

[50] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In ICLR,
2015. 6

[51] Amos Sironi, Manuele Brambilla, Nicolas Bourdis, Xavier
Lagorce, and Ryad B. Benosman. Hats: Histograms of av-
eraged time surfaces for robust event-based object classifica-
tion. CVPR, 2018. 1, 2

[52] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler.
Efficient transformers: A survey. ACM Computing Surveys,
2022. 1, 2

[53] Yi Tian and J. Andrade-Cetto. Event transformer flownet for
optical flow estimation. In British Machine Vision Confer-
ence, 2022. 2

[54] Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang,
Peyman Milanfar, Alan Bovik, and Yinxiao Li. Maxvit:
Multi-axis vision transformer. In ECCV, 2022. 2, 6

[55] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 5

[56] Apoorv Vyas, Angelos Katharopoulos, and Franccois
Fleuret. Fast transformers with clustered attention. In
NeurIPS, 2020. 2

[57] Zuowen Wang, Yuhuang Hu, and Shih-Chii Liu. Exploiting
spatial sparsity for event cameras with visual transformers.
In ICIP, 2022. 2

[58] Wenming Weng, Yueyi Zhang, and Zhiwei Xiong. Event-
based video reconstruction using transformer. ICCV, 2021.
2

[59] Hao Wu, Yueyi Zhang, Wenming Weng, Yongting Zhang,
Zhiwei Xiong, Zhengjun Zha, Xiaoyan Sun, and Feng Wu.
Training spiking neural networks with accumulated spiking
flow. In AAAI, 2021. 1

[60] Haixu Wu, Jialong Wu, Jiehui Xu, Jianmin Wang, and Ming-
sheng Long. Flowformer: Linearizing transformers with
conservation flows. In International Conference on Machine
Learning (ICML), 2022. 2

[61] Hongxu Yin, Arash Vahdat, Jose Alvarez, Arun Mallya, Jan
Kautz, and Pavlo Molchanov. A-ViT: Adaptive tokens for
efficient vision transformer. In CVPR, 2022. 2, 6

[62] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi,
Zi-Hang Jiang, Francis E.H. Tay, Jiashi Feng, and Shuicheng
Yan. Tokens-to-token vit: Training vision transformers from
scratch on imagenet. In ICCV, 2021. 2

[63] Jiqing Zhang, Xin Yang, Yingkai Fu, Xiaopeng Wei, Bao-
cai Yin, and Bo Dong. Object tracking by jointly exploiting
frame and event domain. In ICCV, 2021. 1

16803



[64] Jiqing Zhang, Bo Dong, Haiwei Zhang, Jianchuan Ding, Fe-
lix Heide, Baocai Yin, and Xin Yang. Spiking transformers
for event-based single object tracking. In CVPR, 2022. 2

[65] Zizhao Zhang, Han Zhang, Long Zhao, Ting Chen, , Ser-
can Ö. Arık, and Tomas Pfister. Nested hierarchical trans-
former: Towards accurate, data-efficient and interpretable vi-
sual understanding. In AAAI, 2022. 2

[66] Junwei Zhao, Shiliang Zhang, and Tiejun Huang.
Transformer-based domain adaptation for event data
classification. ICASSP, 2022. 2

[67] Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and
Kostas Daniilidis. Unsupervised event-based learning of op-
tical flow, depth and egomotion. In CVPRW, 2019. 1, 2,
3

[68] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable DETR: deformable transformers
for end-to-end object detection. In ICLR, 2021. 6

16804


