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Abstract

Due to its promising results, density map regression has
been widely employed for image-based crowd counting. The
approach, however, often suffers from severe performance
degradation when tested on data from unseen scenarios, the
so-called “domain shift” problem. To address the problem,
we investigate in this work single domain generalization
(SDG) for crowd counting. The existing SDG approaches
are mainly for image classification and segmentation, and
can hardly be extended to our case due to its regression na-
ture and label ambiguity (i.e., ambiguous pixel-level ground
truths). We propose MPCount, a novel effective SDG ap-
proach even for narrow source distribution. MPCount
stores diverse density values for density map regression and
reconstructs domain-invariant features by means of only
one memory bank, a content error mask and attention con-
sistency loss. By partitioning the image into grids, it em-
ploys patch-wise classification as an auxiliary task to miti-
gate label ambiguity. Through extensive experiments on dif-
ferent datasets, MPCount is shown to significantly improve
counting accuracy compared to the state of the art under
diverse scenarios unobserved in the training data charac-
terized by narrow source distribution. Code is available
at https://github.com/Shimmer93/MPCount.

1. Introduction
Image-based crowd counting is to estimate the number of
people (or objects) in an image. The recent mainstream
counting approach is density map regression, where a den-
sity map with continuous pixel value is predicted from the
input image, and the total crowd count is obtained by sum-
ming all these pixel values. During training, the ground-
truth density map is generated by smoothing point annota-
tions given by the locations of human heads. Density map
regression has been demonstrated to achieve encouraging
results in crowd counting.

Existing training models predominantly assume that the
testing data share the same source distribution, i.e., fully su-
pervised learning. Such assumption, however, often breaks

(a) Source domain (b) Target image

(c) Ground-truth (d) DCCUS (e) MPCount (Ours)

Figure 1. Single domain generalization for crowd counting. (a)
Sample images from a single source domain S with narrow distri-
bution. (b) A challenging target image from an unseen scenario.
(c) The ground-truth density map. (d) The predicted density map
from the previous work DCCUS [6] trained on S. (e) The pre-
dicted density map from our MPCount trained on S. MPCount
achieves much lower counting error than DCCUS and makes bet-
ter predictions in the cropped area against the domain shift.

in practice due to changes in camera position, weather con-
dition, etc. Such deviation from the training data (i.e. source
domain) to unseen testing data (i.e. target domain) is known
as domain shift, which severely degrades the performance
of deep learning models in real-world deployment.

To mitigate the domain shift problem, domain adaptation
(DA) approaches have been proposed to transfer knowledge
from the source domain to the target one, typically by fine-
tuning pre-trained models with target domain data [2, 10,
39, 44]. Despite promising results, the fine-tuning process
of DA is usually laborious. Furthermore, target domain data
may not be easily available in reality.

In contrast to DA, domain generalization (DG) aims to
generalize models to any unobserved target domain with-
out the need for target data. As data and model fine-tuning
are not necessary at the target domain, DG is more con-
venient to be deployed in unseen or unpredictable domain.
We consider in this work the challenging case of single do-
main generalization (SDG) for image-based crowd count-
ing, where only one source domain, likely of narrow distri-
bution (Fig. 1a), is used for training.

A common general SDG technique is to construct
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domain-invariant features from different augmented ver-
sions of an image. Such approach has been shown promis-
ing for various tasks [5, 13, 34]. Independent of data aug-
mentation, many other SDG approaches have been pro-
posed for classification and segmentation to further boost
performance. Unfortunately, most of them cannot be ex-
tended to crowd counting, a regression task without cate-
gory information. Moreover, while labels in classification
and segmentation tasks are precise and domain-invariant,
the labels for density-based crowd counting are usually am-
biguous. Such “label ambiguity” stems from the fact that
the density values are generated from point annotations, and
hence human heads and backgrounds may be assigned to
similar value under different scenarios.

The recent work of [6] achieves DG for crowd count-
ing based on dividing the source into multiple sub-domains.
While encouraging, it requires a rather broad source do-
main distribution. We propose, for the first time, an SDG
approach for crowd counting called MPCount without sub-
domain division, thereof effective and extensible to narrow
source distribution. We highlight its performance as com-
pared with a state-of-the-art scheme in Fig. 1. MPCount
achieves its superior performance with the following two
novel components:
• An attention memory bank (AMB) to tackle density re-

gression: MPCount employs only one attention memory
bank (AMB) that takes a pair of features encoded from
an crowd image and its data-augmented version as input.
To cover continuous density values for regression with a
finite memory size, AMB reconstructs each feature vec-
tor as an attention over memory vectors. These mem-
ory vectors learn domain-invariant representations from
the pair of features of different styles but similar content
(i.e. crowd densities). We present the content error mask
(CEM) to eliminate domain-related content from input
features, as characterized by a large discrepancy between
instance-normalized feature element pairs. Furthermore,
the newly employed attention consistency loss (ACL) en-
forces the similarity of attention scores produced from in-
put features, ensuring the consistency of memory vectors.

• Patch-wise classification (PC) to tackle label ambigu-
ity: To address the label ambiguity, MPCount employs a
novel auxiliary task called patch-wise classification (PC).
In this task, each crowd image is evenly divided into
fixed-size square patches, say 16× 16, classified into two
classes, i.e., containing human heads or not. The density
values in the areas classified as without head are filtered
out during density regression, so that the pixel-level am-
biguity is overcome by coarser but more accurate patch-
wise binary labels.
To validate MPCount, we conduct extensive experiments

on various crowd counting datasets including ShanghaiTech
A (SHA) & B (SHB) and JHU-Crowd++. We introduce

a new challenging setting of narrow source distribution,
where only images of the same category, such as “snow”
(SN) and “fog/haze” (FH) in JHU-Crowd++, are used in
training. We demonstrate that MPCount achieves excel-
lent performance not only on traditional inter-dataset bench-
marks, but also under our newly introduced narrow source
setting. Let S → T denote the case where the source do-
main is S and the target domain is T . As compared to the
state of the art, MPCount is shown to reduce significantly
counting error by 21.8% on SN → FH, 18.6% on FH →
SN, 18.2% on SHB → SHA and 9.5% on SHA → SHB.

2. Related Works
2.1. Fully Supervised Crowd Counting

The mainstream approach to crowd counting is via den-
sity map regression, where each pixel of an image is as-
signed a count value, and the summation of these values
yields an estimate of the total number of people. Most
methods focus on improving counting accuracy under the
fully supervised setting by employing novel network de-
signs [1, 16, 17, 31, 45] or loss functions [20, 26, 36, 37].
While encouraging results have been shown, their perfor-
mance usually drop significantly when evaluated on out-of-
distribution data, due to their limited generalization abil-
ity. Besides, several works [4, 22, 38] have proposed aux-
iliary tasks in crowd counting for certain purposes. How-
ever, these tasks still require pixel-level predictions and con-
tribute little to tackling label ambiguity.

2.2. Domain Adaptation (DA) for Crowd Counting

Domain adaptation (DA) has been widely studied in crowd
counting to address domain shift by adapting source do-
main information to a particular target domain. While a few
methods study supervised DA where labeled data from tar-
get domain are available [40, 44], most approaches tackle
unsupervised DA, utilizing only unlabeled target domain
data [2, 7, 18, 39, 41, 47]. Despite the notable advance-
ments, DA methods normally require data from the target
domain, which may not be easily available in practice.

2.3. Single Domain Generalization (SDG)

Domain Generalization (DG) approaches are designed to
train a network with generalization ability solely utiliz-
ing source domain data, and single domain generalization
(SDG) is the special case when only one source domain is
available. There are various techniques for SDG, including
1) adversarial data generation [15, 25, 46, 50], 2) feature
normalization/whitening transformation [5, 12, 23, 24, 43]
and 3) domain-general network design, such as a con-
volution layer [35], vision transformer [32] and memory
bank [3]. Among various SDG methods, a common general
technique is to simulate domain shift with data augmenta-
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tion and extract domain-invariant information from differ-
ent augmented versions of features [5, 13, 43]. While SDG
has attracted widespread attention in classification and seg-
mentation, it is still a nascent topic in crowd counting due
to its regression nature and label ambiguity.

DCCUS [6] studies SDG for crowd counting. In this
method, the source domain is dynamically clustered into
sub-domains simulated as meta-training and -test sets in
a meta-learning strategy. Two types of memory modules
and several losses are proposed to distinguish and record
domain-invariant and -related information. DCCUS designs
the memory mechanism specifically for regression, but the
problem of ambiguous labels is not considered. Moreover,
when the source domain follows a narrow distribution, the
sub-domain division process may experience reduced effec-
tiveness and affect the generalization ability of the counting
model. MPCount, without sub-domain division, employs
novel patch-wise classification to address the label ambi-
guity problem. Additionally, a single memory bank for
regression is introduced without the need for sub-domain
partitioning, enabling MPCount to generalize well even in
source domains of narrow distributions.

3. MPCount
This section provides a detailed description of our MPCount
scheme. We begin by reviewing the foundational concepts
of crowd counting in Sec. 3.1. Next, in Sec. 3.2, we present
a comprehensive overview of the entire scheme. We then
elaborate the attention memory bank (Sec. 3.3) designed
for density regression, followed by the content error mask
(Sec. 3.4) and attention consistency loss (Sec. 3.5). After
that, we discuss the patch-wise classification (Sec. 3.6) pro-
posed to address the challenge of ambiguous labels. Finally,
we detail the overall training loss in Sec. 3.7.

3.1. Crowd Counting Preliminaries

First, we review the preliminary knowledge of deep
learning-based crowd counting via density map regression.
Our objective is to train a neural network N with parameter
θ that takes in an input image I ∈ RH×W×3 and outputs a
density map D̂ = N (I; θ) of size H × W . The estimated
count ĉ is the sum of all pixel-wise density values in D̂, i.e.,

ĉ =

H∑
i=1

W∑
j=1

D̂ij . (1)

Generation of ground-truth density maps usually follows
the method in [28]. Given the human head point annotations
H where each h ∈ H is the coordinate of a head location,
the ground-truth density map D ∈ RH×W is calculated as
the sum of the 2D Gaussian filter applied to each head co-
ordinate h, i.e.,

D =
∑
h∈H

δ(x− h)×Gσ(x), (2)

where δ(·) is the discrete delta function, and Gσ(·) is the
Gaussian kernel with a fixed variance σ.

A common objective function to supervise the network
N can be written as

L(θ) = ||D, D̂||22. (3)

3.2. Scheme Overview

The overall structure of our method is illustrated in Fig. 2.
During training, photometric transformations are applied to
the original image Iori to produce an augmented version
Iaug . The feature extractor encodes them into features Fori

and Faug , and a content error mask (CEM) M is applied to
them. The masked features are reconstructed into F̃ori and
F̃aug via an attention memory bank (AMB) and passed to
the density head for crowd density prediction. Meanwhile,
the highest-level features encoded by the feature extractor,
Zori and Zaug , are fed into the patch-wise classification
(PC) head, and the predicted PC maps (PCMs) Ĉori and
Ĉaug are binarized and resized to serve as a mask to fil-
ter out areas without human heads in the estimated density
maps D̂ori and D̂aug . The final predictions D′ori and D′aug

are two density maps with certain areas masked out by the
PCMs. The entire training process is supervised under a
combination of density losses, PC losses and the attention
consistency loss (ACL). The inference process solely em-
ploys Iori as input, and outputs a single density map D′ori.

3.3. Attention Memory Bank (AMB)

The attention memory bank (AMB) is designed to automati-
cally learn domain-invariant features for density regression.
[14] proposes a memory bank where memory vectors are
updated individually, each corresponding to a certain cate-
gory. However, this design cannot be applied to regression
tasks, since a finite number of memory vectors cannot cover
continuous density values. Inspired by [6], we reconstruct
each feature vector as an attention over memory vectors, so
that any density value may be represented as a linear com-
bination of representative values in the memory bank.

The AMB V ∈ RM×C consists of M memory vec-
tors of dimension C. Given a flattened input feature map
F ∈ RHW×C , we first compute the attention scores A be-
tween the feature F (query) and the memory V (key). Then
the reconstructed feature map F̃ is calculated as a linear
combination of V (value) with A as weights. The recon-
struction process can be summarized as follows:

A(F ,V) = Softmax
(
FVT

√
C

)
, (4)
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Figure 2. The overall training pipeline of our proposed MPCount. All identical modules in this diagram share the same weights. In the
encoder-decoder structure, a higher level indicates a deeper feature.

and

F̃ = AV. (5)

While [6] relies on multiple memory banks corre-
sponding to different sub-domains to distinguish domain-
invariant and -related information, we only employ a sin-
gle AMB and propose the novel CEM (Sec. 3.4) and
ACL (Sec. 3.5) to ensure that it stores domain-invariant rep-
resentations. To this end, our feature reconstruction mech-
anism can work without sub-domain division, thereof is ef-
fective even with a narrow source distribution.

3.4. Content Error Mask (CEM)

CEM is proposed to guarantee the resemblance of content
contained in the pair of input features by excluding possible
domain-related content information. A common technique
to disentangle style and content in a feature is instance nor-
malization (IN) [33], where the feature statistics (channel-
wise mean and variance) are considered to contain style
information, while the instance normalized features retain
content information. Based on this idea, we assume that the
discrepancy of instance normalized features reflect effects
of domain shift on feature content and may mislead AMB to
learn domain-related information. Therefore, we filter out
elements in the input features with difference between their
instance normalized versions above a certain threshold, re-
sulting in a pair of features with similar content information
for domain-invariant feature reconstruction.

More specifically, given the features extracted from
the original and augmented images, Fori and Faug ∈
RH×W×C , we define the content error mask M ∈
RH×W×C as follows:

Mijk =

{
1 if |IN(Fori)ijk − IN(Faug)ijk| ≤ α

0 otherwise
(6)

where α is the threshold indicating whether the error
value reflects possible inconsistency of content information
caused by domain shift.

Given F to be one of Fori and Faug , we filter out the
domain-related content information by

F ′ = Dropout2D(F ⊙M). (7)

The random 2D dropout is applied to F ′ to prevent the
memory from relying solely on certain channels.

3.5. Attention Consistency Loss (ACL)

The style information of Fori and Faug preserved in
Sec. 3.4 may produce a large discrepancy on their attention
distributions over the memory vectors in AMB even if they
contain identical content information. To ensure that each
memory vector consistently store specific domain-invariant
representations, we propose the attention consistency loss
(ACL) to enforce the similarity of attention scores produced
from Fori and Faug .

We consider A in Eq. 4 as a distribution, and the ACL
Lcon is calculated as the distance between the distribution
Aori produced by Fori and Aaug produced by Faug . Here
the simple Euclidean distance is selected as the distance
measure due to its computational stability during training:

Lcon = ||Aaug,Aori||22. (8)
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(a) Density Map (b) PCM

Figure 3. Illustration of label ambiguity and how PCM tackles it.
Point A is a typical example which belongs to a human head but is
assigned the density value 0 as the background in the density map
due to varying head sizes. In the PCM, the patch covering A is
correctly classified as containing heads, thanks to the patch-level
accuracy of the labels.

3.6. Patch-wise Classification (PC)

As discussed in Sec. 3.1, ground-truth density maps are
usually calculated only based on point annotations. In dif-
ferent scenarios, pixels of a human head and the background
might be assigned the same density value due to various
head sizes (Fig. 3a), violating the common assumption that
labels are accurate and domain-invariant, thereof resulting
in the ambiguous labels in crowd counting.

To tackle the label ambiguity, we propose a novel auxil-
iary task named patch-wise classification (PC) and its corre-
sponding supervision signal, patch-wise classification map
(PCM), as illustrated in Fig. 3b. A PCM divides an im-
age evenly into P × P (P = 16 empirically) patches and
classifies each patch into two categories: containing human
heads or not. Such patch-level predictions mitigate the un-
certainty in pixel-level density maps by providing coarser
but more accurate patch-level information.

In practice, a ground truth PCM C with patch size P can
be calculated as:

Cij = 1− δ

(i+1)P∑
k=iP

(j+1)P∑
l=jP

Dkl

 , (9)

where D is the ground truth density map and δ(·) is the
discrete delta function.

Our model predicts a PCM Ĉ supervised by the binary
cross entropy (BCE) loss:

Lcls = BCE(C, Ĉ). (10)

Subsequently, Ĉ is binarized and resized to obtain C′

which matches the dimensions of the predicted density map
D̂. C′ is then used to mask the regions classified without
crowds in D̂, resulting in the final density map D′:

D′ = D̂ ⊙ C′. (11)

Finally, the density regression head is supervised with
the ground truth density map D, and the common Euclidean
distance in Eq. (3) is used as the objective function:

Lden = ||D,D′||22. (12)

3.7. Model Training

The overall training loss is a combination of density losses
Lori
den,L

aug
den , PC losses Lori

cls ,L
aug
cls and the attention consis-

tency loss Lcon, which can be written as

L = Lori
den + Laug

den + λcls

(
Lori
cls + Laug

cls

)
+ λconLcon,

(13)

where λcls and λcon are weighting parameters to balance
different loss terms.

4. Illustrative Experimental Results
In this section, we first introduce the datasets used in ex-
periments in Sec. 4.1. Next, the implementation details are
specified in Sec. 4.2, then evaluation metrics are described
in Sec. 4.3. We present the results compared with state of
the art in Sec. 4.4. Finally, we conduct ablation studies and
other additional analysis in Sec. 4.5.

4.1. Datasets

We evaluate our method on four mainstream crowd count-
ing datasets: ShanghaiTech Part A & B, UCF-QNRF and
JHU-Crowd++.
• ShanghaiTech [45] is composed of two parts, SHA (A)

and SHB (B). SHA contains 300 training images and 182
testing images, while SHB contains 400 training images
and 316 testing images. Images in SHA are collected
from the Internet and feature highly crowded scenes. In
contrast, SHB is captured from several streets in Shang-
hai, and its images exhibit crowd densities generally
lower than those in SHA.

• UCF-QNRF (Q) [11] consists of 1201 training images
and 334 testing images. It is a challenging dataset with
a large range of crowd densities, scenes, viewpoints and
lighting conditions.

• JHU-Crowd++ [29] is a large-scale dataset containing
4372 images, with 2722, 500 and 1600 images in the
training, validation and testing set, respectively. In addi-
tion, image-level labels are also provided in this dataset,
including 16 types of scenes and 4 types of weather condi-
tions. For scene annotations, there are 879 images labeled
“stadium” (SD) and 573 labeled “street” (ST), which are
utilized as two source domains. For weather annotations,
we use 201 images labeled “snow” (SN) and 168 images
labeled “fog/haze” (FH) as source domains. In each do-
main, 80% of the images are selected as the training set
while the rest 20% are for testing. Data with the same
label belong to a narrower distribution than mainstream
datasets, thus are more challenging for SDG. Illustrative
samples in these scene-specific and weather-specific do-
mains are available in Fig. 4.
Let S → T denote the case where S is the source do-

main and T is the target domain. The datasets are utilized
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(a) Stadium (b) Street (c) Snow (d) Fog/Haze

Figure 4. Sample images with different instance-level labels in
JHU-Crowd++.

in experiments under two distinct types of settings: 1) An
entire dataset is regarded as a single domain: A → B / Q,
B → A / Q and Q → A / B; 2) A dataset is partitioned
into subsets according to image-level labels, and one subset
constitutes a single domain: SD ↔ SR and SN ↔ FH.

4.2. Implementation

We adopt VGG16-BN [27] as the feature extractor in our
model. The density regression head is a single convolu-
tion layer with 1 × 1 filters, while the classification head
consists of a 3 × 3 and a 1 × 1 convolution layers. Batch
normalization is employed after all convolution layers ex-
cept the last ones. For data augmentation, we apply three
types of photometric transformations, color jittering, Gaus-
sian blurring and sharpening. We also randomly crop image
patches with a size of 320×320 and adopt random horizon-
tal flipping to both the original and augmented images si-
multaneously. We select AdamW [19] as the optimizer and
OneCycleLR [30] as the learning rate scheduler with maxi-
mum learning rate set to 1e-3 and a maximum epoch of 300.
The memory size M is set to 1024 and the dimension C is
256. We use a content error threshold α of 0.5, and the loss
weights λcls and λcon are both set to 10.

4.3. Evaluation Metrics

We evaluate our method with mean absolute error (MAE)
and mean squared error (MSE), defined as follows:

MAE =
1

N

N∑
i=1

|ci − ĉi|,MSE =

√√√√ 1

N

N∑
i=1

(ci − ĉi)2,

(14)

where N is the number of testing images, ci is the ground
truth count of the i-th image and ĉi is the predicted count.
Lower values of both metrics indicate better performance.

4.4. Comparison with State of the Art

In this subsection, we compare our MPCount with state-
of-the-art methods on different benchmarks, as illustrated

(a) Image (b) GT (c) DCCUS (d) MPCount

Figure 5. Visualization results of DCCUS [6] and MPCount under
different DG settings. First row: A → B; second row: SN → FH;
third row: B → A.

in Fig. 5. Tab. 1 shows the results on A → B / Q, B → A
/ Q and Q → A / B. The selected baselines can be divided
into three categories:

• Fully supervised crowd counting: BL [20], DM-
Count [37], SASNet [31], ChfL [26] and MAN [17].

• Domain adaptation for crowd counting: RBT [18],
C2MoT [41], FGFD [47], DAOT [48] and FSIM [49].

• Single domain generalization: IBN [23], SW [24],
ISW [5], DG-MAN [21] and DCCUS [6].

All results are copied from previous papers except IBN, SW
and ISW, which are feature normalization/whitening-based
SDG methods originally designed for classification or seg-
mentation and adapted to crowd counting by us. Domain
adaptation methods are listed only for reference, as data
from target domains are usually visible during adaptation.

Our MPCount outperforms all the DG methods under
most of these settings, including an significant error reduc-
tion by 18.2% on B → A. It is notable that MPCount ex-
hibits outstanding performance in some cases even com-
pared to DA methods, providing compelling evidence for
the effectiveness of our design.

In Tab. 2, we further conduct experiments on scene-
specific domains SD ↔ SR and weather-specific domains
SN ↔ FH. BL [20], MAN [17], DAOT [48] and DCCUS [6]
are trained using their released code, while IBN [23],
SW [24] and ISW [5] are adapted by ourselves. We ob-
serve that the normalization/whitening-based methods can-
not achieve satisfactory results, possibly because useful in-
formation is eliminated from feature statistics. DCCUS also
obtains worse results than fully supervised methods, reflect-
ing that the clustering procedure may fail to produce mean-
ingful sub-domains when the source domain distribution is
narrow. In contrast, our MPCount still performs the best
among all tested methods, demonstrating its superiority in
challenging conditions with narrow domain distributions.
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Source → Target A → B A → Q B → A B → Q Q → A Q → B

Method DA DG MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

BL [20] ✗ ✗ 15.9 25.8 166.7 287.6 138.1 228.1 226.4 411.0 - - - -
DMCount [37] ✗ ✗ 23.1 34.9 134.4 252.1 143.9 239.6 203.0 386.1 73.4 135.1 14.3 27.5
SASNet [31] ✗ ✗ 21.3 33.2 211.2 418.6 132.4 225.6 273.5 481.3 73.9 116.4 13.0 22.1

ChfL [26] ✗ ✗ 18.7 29.1 122.3 218.0 121.3 200.8 197.1 357.9 68.7 118.5 14.0 27.0
MAN [17] ✗ ✗ 22.1 32.8 138.8 266.3 133.6 255.6 209.4 378.8 67.1 122.1 12.5 22.2

RBT [18] ✓ ✗ 13.4 29.3 175.0 294.8 112.2 218.2 211.3 381.9 - - - -
C2MoT [41] ✓ ✗ 12.4 21.1 125.7 218.3 120.7 192.0 198.9 368.0 - - - -
FGFD [47] ✓ ✗ 12.7 23.3 124.1 242.0 123.5 210.7 209.7 384.7 70.2 118.4 12.5 20.3
DAOT [48] ✓ ✗ 10.9 18.8 113.9 215.6 - - - - 67.0 128.4 11.3 19.6
FSIM [49] ✓ ✗ 11.1 19.3 105.3 191.1 120.3 202.6 194.9 324.5 66.8 111.5 11.0 19.7

IBN [23] ✗ ✓ 19.1 30.8 280.2 561.0 125.9 202.3 183.5 317.4 105.9 174.6 16.0 25.5
SW [24] ✗ ✓ 20.2 30.4 285.5 431.0 126.7 193.8 200.7 333.2 102.4 168.8 19.0 32.9
ISW [5] ✗ ✓ 23.9 37.7 215.6 399.7 156.2 291.5 263.1 442.2 83.4 136.0 22.1 34.7

DG-MAN [21] ✗ ✓ 17.3 28.7 129.1 238.2 130.7 225.1 182.4 325.8 - - - -
DCCUS [6] ✗ ✓ 12.6 24.6 119.4 216.6 121.8 203.1 179.1 316.2 67.4 112.8 12.1 20.9

MPCount (Ours) ✗ ✓ 11.4 19.7 115.7 199.8 99.6 182.9 165.6 290.4 65.5 110.1 12.3 24.1

Table 1. Comparison with the state-of-the-art methods on SHA (A), SHB (B) and UCF-QNRF (Q). Domain adaptation methods are only
for reference since data in target domain might be used.

Source → Target SD → SR SR → SD SN → FH FH → SN

Method DA DG MAE MSE MAE MSE MAE MSE MAE MSE

BL [20] ✗ ✗ 42.1 79.0 262.7 1,063.9 48.1 129.5 343.8 770.5
MAN [17] ✗ ✗ 45.1 79.0 246.1 950.8 38.1 68.0 445.0 979.3

DAOT [48] ✓ ✗ 45.3 88.0 278.7 1,624.3 42.3 73.0 151.6 273.9

IBN [23] ✗ ✓ 92.2 178.0 318.1 1,420.4 109.7 267.7 491.8 1,110.4
SW [24] ✗ ✓ 110.3 202.4 312.6 1,072.4 131.5 306.6 381.3 825.0
ISW [5] ✗ ✓ 108.1 212.4 385.9 1,464.8 151.6 365.7 276.6 439.8

DCCUS [6] ✗ ✓ 90.4 194.1 258.1 1,005.9 54.5 125.8 399.7 945.0
MPCount (Ours) ✗ ✓ 37.4 70.1 218.6 935.9 31.3 55.0 216.3 421.4

Table 2. Comparison with the state of the art on data in JHU-Crowd++ with labels “Stadium”(SD), “Street”(SR), “Snow”(SN) and
“Fog/Haze”(FH). Domain adaptation methods are only for reference since data in target domain might be used.

4.5. Ablation Studies

In this section, we conduct ablation studies and other anal-
ysis under the setting A → B / Q.
Effects of model components. We start from a simple
encoder-decoder structured baseline model and add or re-
move each component individually to validate its effective-
ness. The experimental results are displayed in Tab. 3.

• Attention Memory Bank: After adding AMB, the per-
formance consistently improves on both target domains,
as shown in Tab. 3. This validates that AMB can
effectively help the model generalize by reconstructing
domain-invariant features for density regression.

• Content Error Mask & Attention Consistency Loss: Next,
we test the effects of CEM and ACL on AMB. The results

in Tab. 3 show that both components generally improves
the performance, especially when PC is present.

• Patch-wise Classification: Finally, models with PC out-
performs their counterparts without PC, as visible in
Tab. 3. This suggests that such an auxiliary task is useful
for DG by compensating for ambiguous pixel-level labels
with accurate patch-level labels.

Effects of α. The threshold of CEM α mentioned in Eq. (6)
controls the Portion of Diminished Elements (PDE) in fea-
tures. According to the results in Tab. 4, α = 0.5 pro-
duces the best performance under all settings, with a PDE
of 10.5%. It is also indicated that using a too large value
of α (0.9) may be inadequate to filter out domain-related
information, while a too small value (0.1) would let useful
information eliminated.
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Components A → B A → Q

AMB CEM ACL PC MAE MSE MAE MSE

21.6 39.1 200.9 325.5
✓ 18.9 32.0 176.3 292.8
✓ ✓ 15.3 25.5 156.8 232.7
✓ ✓ 16.9 28.7 172.5 281.6
✓ ✓ ✓ 14.1 24.3 170.6 286.8

✓ 14.4 30.5 144.2 262.6
✓ ✓ 13.4 25.2 133.4 224.0
✓ ✓ ✓ 13.3 23.4 126.9 222.3
✓ ✓ ✓ ✓ 11.4 19.7 115.7 199.8

Table 3. Ablation studies on the model components.

Parameter Property A → B A → Q

α PDE(%) MAE MSE MAE MSE

0.1 28.6 16.7 25.9 157.3 338.5
0.3 14.6 12.4 20.8 132.1 223.6
0.5 10.5 11.4 19.7 115.7 199.8
0.7 5.9 11.9 23.8 123.8 214.1
0.9 3.6 13.8 27.2 124.7 209.6

Table 4. Ablation studies on the error threshold α in Eq. (6).

Parameters A → B A → Q

M C MAE MSE MAE MSE

256 256 15.9 24.0 138.4 226.1
512 256 13.7 28.1 124.4 217.2

1024 256 11.4 19.7 115.7 199.8
2048 256 12.0 23.3 128.1 218.1

1024 128 16.3 28.6 127.4 223.3
1024 256 11.4 19.7 115.7 199.8
1024 512 14.3 27.7 130.1 250.1
1024 1024 14.2 24.8 128.4 220.2

Table 5. Ablation studies on the number of memory vectors M
and vector size C.

Effects of M and C. The number of memory vectors M and
dimension of each vector C are two important parameters of
AMB. To demonstrate their effects independently, we adjust
one parameter while keeping the other fixed. The results
in Tab. 5 shows that among all variations of parameters,
M = 1024, C = 256 is the optimal choice.
Visualizations of CEMs. We present visualizations of CEMs
in Fig. 6, each summed along the channel dimension. The
results indicate that crowd information is generally more

Figure 6. Visualized CEMs. Yellower means less filtered.

(a) Image (b) GT (c) Predicted (d) Binarized

Figure 7. Visualization of (a) sample images from SHB, (b) the
ground-truth PCMs, (c) PCMs predicted by MPCount trained on
SHA and (d) predicted PCMs after binarization.

sensitive to domain shift than environments.
Visualizations of PCMs. We visualize the predicted and bi-
narized PCMs from MPCount for qualitative analysis. As
shown in Fig. 7, MPCount predicts accurate PCMs that
provide reliable information of crowd locations. In the raw
predicted PCMs, there are unconfident predictions with low
classification scores, which are filtered out in the binarized
PCMs. The results verify that PC can effectively mitigate
the label ambiguity problem and contribute to a more ro-
bust crowd counting model against domain shift.

5. Conclusion
This paper proposes MPCount to address single domain
generalization for crowd counting with possibly narrow
source distribution. MPCount tackles two unique chal-
lenges, namely, density regression and label ambiguity. We
propose an attention memory bank to reconstruct domain-
invariant features for regression, with the content error mask
eliminating domain-related content information and the at-
tention consistency loss ensuring the consistency of mem-
ory vectors. Patch-wise classification is a novel auxiliary
task to mitigate the ambiguous pixel-level labels with accu-
rate information, enhancing the robustness of density pre-
dictions. Extensive experiments on well-known datasets
show that MPCount achieves significantly the best results
on various benchmarks by outperforming the state of the art
under different unseen scenarios and narrow source domain.
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