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Vision language models (VLM) have demonstrated re- one dog two dogs  three dogs
markable performance across various downstream tasks. 7 o T 0 o
However, understanding fine-grained visual-linguistic con- 009 0.11 T 080

cepts, such as attributes and inter-object relationships, re-
mains a significant challenge. While several benchmarks
aim to evaluate VLMs in finer granularity, their primary fo-
cus remains on the linguistic aspect, neglecting the visual
dimension. Here, we highlight the importance of evaluating
VLM:s from both a textual and visual perspective. We intro-
duce a progressive pipeline to synthesize images that vary in
a specific attribute while ensuring consistency in all other
aspects. Utilizing this data engine, we carefully design a
benchmark, SPEC, to diagnose the comprehension of object
size, position, existence, and count. Subsequently, we con-
duct a thorough evaluation of four leading VLMs on SPEC.
Surprisingly, their performance is close to random guess,
revealing significant limitations. With this in mind, we pro-
pose a simple yet effective approach to optimize VLMs in
fine-grained understanding, achieving significant improve-
ments on SPEC without compromising the zero-shot perfor-
mance. Results on two additional fine-grained benchmarks
also show consistent improvements, further validating the
transferability of our approach. Code and data are avail-
able at https://github.com/wjpoom/SPEC.

1. Introduction

Vision and Language Foundation Models (VLMs) pre-
trained on large-scale image-text data [13, 17, 23, 29, 41]
have consistently demonstrated impressive performance
across a wide range of well-established evaluating tasks,
i.e. image classification [5], image captioning [1, 18], vi-
sual question answering [3] and cross-modal image-text re-
trieval [18, 38]. Their remarkable performance is gradu-
ally convincing the community that these currently avail-
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Figure 1. We conduct a symmetrical assessment of VLMs in
fine-grained comprehension, considering both linguistic and vi-
sual perspectives. The bars in and  represent the image-text
matching scores for CLIP [23] and our method, respectively. It is
evident that CLIP struggles with tasks related to quantity compre-
hension, whereas our method significantly enhances the model in
understanding fine-grained details.

able VLMs are almost robust and powerful enough to be
transferred to a broad spectrum of downstream tasks, either
through finetuning or even in a zero-shot manner.

However, recent research has shattered this captivat-
ing illusion, revealing that even state-of-the-art VLMs [17,
23, 29, 41] exhibit significant limitations in understanding
visual-linguistic concepts that require fine-grained compo-
sitional reasoning, especially in tasks involving object at-
tributes or inter-object relationships [21, 31, 33, 40, 43].
This raises a crucial question: fo what extent and in what
aspects are VLMs excelling or struggling? To answer
this, previous effort evaluates fine-grained capabilities of
VLMs through the image-to-text matching task, as shown
in Fig. 1(a). This involves providing a query image and
retrieving the matching text from a set of confusing candi-
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dates, differing subtly in texts. For example, when assessing
the counting ability, it is crucial to ensure that quantity is the
unique variable and other clues are kept the same. There-
fore, a straightforward way to do so is modifying quantity
and adjective words used in the texts. While manipulating
texts to construct confusing candidate sets has been well-
studied due to the sparsity of the text space and advance-
ments in Large Language Models (LLMs) [19, 21, 40, 43],
the visual side remains relatively under explored, largely
due to the complexity of visual signals and the absence of
powerful tools. We posit that exploring the visual dimen-
sion in a fine-grained manner is also essential for a compre-
hensive understanding of VLMs.

Motivated by the great progress achieved in generative
models, we present an effective framework for generating
high-quality image candidates that are suitable for evalu-
ating the performance of VLMs. This framework ensures
that images within the same candidate set only differ in the
specified property of interest, while all other properties re-
main consistent. We break down this task into several sim-
ple and manageable steps. As illustrated in Fig. 2, we start
by utilizing a text-to-image model [22, 24] to generate im-
ages featuring a single object. Then, a segmenter [14, 15]
is employed to separate the objects from their backgrounds,
yielding a library of foreground instance spanning various
categories. From there, we select instances and arrange
them on a blank canvas (manipulating attributes such as
size, position, existence, and quantity of a specific object
at this stage is straightforward). Finally, we use an inpaint-
ing model [22, 24] to fill the missing background portions,
producing an photo-realistic image. It is worth noting that,
during the inpainting process, we design a progressive back-
ground filling strategy, effectively ensuring consistency in
the background across all images in the same candidate set.

Empowered by this data construction pipeline, we care-
fully develop a new benchmark, named as SPEC, to evalu-
ate the proficiency of VLMs in comprehending fine-grained
concepts including Size, Position, Existence and Counting.
We systematical test four VLMs [17, 23, 29, 41] on this
newly created test bed. Surprisingly, even state-of-the-
art models perform at chance-level, exposing significant
performance deficiencies. Following this, we implement
a straightforward approach to remedy this by incorporat-
ing hard negative examples (i.e., confusing images or texts
within the same candidate set) into the same training batch.
This encourages the model to discern subtle differences
among candidate examples, leading to a significant im-
provement in performance on SEPC while preserving the
original zero-shot capability. Furthermore, to demonstrate
the model’s generalization ability, we conduct additional
tests on two existing datasets [33, 40], which also focus on
compositional reasoning. The consistent improvement fur-
ther validates that our method effectively guide the model

to acquire essential and transferable comprehending abili-

ties at a finer granularity. Our main contributions are:

1. A progressive data constructing pipeline. We present
a progressive data construction pipeline designed for cre-
ating a candidate image set. Within each candidate set,
images vary exclusively in a specified attribute while en-
suring consistency across other aspects. Such data are
valuable for conducting text-to-image matching tasks, as
depicted in Fig. 1(b), offering a visual perspective for
evaluating VLMs.

2. A carefully curated benchmark: SPEC. We meticu-
lously craft a novel benchmark, SPEC, with a specific fo-
cus on evaluating VLMs’ understanding of fine-grained
visual-linguistic concepts, encompassing object size, po-
sition, existence, and count. The introduction of SPEC
enables a symmetrical evaluation of VLMs from both
image and text perspectives, addressing the previous lack
of image-centric testing data.

3. A simple and effective remedy. We evaluate four
VLMs on SPEC, revealing significant limitations. In re-
sponse, we propose a method to enhance the understand-
ing of fine-grained visual-linguistic concepts. Exper-
imental results indicate notable improvement not only
on SPEC but also consistent results on two additional
datasets, while preserving zero-shot capability.

2. Related Work

Vision and Language Models (VLMs). Models such as
CLIP [23], ALIGN [13], CyCLIP [10] CoCa [39], Om-
niVL [32] and Open-VCLIP [34, 35] have demonstrated im-
pressive performance across a wide range of downstream
tasks. These models include two separate unimodal en-
coders, each designed to extract representations for visual
and textual input. To achieve alignment between the two
modalities, they typically employ a huge number of visual-
textual pairs for contrastive learning. By pretraining on
400M noisy data, CLIP [23] achieves a top-1 accuracy on
ImageNet-1K [5] comparable to that of ResNet-50 [11],
even though it is never specifically trained on ImageNet and
is evaluated in a zero-shot manner. However, as highlighted
in recent work [31, 40], these advancements are primarily
attributed to the simplicity of evaluation tasks which re-
quires no reasoning or compositional capabilities. The per-
formance of these models are limited on tasks that require
fine-grained understanding [21, 40].

Benchmarking VLMs in Finer Granularity. To as-
sess the model’s understanding of nuanced visual-linguistic
concepts, several new benchmarks have been proposed.
Winoground [31] is curated by experts with a focus
on compositional understanding. VALSE [21] and VL-
Checklist [43] investigate several linguistic phenomena
by transforming real captions into confusing alternatives.
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(a) Image Generation

(b) Instance Segmentation
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Figure 2. The overall illustration of our data progressive construction pipeline. We initiate the process by generating a batch of
images containing a single object. Subsequently, we extract the object from the background in the images. Following that, we arrange the
background-free images on a blank canvas according to specifications (with control over attributes). Finally, we meticulously fill in the

missing background, ensuring consistency across candidates.

ARO [40] diagnoses VLMs in attribution, relation and or-
dering. Eqgben [33] assesses whether the model is sensi-
tive to visual semantic changes. Most existing benchmarks
solely focus on subtle textual changes [12, 19, 21, 40, 43],
as crafting confusing text candidates is straightforward that
can be achieved through either LLMs or simple rules.
Winoground [40] and Eqben [33] are most relevant to us,
since we focus on minimal semantic changes in both images
and texts, enabling a more comprehensive evaluation across
modalities. However, the scale of Winoground is restricted
by its costly curation, and the image diversity of Eqgben is
limited by virtual engines. In contrast, our data construction
pipeline is scalable and can produce diverse images.

Enhancing VLMs for Fine-grained Understanding. To
mitigate challenges in fine-grained recognition, various
approaches have been explored. Syn-CLIP [2] utilize
data synthesized by 3D simulation engines to enhance
the model’s understanding of concepts beyond nouns.
EQSIM [33] incorporates an additional regularization loss
to generalize VLMs to nuanced multimodal compositions.
TSVLC [7] and VILEM [4] introduce negative texts gen-
erated by LLMs [6, 26] to inject fine-grained knowledge.
Construct-VL [30] addresses these challenges from a con-
tinual learning perspective. These methods compel the
model to focus on subtle differences by introducing confus-
ing texts as hard negatives. However, we argue that the ab-
sence of visual hard negatives limits its performance. Thus,
we introduce hard negatives for both modalities, simultane-
ously enhancing the visual and textual encoders.

3. Synthesize: Data Construction Pipeline

Our goal is to build a set of perplexing image, wherein each
image differs solely in a specified attribute while ensuring

query text: a photo of two dogs

,1

]

candidate images

Figure 3. Ensuring consistency among candidates is crucial to
avoid ambiguity. The images above not only differ in quantity but
also show a significant variation in the appearance of the objects.
Consequently, attributing the model’s correctness or errors solely
to the understanding of quantity is not convincing.

consistency in all other aspects. We first emphasize the im-
portance of preserving consistency among candidate images
for effective evaluation (Sec. 3.1). To address this, we break
down this problem and introduce a progressive data con-
struction pipeline (Sec. 3.2). Then, we carefully devise a
benchmark that centers on evaluating VLMs’ grasp of fine-
grained visual-linguistic concepts (Sec. 3.3).

3.1. Importance of Candidate Consistency

As illustrated in Fig. 3, when conducting a matching task
with the textual query “a photo of two dogs”, the model
might mistakenly choose the image on the right (which ac-
tually contains three dogs). However, attributing this error
solely to counting difficulty is not convincing. The model
might select the right-side image due to its more photo-
realistic appearance or better alignment with the word
“dog”, as the left-side image has a cartoon style. Con-
versely, if the model correctly selects the right-side image
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for the query “a photo of three dogs”, we also cannot assert
that the model is proficient in counting. These obscure am-
biguities arise because there is no guarantee of the unique-
ness of changing factors among candidate images during
evaluation. Therefore, ensuring consistency among candi-
dates in all aspects except the one under investigation is cru-
cial. To this end, we propose a progressive data construction
method, which will be elaborated in detail as follows.

3.2. Progressive Data Construction

The data construction framework is illustrated in Fig. 2,
comprising four progressive steps. Initially, we generate
images featuring a single prominent object. Then, we iso-
late the foreground from the background, resulting in a li-
brary of foreground objects spanning various categories.
Subsequently, we select objects from this library and ar-
range them on a blank canvas, adjusting their attributes and
relationships. Lastly, we carefully fill in the missing back-
ground, ensuring consistency among different candidates.

3.2.1 Generating Images with Single Objects

We initiate the process by utilizing a generation model to
obtain a collection of images, each featuring a single and
prominent object corresponding to a specific category. Due
to the progress in visual generation models [24, 25, 36, 37],
these images display a high level of photo-realistic and di-
verse content. In practice, we use Stable-Diffusion-XL
1.0 [22] as our generator, and prompt it with “a photo of
a single and fully visible [class name]”. The emphasis on
“single and fully visible” is crucial, as the model might oth-
erwise generate images with multiple objects or encounter
occlusion issues, as observed in [42]. The [class name] rep-
resents a specific category from 80 classes of COCO [18].

3.2.2 Isolating Objects from the Background

For ease in subsequent processes, we need to separate the
objects from the backgrounds where they are embedded.
To accomplish this, we first utilize an open-set detector,
Grounding-DINO [20] to outline the regions containing the
objects. Subsequently, we prompt SAM [15] with this
bounding box as to obtain the final segmentation results.
Thus far, we have established a library containing instances
from various categories. These instances are background-
free, allowing for composition on a blank canvas, while
their attributes and relations can be controlled.

3.2.3 Arranging Objects on the Canvas

Recall that our goal is to manipulate a specific visual-
linguistic concept of an image. Currently, this task appears
straightforward when we exclude the background from con-
sideration. We can retrieve instances from the library and

arrange them on a blank canvas according to our specifi-
cations. For example, we can flexibly control the quantity
of an object through duplication operations, modify their
sizes via resizing, and determine whether an object exists
and specify the position of an existing object. This process
resembles the concept of copy-paste [9, 42], with a notable
distinction: we paste objects onto a blank background and
placing emphasis on controlling properties such as the size,
position, existence, and quantity of each individual object.

3.2.4 Infilling the Missing Background

We have constructed images with differences in specified at-
tributes, however, they currently lack a suitable background.
To fill the missing area, we employ a inpainting model [22]
which demonstrates proficiency in filling large holes. It is
worth noting that generating backgrounds individually for
each image would result in significant differences in the
backgrounds, posing a challenge to maintaining consistency
among candidate images. To overcome this, we introduce a
strategy where images within the same candidate set share
a common and consistent background during the inpainting
process. As depicted in the upper part of Fig. 4, to present
the giraffe in different positions, we start by surrounding it
with an initial background. Then, we relocate this initial im-
age on the canvas as required, and fill the remaining blank
space. Similarly, in the lower part, we first embed the zebra
into a reasonable environment. Following that, we expand
the scene horizontally, introduce the elephant, and fill the
blank areas through inpainting. In summary, we begin the
process by generating an initial background, which is then
expanded to the surroundings, effectively ensuring consis-
tency among the candidate images. Additional examples,
such as adjusting the size or quantity of an object, can be
found in the supplementary.

3.3. SPEC Benchmark

Utilizing the data engine outlined in Sec. 3.2, we carefully
devise the SPEC benchmark with the goal of assessing the
performance of VLMs in comprehending object size, posi-
tion, existence and count. An overview of the SPEC bench-
mark is presented in Fig. 5. SPEC contains six subsets,
which will be elaborated as follows:

Absolute Size reflects how large an object is in compari-
son to the entire image. We categorize this into three level:
large, medium, or small, and define them following:

small, P <02
Sizegps. () = ¢ medium, 04 < P <06 (1)
large, P >0.8,

where P denotes the proportion of the space occupied by
the object relative to the area of the entire image. A safety
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Figure 4. Consistent background inpainting strategy. We first
generate an initial background shared by all candidate images.
Then, we expand around this region, ensuring consistency in the
backgrounds of different images.

threshold is deliberately introduced between these three lev-
els to prevent ambiguity.

Relative Size focuses on the size relationship between two
objects. It is categorized as follows: object A is [smaller
than, equal to, larger than] object B, and we measure this
following:

Asmaller thanB, R<0.5

Sizereq. (A, B) = ¢ Aequal to B, 09<R<11
Alarger than B, R2>2,
2
where R = g—g is the ratio of the areas of object A and

object B.

Absolute Position signifies the location of an object rela-
tive to the image. We partition the image into a 3x3 grid,
defining nine possible positions: top-left, top, top-right, left,
center, right, bottom-left, bottom, and bottom-right. The ab-
solute position of an object is determined based on the grid
in which its center point resides.

Relative Position describes the spatial relationship between
two objects. We consider four common spatial relation-
ships: A is [to the left of, to the right of, above, below] B.
The position relationship between objects is defined based
on the relative positions of their center points.

Existence indicates whether an object appears in a given
image, expressed using existential quantifiers: There is [no,
at least one] object in the image.

Count represents the number of occurrences of an object,
providing a metric for the model’s quantitative understand-

Benchmarks Visual HN  Scalability =~ Text-realistic ~ Photo-realistic ~#Candidates

VALSE [21] X v v v 2
ARO [40] X v X v 2
Winoground [31] v X v v 2
Eqgben [33] v v v K 2
SPEC(Ours) v v v v 29

Table 1. Comparison of SPEC with other fine-grained bench-
marks.

ing. Due to potential occlusion issues with a large number
of objects, we restrict our consideration to the range of 1 to
9: “there are [one, two, - - -, nine] object(s) in the image”.

Data Format. The basic unit of SPEC is an individual test
case, wherein each test case comprises two components: an
image candidate set, which differs only in certain visual as-
pects, and a text candidate set, which differs only in the cor-
responding language descriptions. We formally represent a
test case as:

T:(I:{Ila"'7IK},T:{T17"’7TK})a 3

where 7 and T represent the image and text candidate sets,
respectively. The i-th image I; is paired with the i-th text
T;, i.e., they mutually describe each other. K is the seman-
tic cardinality of the test case, determined by the definition
of each subset. For instance, if a test case belongs to the
absolute size subset, then K = 3 (representing the three
semantics: large, medium, small). In Fig. 5, we present ex-
amplar test cases for each subset, and more examples can
be found in the supplementary.

Comparing SPEC with other benchmarks. In Tab. I,
we conduct a comprehensive comparison of SPEC with
four similar benchmarks. Visual HN indicates the pres-
ence of image hard negatives, which are essential for the
text-to-image matching task. Notably, VALSE [21] and
ARO [40] concentrate solely on text hard negatives, neglect-
ing their visual counterparts. Scalability assesses whether
the data construction method can be scaled up. For instance,
Winoground [31] is limited to 400 examples due to high
costs for manual collection. Additionally, Text-realistic
evaluates the grammatical correctness of the texts, where
ARO involves directly swapping the positions of two words
without considering grammar. Similarly, Image-realistic
indicates the realism of the images. Eqben [33] incorporates
images rendered using a virtual engine, compromising their
quality. In contrast, images from SPEC, while synthesized,
leverage advanced image generation models and our effec-
tive data construction pipeline, resulting in photo-realistic
images. Finally, we compare the number of Candidates
in each test case. In all datasets except SPEC, each exam-
ple features only two candidates, i.e., identifying the cor-
rect item from two candidates, which is relatively straight-
forward. In contrast, tasks in SPEC are more challenging,

13283



Absolute Size
500 test cases, 3 candidates each

the shep is large in the image
the sheep is medium-sized in the image
the sheep is small in the image

Relative Size
500 test cases, 3 candidates each

the pizza is smaller than the sandwich
the pizza is equal-size with the sandwich
the pizza is bigger than the sandwich

Absolute Position
500 test cases, 9 candidates each
P it - oy o s

the kite is in the top-left corner
the kite is in the center of the image
the kite is in the bottom-left corner

Relative Position

the toilet is to the left of the backpack
the toilet is on top of the backpack
the toilet is below the backpack

o 0T

Count
500 test cases, 9 candidates each

a photo of one snowboard
a photo of twe snowboards
a photo of three snowboards

Existence
500 test cases, 2 candidates each

there is no giraffe in the image

there is a giraffe in the image

Figure 5. An overview of the SPEC benchmark. SPEC consists of six distinct subsets, distributed across the dimensions of Size, Position,
Existence and Count. Each test case consists of an image candidate set, which differs only in certain visual concept, and a text candidate
set, which differs only in corresponding language concept. Due to space constraints, we present a maximum of three images and texts here,

however, more comprehensive test cases are available in the supplementary material.

and the semantic space covered by the candidate set is more
comprehensive. For example, in the case of relative posi-
tion, the candidates include all four semantic directions (up,
down, left, right), and in absolute position and count, it ex-
tends to nine candidates. As will be discussed below, more
confusing candidates can be readily used as hard negatives
to improve current VLMs.

4. Diagnose: Probing VLMs on SPEC

We conduct a systematical evaluation of four state-of-
the-art VLMs: CLIP [23], BLIP [17], FLAVA [29] and
CoCa [39] using our newly proposed SPEC benchmark,
aiming to uncover that to what extent and in what aspect
are they excelling or suffering.

4.1. Evaluation Task and Protocol

Symmetric image-text matching task. We conduct evalu-
ations using the image-text matching task, where each test
case T=(Z, T') comprises an image set Z and a correspond-
ing text set 7, as outlined in Eq. (3). The evaluation process
is symmetric, considering both visual and textual perspec-
tives. In the image-to-text matching task, when querying
with an image I;, the model is required to accurately iden-
tify 7; from the candidate set 7. Similarly, in the text-to-
image matching task, the goal is to find I; for a given query
text T;. In practice, we accomplish the matching process
using the similarity s(I,T") between a given image I and
text T'. A candidate will be selected if its similarity with the
query ranks first among the entire candidate set.

Evaluation protocols. We measure the performance on
SPEC using two metrics: I2TAcC and T2IAcCC, represent-
ing the accuracy of image-to-text and text-to-image match-
ing task, respectively:

1 1
I2TACC = — Z 7 Z h(l;, T:) (4
| |(L,'meD| il L;€T;
1 1
T2IACC = — Z Z 9(T;,Z;),  (5)
Dl 2., 7 2,
R J K3

where D contains | D] test cases, h(I;,T;) equals to 1 if
and only if I; correctly find its matched text 7 from the
candidate set 7;, otherwise it is set to 0. Similarly, g(77,Z;)
equals 1 if and only if T correctly finds its matched image
1I; from the candidate set Z;, otherwise, it is set to 0.

4.2. Key Insights from SPEC Results

We evaluate four VLMs using the SPEC benchmark, and
their results are summarized in Tab. 2. We find that all the
models exhibit a limited accuracy close to random chance,
from which we gain the following insights:

Even state-of-the-art VLMs perform at chance level.
From the results, we surprisingly find that even the most
advanced VLMs achieve only a marginal advantage com-
pared to random chance, which sharply contrasts with their
impressive performance on common tasks. For instance,
CLIP [23] demonstrates a mere 33.4% T21ACC for relative
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Absolute Size Relative Size Absolute Position Relative Position Existence Count

2T T2I CLS 12T T21 CLS 12T T2I CLS 12T T2I CLS I2T T21 CLS 12T T2I CLS
Random 333 333 1.3 333 333 25 1.1 11.1 13 250 250 25 500 500 50 11.1 11.1 1.3
FIAVA [29] 37.3 372 893 329 323 841 13.1 157 888 255 267 840 579 519 744 144 212 758
BLIP [17] 433 427 977 332 325 982 122 11.0 979 305 297 976 554 50.1 960 374 37.1 938
CoCa [39] 39.1 36.1 959 336 333 954 11.7 11.8 96.1 303 28.8 922 509 500 837 365 356 89.6
CLIP [23] 425 36.1 92.1 344 334 949 126 123 928 28.0 266 90.1 583 512 840 251 232 839
Ours 689 60.7 963 403 441 973 30.6 342 969 46.6 469 962 834 531 925 556 578 925

Table 2. Evaluation results on SPEC. We extensively benchmark four state-of-the-art VLMs on SPEC to investigate their comprehension
of fine-grained visual-linguistic concepts. Our evaluation employ two metrics, I2TACC and T2IACC, and we report the detailed perfor-
mance on the each subset. We also report the classification accuracy, CLS, to highlight the capability in recognizing object categories. The
first row indicates accuracy at chance level, serving as a baseline for comparison.

size recognition, while the chance-level accuracy is 33.3%.
While BLIP performs reasonably well in absolute size, sur-
passing random level by around 9.7%, the 12TACC on rela-
tive size is 0.7% lagged behind. CoCa [39] and FLAVA [29]
also exhibit significant weaknesses in performance. The
last row presents the performance of our improved model,
demonstrating significant advancements across all metrics
(as will be introduced in Sec. 5).

The challenge arises from the task itself, not the data.
One might attribute the poor performance of VLMs to the
data quality or distribution. To address this concern, we
conduct an additional experiment. Specifically, we perform
classification experiments using the SPEC dataset to assess
the model’s understanding of nouns or object categories. In
this context, the models exhibit impressive performance,
achieving approximately 90% Top-1 accuracy in the 80-
class classification task (denoted as CLS in Tab. 2). This
aligns well with earlier findings [40] that VLMs struggle in
compositional reasoning while excelling in object category
recognition. The remarkable accuracy of the models in the
object classification task confirms the high quality of SPEC
data. This also validates that the challenges faced by VLMs
stem from the tasks which require fine-grained recognition
rather than issues with the data itself.

4.3. Discussion on Model Limitations

We attribute the poor performance of vision and language
models on SPEC to to their pretraining methods, specif-
ically, the inherent limitation in standard contrastive loss.
The conventional contrastive learning involves randomly
sampling batches of images and texts, requiring the model
to identify matching pairs within the batch. This task is
intended to facilitate alignment between text and image
spaces. However, as highlighted in prior studies [2, 40], the
substantial differences between items in a randomly sam-
pled batch allows the model to effortlessly complete this
task. It can easily achieves this by focusing solely on nouns

in the text and object categories in the images through a
shortcut [8]. This leads the model biased towards noun con-
cepts, neglecting other finer-grained concepts. This is the
reason why these models demonstrate poor performance on
fine-grained tasks that demanding understanding concepts
beyond nouns.

5. Optimize: A Simple but Effective Remedy

We experiment with CLIP [23] and propose a remedy to
enhance its performance in fine-grained understanding.

5.1. Method

CLIP [23] consists of an visual encoder to extract image
embedding: e; = £;(I) and a textual encoder to extract text
embedding: e = Ep(T). The similarity score between an
image I and a text 7" is computed following:

T€T6T
I.T) = Y B
s(1,T) e""(||ez||2|eT|2)’

where 7 is a learnable temperature.

In order to guide CLIP to focus on fine-grained visual-
linguistic concepts, we incorporate confusing images and
text as hard negatives within the same batch. This requires
CLIP to pull positives closer and push hard negatives away,
thereby enhancing its ability to discern nuanced visual and
textual differences. Specifically, we introduce an hard neg-
ative aware contrastive loss £, = L2T+ £72!, which com-

hn>
prises an image-to-text and a text-to-image term:

(6)

I, T;)
£12T I 1 S( 1yt
Z Y ST+ s T
TjET T;ibn,eThn
@)
I,T)
Lo lo s(L;, T; ’
D DS 7 ES SOy )
: I,eZ [}cme:[h,n
3)
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where Z and T represent the trivial images and texts, re-
spectively, while Z"™ and 7"™ denote non-trivial hard neg-
atives. In our implementation, these hard negative examples
are constructed using the data pipeline described in Sec. 3.2,
and more details are in the supplementary.

To preserve the inherent zero-shot capability of CLIP,
we also leverage the conventional image-text pairs from
LAION-400M [27]. We apply the standard contrastive loss
of CLIP [23] to these data, introducing an additional loss
term L;;p. The overall loss consists of two terms:

L= Eclip + )\Ehna (9)

where A\ is a hyperparameter that balancing these two
terms. Training on this multi-task loss enables improv-
ing the performance of CLIP in fine-grained understanding
while maintaining its zero-shot capability.

5.2. Experiments

Training details. We experiment with the ViT-B/32 variant
of CLIP, and resume from the OpenAl pretrained check-
point [23]. We finetune for 1,000 steps using a cosine sched-
ule with an initial learning rate of 1e-6 and use 800 steps for
warm up. The batch size of LAION data is set to 2048, and
the batch size of hard negative data is set to 768. The weight
A of the hard negative aware loss is set to 0.2.

Main results. We utilize the SPEC benchmark to assess the
understanding of model in fine-grained concepts. In Tab. 3,
we present the average I2TACC and T2IACC on all subsets
of SPEC. To assess the general performance of the model,
we also utilize the toolkit from ELEVATER [16] to eval-
uate the zero-shot performance on 9 classification and re-
trieval datasets, and report the average accuracy. Compared
to CLIP [23], our model demonstrates remarkable advance-
ments with a 19.8% boost in 12TACC, an 18.9% improve-
ment in T2IACC on SPEC, and a noteworthy 1.2% enhance-
ment in zero-shot accuracy. We also conduct ablation on
different training configurations. From the results in Tab. 3,
it can be observed that the introducing of L}, significantly
improves the performance on SPEC. Moreover, the L.,
plays a crucial role in preserving zero-shot performance.
Without it, we observe a decline in accuracy by 5.1%. With
the combination of these two losses, we achieve substantial
improvement in SPEC while maintaining the original zero-
shot capability.

Validation on other fine-grained benchmarks. To assess
whether our approach aids the model in acquiring funda-
mental visual-linguistic understanding or merely leads to
overfitting on SPEC, we conduct evaluations on two ad-
ditional benchmarks which also focus on the assessment
of fine-grained concepts. ARO [40] explores three as-
pects of vision-language understanding: object attributes,

Config SPEC Zero-shot

Leip Lpn 12T T21  Accuracy
CLIP 335 305 67.5
+ Lhn v 643 6038 62.4
+ Letip v 322 315 69.4

+ Lyn+Leip (Ours) v v 533 494 68.7

Table 3. Main Results: The first row represents the pretrained
checkpoint without fine-tuning. We sequentially introduce two ad-
ditional loss terms to investigate their impact for the performance.

Eqgben ARO

Image Text Group Attribute Relation Order

CLIP 176 214 10.1 63.2 63.9 533
CLIPpr 181 237 11.1 65.1 68.0 54.1
Ours 195 240 117 66.4 73.7 60.7

Table 4. Cross-dataset evaluation results on Eqben [33] and
ARO [40]. To demonstrate that the improvement comes from the
negative loss, rather than training on more data, we also report
CLIPF7, which is also finetuned but without negative samples.

inter-object relations, and word ordering. Eqben [33] fo-
cuses on minimal visual semantic changes, aiming to diag-
nose VLMs in understanding fine-grained concepts such as
counting and location. In Tab. 4, we present the experimen-
tal results, demonstrating a clear improvement compared
to CLIP [23] on both datasets, For example, compared to
CLIP, our method shows an average improvement of 2%
on Eqgben and respective enhancements of 3.2%, 9.8%, and
7.4% on the three subsets of ARO. The consistent improve-
ment on these datasets demonstrates that our approach has
facilitated the model in acquiring transferable fine-grained
understanding capabilities.

6. Conclusion

In this study, we explored the comprehension abilities of Vi-
sual Language Models (VLMs) with respect to fine-grained
visual-linguistic concepts. We first established an efficient
pipeline to synthesize candidate images that exclusively dif-
fer in a particular visual attribute. Leveraging this pipeline,
we created the SPEC benchmark to diagnose the compre-
hension proficiency of VLMs in terms of object size, po-
sition, existence, and count. Upon evaluating four lead-
ing VLMs using SPEC, we uncovered substantial perfor-
mance limitations. To address this, we introduced an en-
hancement strategy that effectively optimizes the model for
fine-grained understanding, while maintaining its original
zero-shot capability.
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