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Abstract

Place recognition is crucial for unmanned vehicles in
terms of localization and mapping. Recent years have wit-
nessed numerous explorations in the field, where 2D cam-
eras and 3D LiDARs are mostly employed. Despite their
admirable performance, they may encounter challenges in
adverse weather such as rain and fog. Hopefully, 4D
millimeter-wave radar emerges as a promising alternative,
as its longer wavelength makes it virtually immune to in-
terference from tiny particles of fog and rain. Therefore,
in this work, we propose a novel 4D radar place recogni-
tion model, TransLoc4D, based on sparse convolutions and
Transformer structures. Specifically, a MinkLoc4D back-
bone is first proposed to leverage the multi-modal infor-
mation from 4D radar scans. Rather than merely captur-
ing geometric structures of point clouds, MinkLoc4D ad-
ditionally explores their intensity and velocity properties.
After feature extraction, a Transformer layer is introduced
to enhance local features before aggregation, where linear
self-attention captures the long-range dependencies of the
point cloud, alleviating its sparsity and noise. To validate
TransLoc4D, we construct two datasets and set up bench-
marks for 4D radar place recognition. Experiments vali-
date the feasibility of TransLoc4D and demonstrate it can
robustly deal with dynamic and adverse environments.

1. Introduction
Place recognition is a fundamental component of au-

tonomous navigation systems, especially when operating in
GPS-denied environments. It is typically handled as a re-
trieval task [3, 36, 50] to provide a good initial value for lo-
calization optimization [8, 40, 41] and navigation decision-
making. Traditional methods relying on 2D images and 3D
point clouds have been extensively studied and become the
mainstream solutions for place recognition. However, the
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Figure 1. Schematic of the 4D Radar Place Recognition (4DRPR)
pipeline. Each 4D radar scan of the trajectory is preprocessed and
characterized into a novel 4D point cloud representation, which
is then fed into the TransLoc4D encoding network to generate a
global compact descriptor for instance retrieval.

inherent characteristics of cameras and LiDARs make these
methods vulnerable to challenging weather conditions such
as rain, snow, or fog. This hinders their applicability for
robust place recognition in inclement-weather scenarios.

Recently, 4D millimeter-wave radar [24, 51] has be-
come a promising alternative and garnered growing interest.
Since millimeter waves have longer wavelengths, they are
effective at penetrating raindrops and fog particles. There-
fore, compared with 2D cameras and 3D LiDAR, 4D radar
can better adapt to harsh weather conditions and low-light
environments. While existing 2D and 3D methods have to
consider domain adaptation [1, 44, 45] or complementary
sensor fusion [21, 22, 46] to cope with lighting and weather
changes, 4D radar alone is sufficient for robust place recog-
nition in diverse environmental conditions.

Despite the advantages, 4D radar produces sparse point
cloud scans with lower spatial resolution than 3D LiDAR,
as in Fig. 1. This leaves points of a 4D radar scan lacking
context information. Besides, aliasing caused by multipath
echoes may blur the shape of static architectures and dy-
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namic objects. These factors diminish the precision of the
4D radar scene depiction. Specifically for place recognition,
a paradigm is needed to exploit the multimodal information
of intensity and Doppler velocity from 4D radar scans. Dif-
ferences in observation distance and angle, as well as the
external environment, can influence the intensity of the re-
flection detected from the same object. The radial velocity
of the object is also affected by changes in its azimuth an-
gle relative to the radar and the vehicle’s own driving speed.
Therefore, how to take advantage of the geometry, intensity,
and velocity information of 4D radar scans, but ignoring the
interference contained therein, is the major challenge of ap-
plying 4D radar to the place recognition task.

Taking these issues into account, we propose a novel
4D radar place recognition model, TransLoc4D. Its encod-
ing architecture consists of three modules: sparse convo-
lutions for feature extraction, Transformer for feature en-
hancement, and GeM pooling for descriptor generation.
Firstly, point cloud processing and a MinkLoc4D backbone
are proposed to exploit the multimodal information of ge-
ometry, intensity, and velocity from 4D radar scans. Rather
than operating directly on raw point clouds, MinkLoc4D
discretizes point clouds into sparse voxelized representa-
tion [26]. While most preliminary 3D methods [10, 19, 42]
merely extract geometry information from binary voxelized
features, MinkLoc4D proposes a novel paradigm that re-
forms additional intensity and radial velocity attributes
of 4D radar scans into numerical features. Specifically,
RANSAC-based ego-velocity estimation strategy is first
employed to remove dynamic points and estimate vehicle
ego-velocity. Then after preprocessing, sparse convolutions
are applied to encode geometric, intensity, and motion pat-
terns of the refined point clouds into latent features.

Following backbone feature extraction, a Transformer
layer is introduced for spatial feature enhancement. The
sparse convolutional backbone only extracts local pat-
terns between points and their neighborhoods, while their
long-range contextual association is unexplored. In this
case, a Transformer with interpolation [6] and linear self-
attention [37] is employed to play a complementary role. It
interpolates sparse voxels, captures their long-range depen-
dencies, and associates global context to enhance their fea-
ture representation. Finally, the global descriptor of a 4D
radar scan is generated by aggregating the enhanced local
features via Generalized-Mean pooling [32]. The overall
TransLoc4D encoding architecture is differentiable and can
be optimized through end-to-end training.

Since there has been no open-sourced dataset specifically
for 4D radar place recognition, we create two benchmark
datasets based on the open-source NTU4DRadLM [49] and
SJTU4D [24] datasets, as well as supplementary data newly
collected at NTU campus. Experimental results demon-
strate the feasibility of our TransLoc4D and provide bench-

marks for 4D radar place recognition. Overall, the contri-
butions of this work are summarized as follows:

• A novel encoding architecture, TransLoc4D, is pro-
posed. It is the first end-to-end network aimed at tack-
ling place recognition based on 4D radar attributes.

• A MinkLoc4D backbone is proposed for feature ex-
traction based on the multimodal information of ge-
ometry, intensity, and velocity from 4D radar scans.

• A linear Transformer is introduced to capture the long-
range dependencies to enhance feature representation.

• Two datasets are constructed for 4DRPR, on which our
TransLoc4D is validated and benchmarks are set.

2. Related Work
2D Visual Place Recognition. Compared with hand-

crafted local features [31, 43], learning-based architectures
demonstrate excellent potential. Integrating specific struc-
tures [13, 30, 47] or attention mechanisms [18, 29, 30],
NetVLAD [2] variants show superior performance. In ad-
dition to innovations in encoding architectures, the explo-
rations of better training metrics [3,4,12,13,48] or matching
strategies [23] have also been ongoing. CosPlace [3] and
EigenPlace [4] propose to train the model for a categoriza-
tion task. Through supervised training, better performance
can be learned with a simple model structure.

3D LiDAR Place Recognition (3DLPR) is typically
handled as a point cloud retrieval task via global or local
descriptor matching. PointNetVLAD [36] is the seminal
end-to-end architecture for 3DLPR. Rather than processing
on raw point clouds, MinkLoc3D [19] pioneers the use of
sparse voxelized representations, forwarding them to the 3D
convolutional network. TransLoc3D [42] proposes an adap-
tive receptive field module that applies channel attention to
multiscale features, which are then integrated by a Trans-
former and NetVLAD. PPT-Net [15], SVT-Net [10], and
PTC-Net [6] exploit various Transformer modules to learn
long-range contextual properties. From the perspective of
learning metric, MinkLoc3Dv2 [20] proposes a Truncated
Smooth-AP loss suitable for large training batches.

However, the aforementioned methods extract features
from either raw point clouds or their voxelized represen-
tations, where only geometric patterns are captured. The
intensity property of 3D LiDAR, proven effective in con-
structing non-learned local descriptors for 3D place recog-
nition [14, 52], have not been fully utilized in global de-
scriptor generation. In the limited literature, Intensity Scan
Context [38] proposes the scan context identification based
on intensity characteristics, which however is not learnable.
MinkLoc3D-SI [52] inherits the spherical point represen-
tation and employs 3D convolutional architecture to utilize
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Figure 2. Overview of the TransLoc4D encoding architecture. First, preprocessing is performed to refine the 4D point cloud based on
ego-velocity regression and RANSAC filtering. Geometric, velocity, and intensity attributes are reformed and integrated into a novel 4D
point representation, which is taken as input by the 3D sparse convolutional backbone MinkLoc4D for local feature extraction. Finally,
local features are enhanced by a Transformer via global context integration and aggregated as the final global descriptor by GeM pooling.

intensity information. Our TransLoc4D uses the Cartesian
point representation and integrates the additional velocity
characteristics besides geometric and intensity.

4D Radar Place Recognition (4DRPR). Among early
attempts at radar place recognition, Kidnapped Radar [35]
provides a rotation-invariant solution for spinning radars.
AutoPlace [5] proposes the first solution for automotive
radar, using a deep neural network for spatial-temporal fea-
ture embedding. With the advent of 4D millimeter-wave
radar, 4DRPR is becoming an emerging solution robust
against adverse weather conditions. However, there are
currently no open-source datasets and methods specifically
targeting 4DRPR. The two open-source datasets with 4D
radar scans and sufficient closed loops are SJTU4D [24]
proposed for autonomous driving, and NTU4DRadLM [49]
proposed for 4D radar Simultaneous Localization and Map-
ping (SLAM) [7, 50]. We create benchmark datasets for
4DRPR based on their GPS and 4D radar data. While
NTU4DRadLM proposes a loop closure detection mod-
ule based on Intensity Scan Context [17, 38], it is hand-
crafted and relies on the rough position provided by front-
end odometry. Our TransLoc4D is a differentiable architec-
ture that can be fine-tuned by end-to-end training.

3. Proposed Method
This section expounds on the details of the TransLoc4D.

Sec. 3.1 proposes point cloud preprocessing and a 4D rep-
resentation. Sec. 3.2 introduces the MinkLoc4D backbone.
It extracts features from multimodal characteristics of 4D
radar scans. The Transformer and GeM pooling for global
context integration and descriptor generation are elaborated
in Sec. 3.3. Sec. 3.4 describes the training process. Fig. 2
illustrates the overall TransLoc4D framework.

3.1. 4D Point Preprocessing and Representation

4D millimeter-wave radar provides five primitive at-
tributes of point clouds: range, azimuth, altitude, Doppler
velocity, and intensity. Through the transformation of the
first three attributes, the coordinates of the points in the
Cartesian coordinate system can be obtained as {pi =
(xi, yi, zi)

T }. Compared with 3D LiDAR, velocity is a
unique attribute of 4D radar. The radial relative velocity
vdi of a point can be obtained by the Doppler effect. In
TransLoc4D, the velocity information is utilized from two
aspects: (1) remove noise points caused by multipath alias-
ing and dynamic points to reduce their interference; (2)
regress ego-velocity and eliminate its influence in the data
representation to obtain ego-velocity invariance.

Ego-velocity estimation for invalid points removal. In
4D radar scans, there is a proportion of invalid points, such
as noise points caused by multipath aliasing or points from
dynamic objects. They may degrade the radar scan repre-
sentation. Therefore, we introduce data preprocessing [9]
to denoise and remove dynamic points.

Given a set of N points {(pi, v
d
i )}Ni=1 with Cartesian po-

sition pi and radial relative velocity vdi , as in Eq. 1, the ra-
dial relative velocity vdi of each point is formally the product
of its velocity relative to the radar vr

i =
[
vrx,i, v

r
y,i, v

r
z,i

]T
and

its unit position vector p̂i= pi

∥pi∥=[p̂x,i, p̂y,i, p̂z,i]
T .

vdi = p̂⊺
i v

r
i = p̂x,iv

r
x,i + p̂y,iv

r
y,i + p̂z,iv

r
z,i (1)

Let ve=
[
vex, v

e
y, v

e
z

]T
denote the ego-velocity of the 4D

radar. The relative velocities of the static points to the radar
are the same as vr=−ve=

[
−vex,−vey,−vez

]T
. Assuming N

measured points are static and applying Eq. 1 to them re-
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spectively, a system of N linear equations with three vari-
ables can be expressed as matrix notation in Eq. 2 and Eq. 3:

vd = [p̂i, . . . , p̂N ]
⊺
vr
i = P̂ vr = −P̂ ve (2)vd1

...
vdN

 =

 p̂x,1 p̂y,1 p̂z,1
...

...
...

p̂x,N p̂y,N p̂z,N


−vex
−vey
−vez

 (3)

If only at least three static points have different unit po-
sition vector p̂, the matrix P̂ ∈ RN×3 is full rank. Accord-
ing to the least squares method [27], the linear equations in
Eq. 2 has the optimal analytical solution as Eq. 4, through
which the ego-velocity ve can be estimated.

ve = −(P̂ ⊺P̂ )
−1

P̂ ⊺vd (4)

The necessary prerequisite for accurately regressing the
analytical ego-velocity is the measured points are all static.
To this end, RANSAC [9, 11] is employed to get rid of dy-
namic outliers through iterative sampling. The RANSAC
inlier points P ′ obtained with the optimal ve are most likely
to be static and retained for subsequent processing. By this
means, the velocity attribute of the 4D radar scan is lever-
aged to regress the radar ego-velocity ve and refine the orig-
inal data with RANSAC outlier points removed.

Preprocessing for 4D point representation. Consid-
ering the varying ego-velocities of a 4D radar when visiting
the same place, directly incorporating radial relative veloc-
ity vd into feature embedding may introduce bias, causing
the model to learn harmful tricks. To eliminate the influ-
ence of ego-velocity on point representation, we decouple
the speed and direction in the radial relative velocity vd and
the ego-velocity ve. Since their speeds are both determined
by the motion of the radar rather than the static scene, we
propose to combine only their directions into a new attribute
representing the azimuth angle of the point relative to the
direction of the radar motion.

Specifically, the radial velocity direction of a point can
be expressed as the unit position vector p̂i. The ego-velocity
direction is formulated as v̂e= ve

∥ve∥ =
[
v̂ex, v̂

e
y, v̂

e
z

]T
. As in

Eq. 5, the new attribute s that characterizes relative azimuth
angle is defined as the cosine similarity (dot product) of the
two unit direction vectors p̂i and v̂e.

si = ⟨p̂i, v̂
e⟩ = p̂⊺

i v̂
e = p̂x,iv̂

e
x + p̂y,iv̂

e
y + p̂z,iv̂

e
z (5)

Essentially, the radial relative velocity attribute vd of the
original point cloud PC={(pi, v

d
i , Ii)} is utilized to remove

dynamic points and generate a new attribute s of the re-
fined 4D point cloud PC′={(pi, si, Ii)}. That is, the rela-
tive azimuth angle s independent of radar motion. With the
normalized intensity attribute I of point clouds, the refined
point cloud PC′ is the 4D point representation for subse-
quent feature embedding and descriptor generation.

3.2. MinkLoc4D Backbone for Feature Extraction

While raw point processing lacks the capacity to capture
local geometric patterns, voxelization and 3D sparse convo-
lution [20, 42, 52] have proven superior in the 3DLPR task.
The State-Of-The-Arts (SOTAs) MinkLoc3Dv2 [20] uses
the binary voxelized representation to indicate the presence
of 3D points and MinkLoc3D-SI [52] associates each point
with a LiDAR intensity feature. Inspired by them, we pro-
pose the first feature extraction backbone for 4DRPR, Min-
kLoc4D. Based on voxelized points with numerical features
of intensity and relative azimuth angle, it exploits the multi-
modal information of geometry, intensity, and velocity from
4D radar scans via 3D sparse convolutions.

Specifically, the refined point cloud PC′={(pi, si, Ii)} is
first quantized into sparse tensors P̃C={Vi : (p̃i, [si, Ii])}.
Each Vi represents a non-empty voxel with 3D coordinates
p̃i and two-dimensional features [si, Ii]. Then the voxelized
point cloud P̃C is fed to a Feature Pyramid Network (FPN)
for local feature extraction. As in Fig. 2, the FPN consists
of two trunks bridged at different scales by lateral convo-
lutional blocks (LConv2∼LConv4). The bottom-up trunk
contains four convolutional blocks (Conv0∼Conv4) with
increasing receptive fields. Incorporating Efficient Channel
Attention (ECA) [39], they produce sparse 3D feature maps
with decreasing spatial resolution. The top-down trunk
contains two transposed convolutional blocks (TConv3 and
TConv4). They generate upsampled feature maps, which
are then merged with the skipped features from the corre-
sponding layers in the bottom-up trunk via lateral convolu-
tions. Overall, the FPN takes as input the two-dimensional
features of the voxelized point cloud, and generates sparse
local features Fb ∈ RNb×256 for non-empty voxels.

3.3. Transformer for Feature Enhancement

Due to the sparseness, unevenness, and disorder of point
clouds, there may also be correlations between points that
are far apart. The MinkLoc4D backbone only extracts lo-
cal patterns of voxelized points but lacks the ability to mine
their long-range dependency. This hinders better local fea-
ture representation. Therefore, we modify a linear Trans-
former [34] as a complementary to the MinkLoc4D. It en-
hances local features by aggregating their global context.

The architecture of the Transformer module is shown in
Fig. 3. It first upsamples the sparse voxel features Fb using
an interpolation layer [6], generating the same number of
features F ∈ RN×256 at coordinate P̃ ∈ RN×3 as the orig-
inal input voxels of the point cloud. Then the interpolated
features are forwarded to the multi-head self-attention layer.
Specifically, through Eq. 6, the input features F ∈ RN×256

are first projected to H heads of query, key, and value vec-
tors {(Qh ∈ RN×S , Kh ∈ RN×S , Vh ∈ RN×L)}Hh=1

by the corresponding projection matrix WQh
∈ RS×256,
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Figure 3. Schematic of the Transformer for local feature enhance-
ment, where interpolation and linear self-attention are employed.

WKh
∈ RS×256, and WVh

∈ RL×256.

Qh = FWT
Qh

, Kh = FWT
Kh

, Vh = FWT
Vh

(6)

Then, through Eq. 7, the output vector V ′
h,i of the self-

attention layer is generated by the weighted sum of the value
vectors {Vh,j}. The weights are determined by the similar-
ity scores between the query Qh,i and the keys {Kh,j}.

V ′
h,i =

∑
j sim(Qh,i,Kh,j)Vh,j∑

j sim(Qh,i,Kh,j)
(7)

Since a large number of local features will result in
a big similarity matrix that is computationally inefficient,
we follow Linear Transformer [16, 34] to substitute the
original exponential kernel with an alternative sim(Q,K)
=ϕ(Q)ϕ(K)T , where ϕ() = elu() + 1. According to the
associativity property of matrix products, ϕ(K)TV can be
carried out first as in Eq. 8, so that the largest dimension N
can be eliminated to reduce computational complexity.

V ′
h =

(
ϕ(Qh)ϕ(Kh)

T
)
Vh

ϕ(Qh)ϕ(Kh)T
=

ϕ(Qh)
(
ϕ(Kh)

TVh

)
ϕ(Qh)ϕ(Kh)T

(8)

V ′
h,i =

ϕ(Qh,i)
T
∑N

j=1 ϕ(Kh,j)V
T
h,j

ϕ(Qh,i)T
∑N

j=1 ϕ(Kh,j)
(9)

Ft = F + LN(Linear(Concat({V ′
h}Hh=1)− F )) (10)

As in Eq. 10, firstly, the residuals between the concate-
nated H heads of vectors {V ′

h} and the original local fea-
tures F are mapped and normalized. Linear and LN denote
Linear and LayerNorm layers. Finally, the enhanced
local features Ft are formulated by merging the original
local features F and the attention residuals. Overall, the
Transformer module produces the enhanced local features

Ft whose shape is the same as the original local features F .
As a complementary to MinkLoc4D that extracts local pat-
terns, the Transformer exploits the long-range correlation
of points to aggregate their global context, regardless of the
total number of points and their coordinates.

3.4. Point Cloud Descriptor and Network Training

Generalized Mean (GeM) pooling [32] has shown to be
superior when coupled with classification learning [3] or
large batch ranking [20]. Therefore, to generate the final
4D point cloud descriptor Fg of the proposed TransLoc4D,
we employ GeM pooling to aggregate the enhanced local
features Ft, as Eq. 11.

Fg =


 1

|Ft|
∑
f∈Ft

fp

 1
p


c=1...256

(11)

c is the channel index, |Ft| represents the total number
of the local features, and p is a trainable parameter. It can
be noted that the feature enhancement and aggregation in
Sec. 3.3 and Sec. 3.4 are both independent of the positions
of points. The dimensionality of the final descriptor Fg is
also independent of the total number of points |Ft|. These
make the TransLoc4D descriptor robust to point cloud dis-
order and scalable to point clouds of different scales.

To train our TransLoc4D network, we adopt the Trun-
cated Smooth-AP (TSAP) loss [20]. It prompts the network
to maximize the average precision of the top-k positive can-
didates through data-driven learning. Formally, the smooth
average precision is defined in Eq. 12.

APq =
1

|Pq |
∑
i∈Pq

1 +
∑

j∈Pq,j ̸=i G(d(q, i)− d(q, j))

1 +
∑

j∈Ω,j ̸=i G(d(q, i)− d(q, j))
(12)

LTSAP (Ω) =
1

m

m∑
q=1

(1−APq) (13)

Among a batch of samples Ω with m queries, Pq is a set
of k positives with the minimum descriptor similarity to the
qth query. G(x) = (1 + exp(−x/τ))−1 denotes the differ-
entiable approximation of the indicator function, in which
the temperature constant τ controls the sharpness of the ap-
proximation. d(q, i) is the Euclidean distance between the
qth query point cloud and the ith reference point cloud in
the descriptor space. Then the TSAP loss LTSAP of a batch
is formulated as Eq. 13. To enable large-batch training for
optimal performance, multistaged backpropagation [33] is
applied to minimize LTSAP during training.

4. Experiments
4.1. Benchmark Datasets

So far, there has been no open-sourced dataset specif-
ically for the 4DRPR task. Therefore, we create two
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Figure 4. Overview of NTU4DPR (left) and SJTU4DPR (top
right) datasets. Examples are given for nighttime and rainy days.

benchmark datasets for 4DRPR based on the open-source
NTU4DRadLM [49] and SJTU4D [24] datasets, as well as
supplementary data that we newly collected at NTU.

NTU4DRadLM [49] is a multi-modal dataset encom-
passing approximately 17.6km data from six sensors: 4D
radar, thermal camera, IMU, 3D LiDAR, visual camera, and
RTK GPS. Proposed for SLAM, it provides accurate ground
truth odometry and intentionally crafted loop closures.

SJTU4D [24] comprisess data from calibrated and syn-
chronized LiDAR and 4D radar. It covers varied environ-
ments, such as an industrial zone and a university campus.

Both NTU4DRadLM and SJTU4D datasets were col-
lected by the mounted sensors on a mobile vehicle. The
captured data was recorded in real time. Each 4D radar
reading (including three-dimensional position, radial rel-
ative velocity, and intensity of reflection) is aligned with
a GPS tag based on timestamps and stored as a frame.
Since NTU4DRadLM only contains three loops with repet-
itive trajectories utilizable for 4DRPR, we refine them as
NTU4DPR with train query, train database, test query, and
test database splits. NTU4DPR-NYL and NTU4DPR-SRC
(orange and red loops in the left of Fig. 4) are two special
subsets newly collected by a robot operating on sidewalks
instead of main roads. We sample them as test sets, includ-
ing query splits at nighttime and on rainy day. Similarly, we
restructure SJTU4D into SJTU4DPR, including two subsets
for evaluation: SJTU4DPR-TestA and SJTU4DPR-TestB.
Tab. 1 shows the details of the two generated datasets.

4.2. Evaluation Methodology

Evaluation metric. We follow the standard place recog-
nition evaluation protocol [2, 3, 13] to evaluate our method.
A query 4D radar point cloud is considered to be correctly
localized if at least one of the top N retrieved candidates
is within 25 meters of the query geolocation. The perfor-
mance of the model is measured by Recall@N , which is
the percentage of correctly identified queries (recall) when
given a specific number N ∈ {1, 5, 10} of candidates.

Table 1. Description of Benchmark Datasets

Dataset Attributes Splits Split Size

NTU4DPR

car, main road
3 trajectories

36,026 frames

train query 7,620
train database 10,000

test query 7,002
test database 10,839

robot, sidewalk
5 trajectories

55,699 frames

nyl night q 7,283
nyl rain q 6,085

nyl cloudy db 7,410
src night q 9,069

src daytime db 8,061

SJTU4DPR
car, main road
4 trajectories

39,135 frames

test a query 7,634
test a database 7,500

test b query 6,501
test b database 2,500

Implementation details. In this work, all experiments
are performed using PyTorch [28] deep learning framework
on an Nvidia 2080Ti GPU. During training, various trans-
formations of data augmentation are randomly applied to
avoid overfitting, including jitter, rotation, translation, flip-
ping, and removal of partial points or blocks. The models
are trained from scratch through the pipeline in Sec. 3.4. An
AdamW [25] optimizer is used to minimize the TSAP loss
in Eq. 13 for 150 epochs with a learning rate of 0.001.

4.3. Ablation Study

As elaborated in Sec. 3, we propose the TransLoc4D as
the first solution to 4DRPR with four innovations: point
cloud Refinement based on ego-velocity regression and
RANSAC filtering; converting radial relative Velocity into
a new attribute representing velocity azimuth angle; Incor-
porating geometric, velocity and Intensity attribute into 4D
radar point representation and feature embedding; Integrat-
ing a Transformer module for feature enhancement.

To analyze the individual contribution of each compo-
nent in our method, we compare the TransLoc4D variants
that progressively apply different components. We set the
plain TransLoc4D with all components disabled as the basic
model. It only consists of MinkLoc4D backbone and GeM
pooling. On the basis of the plain TransLoc4D, we use addi-
tional abbreviations to denote the application of point cloud
refinement (-R), velocity azimuth angle attribute (-V), in-
tensity attribute (-I), and Transformer enhancement (-T).

As shown in Tab. 2, the plain TransLoc4D establishes
a decent baseline on the evaluation sets, indicating vox-
elized representation is also feasible for the 4DRPR task.
The significantly better performance of TransLoc4D-R than
TransLoc4D demonstrates the effectiveness of our point
cloud refinement (R). It prevents dynamic and noise points
from interfering with scene description. Moreover, replac-
ing the voxel representation with a numerical feature repre-
sentation (V) brings stable improvements to TransLoc4D-R
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Table 2. Ablation studies to evaluate the individual contributions of point cloud Refinement, 4D point cloud representation with numerical
features of Velocity and Intensity attributes, and the Transformer module for feature enhancement.

Method
Components

Trained on NTU4DPR-Train
NYL-Night NYL-Rain SRC-Night SJTU4DPR-TestA

R V I T r@1 r@5 r@10 r@1 r@5 r@10 r@1 r@5 r@10 r@1 r@5 r@10
TransLoc4D × × × × 93.2 95.4 96.3 75.8 86.0 89.3 86.2 92.6 96.3 84.6 92.8 94.3
TransLoc4D-R

√
× × × 96.6 98.2 98.7 81.0 88.4 91.5 89.0 94.5 96.4 88.6 93.2 94.0

TransLoc4D-R-V
√ √

× × 95.7 97.8 98.6 83.3 89.5 93.4 93.6 97.3 98.3 89.5 93.2 94.1
TransLoc4D-R-VI

√ √ √
× 96.8 98.3 98.7 82.5 89.7 92.1 94.4 96.9 97.9 89.0 92.4 93.3

TransLoc4D-R-VI-T
√ √ √ √

97.1 98.4 98.7 86.8 91.8 94.0 94.5 97.0 98.0 90.8 92.9 93.4

Table 3. Comparison with SOTA methods for LiDAR/radar-based place recognition on 4D radar datasets. Benchmark models are either
pre-trained (*) on their default training set or fine-tuned on NTU4DPR.

Method Training Set
Evaluation Set

NYL-Night NYL-Rain SRC-Night SJTU4DPR-TestA SJTU4DPR-TestB
r@1 r@5 r@10 r@1 r@5 r@10 r@1 r@5 r@10 r@1 r@5 r@10 r@1 r@5 r@10

In. Scan Context [38] N/A 87.2 92.8 94.7 69.1 80.3 84.3 68.1 82.2 86.9 67.9 79.8 83.7 78.0 86.5 90.2
PTC-Net-L* [6] Oxford 93.8 96.8 98.1 67.3 78.8 83.5 83.3 92.1 94.6 67.8 83.6 87.5 79.6 87.3 89.2
MinkLoc3Dv2* [20] Oxford 93.6 97.0 98.0 74.4 85.8 89.6 86.9 94.5 96.5 86.9 93.7 94.9 85.4 88.2 89.2
TransLoc3D [42] NTU4DPR 91.6 95.4 96.9 76.2 85.9 89.2 86.4 93.7 96.0 75.6 89.2 92.2 79.3 86.0 87.5
AutoPlace [5] NTU4DPR 92.9 96.4 97.5 80.9 89.7 92.2 86.9 94.7 97.1 80.5 88.8 91.2 80.2 84.9 86.5
MinkLoc3Dv2 [20] NTU4DPR 96.6 98.2 98.7 81.0 88.4 91.5 89.0 94.5 96.4 88.6 93.2 94.0 85.8 87.9 88.9
PTC-Net-L [6] NTU4DPR 96.6 98.6 99.1 87.6 92.7 94.3 94.5 98.1 96.9 79.8 89.6 91.4 80.3 85.3 86.8
TransLoc4D (ours) NTU4DPR 97.1 98.4 98.7 86.8 91.8 94.0 94.5 97.0 98.0 90.8 92.9 93.4 85.9 88.7 90.5

on most datasets, which validates the introduced new at-
tribute of velocity azimuth angle. Additionally incorporat-
ing the intensity into feature embedding, TransLoc4D-R-VI
surpasses TransLoc4D-R-V on nighttime subsets, but lags
behind on the rainy and SJTU subsets. This reflects the sus-
ceptibility of the intensity to rainfall and the cross-domain
environments. Nonetheless, comparing TransLoc4D-R-VI
with TransLoc4D-R, stable improvements can be observed
on all datasets, especially on SRC-Night with an increase
of 5.4%. This demonstrates the rationality of characterizing
velocity and intensity attributes as numerical features.

Further enabling the Transformer (-T) leads to another
large performance increase on all datasets. The advantage
on the rainy subset is particularly prominent. It indicates
that the global context also contains valid information that
is crucial to the task and is more robust to data domain
shift. Overall, ablation studies in Tab. 2 prove the effec-
tiveness of each module and that their advantages can be
accumulated. Compared to the baseline TransLoc4D, our
best model (TransLoc4D-R-VI-T) shows an overall perfor-
mance advantage of about 10% on benchmark datasets.

4.4. More Results and Discussion

Comparisons with adapted SOTAs. Since there is cur-
rently no method specifically proposed for 4D radar place
recognition, to further validate our TransLoc4D, we adapt
the latest SOTA methods for 3D LiDAR or 3D radar-based
place recognition to the 4DRPR task. The comparative
models include Intensity Scan Context [38], AutoPlace [5],

MinLoc3Dv2 [20], TransLoc3D [42], and PTC-Net [6].

Intensity Scan Context [38] constructs regional features
based on bird’s-eye view partitioning of polar coordinate
images. AutoPlace [5] converts radar scans to 2D binary
images and employs a network to encode spatial-temporal
features. MinkLoc3Dv2 [17] can be considered as a spe-
cial case of TransLoc4D, with only MinkLoc4D backbone
and GeM pooling. TransLoc3D [42] contains a different
backbone architecture from MinkLoc3Dv2 and ours, and
adopts NetVLAD pooling instead of GeM. PTC-Net [6]
introduces a novel point-wise Transformer to compensate
for the information loss caused by voxelization, achieving
SOTA performance on 3D LiDAR place recognition task.

For fair comparisons, all differentiable models take our
refined 4D point clouds with invalid points removed as in-
put, and are trained on NTU4DPR using the same pipeline
described in Sec. 3.4. To allow models pre-trained on 3D
LiDAR datasets to be directly evaluated on 4D radar data,
we create a new copy of 4D radar datasets that maintains
the same coordinate format as 3D LiDAR datasets (Oxford),
where point coordinates are normalized and quantized with
a step size of 0.01.

In Tab. 3, Intensity Scan Context performs mediocre
on 4D radar datasets, which reflects the limitations of
handcrafted descriptors. PTC-Net and MinkLoc3Dv2 pre-
trained on the 3D LiDAR dataset generalize well on the
4D radar datasets, but the performance degradation caused
by domain shift is noticeable. It can be attributed to the
sparse, noisy, non-panoramic characteristics of 4D radar
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Figure 5. Challenging query frames and the reference frames retrieved by TransLoc4D. Consecutive frames are to better visualize how
TransLoc4D robustly suppress noise and dynamic points (non-black) from the original point clouds (2nd column in each subfigure). When
images (1st column) exhibit drastic appearance differences, refined 4D point clouds (3rd column) demonstrate stable similarities.

data. Nevertheless, the pre-trained MincLoc3Dv2 far ex-
ceeds the hand-crafted baseline, illustrating the power of
data-driven learning. The pre-trained PTC-Net-L is inferior
to MinkLoc3Dv2 in some cases, proving that some specific
patterns learned by a SOTA model in 3D point clouds may
not be applicable to 4D radar scans. Therefore, fine-tuning
on 4D radar datasets is necessary. As expected, all evaluated
differentiable models, including AutoPlace, TransLoc3D,
MinkLoc3Dv2, and PTC-Net-L, adapt and perform better
on 4D radar datasets after training. Due to different archi-
tectures, they exhibit large performance deviations in cross-
domain evaluations. While MinkLoc3Dv2 leads Auto-
Place and TransLoc3D on all datasets, TransLoc4D consis-
tently outperforms MinkLoc3Dv2, especially on the chal-
lenging NYL-Rain and SRC-Night by more than 6% and
5%. Both interpolating sparse features to the number of in-
put voxels, PTC-Net-L achieves slightly better results than
TransLoc4D on NTU splits but falls behind significantly on
SJTU splits. The better generalization performance on the
sparser dataset SJTU4DPR indicates that our TransLoc4D
is able to capture more general features and patterns that
lead to better cross-domain robustness.

Qualitative results. 4 challenging query frames from
NTU4DPR-NYL and their top 1 retrieved reference frames
by our TransLoc4D are shown in Fig. 5. Five consecutive
frames before and after the query and the retrieved refer-
ence are made into GIF format to better visualize the robust-
ness of our method to dynamic objects and environmental
changes. When images (1st column) exhibit large appear-
ance differences due to lighting and weather, refined 4D
point clouds (3rd column) demonstrate stable similarities.
Noise and dynamic points (non-black) in the original point
clouds (2nd column) are all suppressed in the refined point
cloud and subsequent feature embedding, bringing robust-
ness to our TransLoc4D descriptor. Two examples in Fig. 6
illustrate the filtering of dynamic and noise points based on
radial relative velocity through decomposition steps. 1

1Due to the page limit, we provide more experiment results and visual-
izations in the supplementary material.
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Figure 6. Examples of preprocessing 4D point clouds. Red, black,
and blue represent positive, zero, and negative speed. Based on
relative velocity (first row), absolute motion (second row) can be
regressed to filter outlier points from dynamic objects (third row).

5. Conclusions
In this work, we propose the first end-to-end encoding

architecture, TransLoc4D, for 4D radar place recognition.
First, point cloud preprocessing and a novel 4D represen-
tation are presented. On this basis, the MinkLoc4D back-
bone is proposed to extract features from multi-modal char-
acteristics of 4D radar scans. Then, a linear Transformer
is introduced to capture the global context to enhance fea-
ture representation, followed by a GeM pooling to generate
the final 4D point cloud descriptor. To validate our pro-
posed method, we construct two datasets and set up bench-
marks for 4D radar place recognition. Extensive experi-
ments demonstrate the feasibility of TransLoc4D and its ro-
bustness against dynamic and adverse environments.
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tuning cnn image retrieval with no human annotation. IEEE
transactions on pattern analysis and machine intelligence,
41(7):1655–1668, 2018. 2, 5

[33] Jerome Revaud, Jon Almazan, Rafael Rezende, and Ce-
sar De Souza. Learning with average precision: Training
image retrieval with a listwise loss. In 2019 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
5106–5115, 2019. 5

[34] Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and
Xiaowei Zhou. Loftr: Detector-free local feature matching
with transformers. In 2021 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 8918–
8927, 2021. 4, 5
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