
ANIM: Accurate Neural Implicit Model

for Human Reconstruction from a single RGB-D image

Marco Pesavento1,3*
Yuanlu Xu3 Nikolaos Sarafianos3 Robert Maier3 Ziyan Wang3

Chun-Han Yao2 Marco Volino1 Edmond Boyer3 Adrian Hilton1 Tony Tung3

1University of Surrey, CVSSP, UK 2UC Merced 3Meta Reality Labs

Abstract

Recent progress in human shape learning, shows that

neural implicit models are effective in generating 3D hu-

man surfaces from limited number of views, and even from

a single RGB image. However, existing monocular ap-

proaches still struggle to recover fine geometric details such

as face, hands or cloth wrinkles. They are also easily

prone to depth ambiguities that result in distorted geome-

tries along the camera optical axis. In this paper, we ex-

plore the benefits of incorporating depth observations in

the reconstruction process by introducing ANIM, a novel

method that reconstructs arbitrary 3D human shapes from

single-view RGB-D images with an unprecedented level of

accuracy. Our model learns geometric details from both

multi-resolution pixel-aligned and voxel-aligned features

to leverage depth information and enable spatial relation-

ships, mitigating depth ambiguities. We further enhance the

quality of the reconstructed shape by introducing a depth-

supervision strategy, which improves the accuracy of the

signed distance field estimation of points that lie on the re-

constructed surface. Experiments demonstrate that ANIM

outperforms state-of-the-art works that use RGB, surface

normals, point cloud or RGB-D data as input. In addi-

tion, we introduce ANIM-Real, a new multi-modal dataset

comprising high-quality scans paired with consumer-grade

RGB-D camera, and our protocol to fine-tune ANIM, en-

abling high-quality reconstruction from real-world human

capture. https://marcopesavento.github.io/ANIM/

1. Introduction

The increasing interest in 3D virtual world creation has

led to a substantial demand for easily accessible 3D recon-

struction solutions. Consequently, this has emerged as a

prominent research domain in computer vision with appli-

cations in virtual and augmented reality, gaming, medicine

and e-shopping, among others. A recurrent challenge re-

volves around ensuring the fidelity of the created models
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Figure 1. ANIM enables human shape reconstruction with higher

accuracy and without shape distortions compared to the state-of-

the-art methods based on monocular RGB-D or RGB input.

and, consequently, the accuracy of the reconstruction meth-

ods, especially when reconstructing 3D avatars of real peo-

ple. To this aim, depth sensors that are nowadays ubiqui-

tous in commercial devices (e.g., LiDAR Depth Camera,

AI Stereo Depth Map, Azure Kinect, and Asus) can be

leveraged to develop efficient and accurate reconstruction

solutions. Our objective is to build high-fidelity models of

clothed humans from single RGB-D images by learning an

Accurate Neural Implicit Model (ANIM). Monocular ap-

proaches based on generative adversarial networks [33, 54]

produce realistic front and back depths of the model. How-

ever, their fidelity is limited as the prediction depends on

the generative ability of the network. While leveraging pri-

ors such as parametric body models can produce complete

body shapes [37], they often lack details. Several works re-

sort to multiple RGB-D images or monocular videos, com-

bining multiple predictions to reconstruct higher-quality 3D

shapes [15, 16, 50]. In contrast to previous works that exclu-

sively process either single RGB images [45–47, 57, 64] or

3D point clouds [8, 12, 52], our proposed approach, which

relies on a neural implicit model (a learned Signed Dis-

tance Field, or SDF), reconstructs accurate 3D models of

clothed humans from a single RGB-D image with signifi-

cantly higher levels of detail. Related approaches that also

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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estimate an implicit representation of the 3D shape from a

single RGB-D image either lack pixel-alignment with the

input, as in OPlanes [62], or estimate depth from the RGB

input, limiting therefore the fidelity, and rely on 3D para-

metric models, as DiFU [49]. Our representation is a pixel-

voxel-aligned implicit model of the reconstructed surface

learned using a combination of multi-resolution 2D feature

extractor and a specific SparseConvNet U-Net (the Volume

Feature Extractor or VFE) to process multi-resolution 2D

and volumetric features. A depth-supervision strategy is

also introduced to further enhance the SDF estimation. We

demonstrate the advantages of using RGB-D images over

alternative methods that suffer from depth ambiguity or that

reproduce low-fidelity details, as illustrated in Figure 1. Our

extensive experiments show that ANIM outperforms exist-

ing methods that reconstruct 3D human shapes from sin-

gle RGB images, surface normals, point cloud or RGB-D

data. In practice, consumer-grade RGB-D cameras produce

noisier data compared to high-end 3D scanners. This di-

rectly impacts the 3D reconstruction quality since the sur-

face estimation builds on features learned from the input. In

order to reduce this impact and to achieve high-fidelity re-

construction with consumer-grade camera, we propose to

learn a model trained with high-quality 3D ground-truth

data paired with real noisy RGB-D data as input. Since

datasets with these characteristics are currently unavailable,

we introduce the multi-modal dataset ANIM-Real which in-

cludes 3D scans reconstructed from a high-resolution multi-

view camera system aligned with RGB-D data captured by

a consumer-grade camera. Fine-tuning ANIM with ANIM-

Real enables to better handle sensor noise and to obtain

high-quality 3D shape models from real-world capture.

In summary, our contributions are:

• A novel network architecture ANIM that includes a pixel-

voxel-aligned implicit representation obtained from the

3D Volume Feature Extractor and 2D multi-resolution

features to reconstruct accurate and high-fidelity 3D hu-

man shape from a single-view RGB-D image.

• A novel depth-supervision strategy that refines the SDF

learning of the 3D points lying on the reconstructed sur-

face by leveraging the input point cloud.

• The multi-modal dataset ANIM-Real comprising syn-

chronous captures from a high-quality 3D human scan-

ner aligned with a consumer-grade RGB-D camera, and a

protocol to fine-tune ANIM real-world human capture.

• Unprecedented quantitative and qualitative results for hu-

man shape reconstruction from single RGB-D images.

2. Related Work

Reconstruction from single-view images. Single-view 3D

human reconstruction has been approached using a wide

range of methods and representations. Representations used

in this domain include voxels [28, 53, 63], two-way depth

maps [17, 48], visual hull [42], parametric models [2–

4, 10, 29, 30, 35, 43, 59]. These methods cannot repro-

duce high-quality 3D human shapes, with only minimally

clothed reconstruction. In contrast, implicit function repre-

sentations have shown great promise for the task of human

digitization from a single image [22, 23, 25, 32, 34, 45–

47]. One of the first approaches to adopt this represen-

tation was PIFu [46], which exploits pixel-aligned image

features rather than global features to preserve local de-

tails of the input image as the occupancy of any 3D point

is predicted. SuRS [45] demonstrates fine-scale detail can

be recovered even from low-resolution input images using

a super-resolution learning framework. PaMIR [64] con-

catenates 3D features extracted from an estimated SMPL

model with 2D features. In PIFuHD [47], the quality of the

reconstruction is improved by using surface normals and

a coarse-to-fine implicit function framework. Alldieck et

al. [5] improved upon PIFuHD by estimating the 3D geom-

etry, the surface albedo, and shading, from a single image

in a joint manner. ICON [57] improves the estimation of

front and back normals used for the reconstruction by guid-

ing it with a parametric model whilst ECON [58] addresses

the problem of clothing reconstruction of the SMPL body

by feeding the estimated normals into a d-BiNI optimizer.

Reconstruction from RGB-D and point clouds. Works

that use RGB-D images as input for the task of clothed hu-

man reconstruction fall into two categories taking a single

RGB-D image [54, 62] or multiple sequences of RGB-D

images [11, 16, 33, 40] as input. Methods that consider

RGB-D sequences have to fuse multiple partial and noisy

observations into a coherent model. In contrast, single view

RGB-D methods have to tackle the problem of shape com-

pletion [31, 61] due to partial observations leading to in-

complete reconstructions. Approaches that estimate an im-

plicit representation from a single RGB-D image cannot

achieve the same level of quality and accuracy as the pro-

posed method [49, 62]. DiFU [49] estimates the implicit

representation by using a SMPL [35] voxel encoder, an U-

Net depth estimator, and a scale regressor. The back and

front depth maps are estimated from the RGB image, intro-

ducing noise and limiting the quality of the reconstructed

shapes. OcPlanes [62] adopts a plane-aligned occupancy

function to align the feature extracted from the input image

to the input depth. Replacing the local pixel-alignment with

a global alignment reduces the quality of the reconstruction.

Point clouds are an alternative representation explored for

the task of 3D human reconstruction[9, 12, 38, 39]. IF-

Net [12] exploits partial point clouds and learns implicit

functions using latent voxel features. IP-Net [9] further

develops this idea by incorporating SMPL[35] into the

pipeline to enable animatable reconstructions. In compar-

ison to prior work, ANIM reconstructs 3D human shapes

from single-view RGB-D images at an unprecedented level
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Figure 2. ANIM architecture. Our proposed framework has three major components: i) a multi-resolution appearance feature extractor

for color and normal inputs (LR-FE and HR-FE), ii) a novel SparseConvNet U-Net (Volume Feature Extractor or VFE) that efficiently

extracts geometry features from 3D voxels and low-resolution image features, iii) an MLP that estimate the implicit surface representation

of full-body humans. + denotes concatenation, Π means fetching pixel-aligned 2D LR features and concatenating with 3D voxels, and ∇
indicates gradient operation applied to retrieve normals from depth map (using neighboring pixel cross-product).

of detail and reconstruction accuracy via the proposed novel

architecture and depth-supervision strategy.

Single-view RGB-D datasets for human reconstruction.

Available datasets containing RGB-D data from consumer-

grade cameras are primarily designed for different tasks

such as people re-identification [6, 41] or human activity

recognition [13, 14, 18, 55, 56]. 3D ground-truth shapes

are not provided in these datasets since the body skeleton

is sufficient to achieve the intended tasks. Human3.6m [27]

provides 3D human shape as ground truth along with depth

maps. However, the quality of the shapes is limited, lack-

ing clothing and details of the human body. Training neu-

ral implicit models with this dataset restricts the ability to

learn high-fidelity clothed 3D human shapes. Recently,

SynWild [20] used RGB and IR cameras to create the 3D

ground truth but the semi-synthetic dataset is created by ren-

dering the monocular video with a virtual camera, which

is not affected by real-world noise. We propose the novel

multi-modal dataset ANIM-Real that includes high-quality

3D human shapes reconstructed from a multi-view camera

system, aligned and synchronized with real-world RGB-D

data acquired with a consumer-grade camera.

3. Methodology

ANIM learns an implicit function f to reconstruct accurate

and high-fidelity human shapes from a single RGB-D im-

age. We present an end-to-end framework that takes an

RGB-D image as input and estimates the SDF of the person.

Specifically, as illustrated in Fig. 2, ANIM extracts a high-

resolution (HR) 2D feature to encode high-frequency de-

tails and a low-resolution (LR) feature to maintain holistic

reasoning from a concatenation of the input colour and nor-

mal, considering their shared image-space properties. The

low-resolution features serve as a prior for a novel Spar-

seConvNet [19] U-Net, which extracts geometric features

by processing 3D voxels created from the depth map and

concatenated with its low-resolution image-space features.

Given appearance and geometry features, an MLP predicts

the SDF of the reconstructed subject. We train the frame-

work end-to-end with a novel depth-supervision strategy

that refines the estimation of the SDF of the 3D points close

to the reconstructed surface by leveraging the input point

cloud. Compared with related methods, our approach fuses

information across multiple modes and is thus more robust

to depth ambiguity and challenging poses.

3.1. Accurate Implicit Surface Estimation

Assuming the 3D clothed human to be reconstructed as a

one-layer watertight mesh, we represent it with an implicit

surface function f . The value f(x) of a point x ∈ R
3 de-

notes the distance of this point to its closest surface. To

obtain a surface, we can simply threshold f to obtain an

isosurface f(x) = τ . The surface to be reconstructed is

then defined as the zero level-set of f :

f ′ = {x : f(x) = 0, x ∈ R
3}. (1)

Fine surface details are stored in high frequency and need

to be represented on the final shape, which has to be ro-

bust to depth ambiguity. Recent approaches show the effect

of representing the shape with an implicit function aligned

with the input data. PIFu [46] introduced the concept of

pixel-alignment to increase the quality of 3D human shapes

by projecting a 3D point x ∈ R
3 in the image feature

φ(I) of an input RGB image I . PaMIR [64] proposes a

voxel-aligned implicit function to leverage spatial informa-

tion from a parametric model to avoid depth ambiguity. We

propose a novel architecture that learns a high-fidelity im-

plicit surface representation sHF that is both pixel-aligned

with the input image I and surface normal SN and voxel-

aligned with the voxel created from the input depth map D:
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ŝHF = fx
(

φHR(π(I, SN )), z(x), γ(D)
)

, ŝHF ∈ R, (2)

where φHR(I, SN ) are the HR features extracted from the

concatenation between the input image I and the surface

normal SN , π is the orthographic projection, γ(D) =
φV (φLR(I, SN ), D) is the feature extracted from the depth

D linked with LR feature φLR retrieved from I , and SN .

z(x) is the depth value of x. To estimate the implicit repre-

sentation ŝHF , ANIM comprises the following modules.

2D Feature Extractor. 2D pixel-aligned features are ob-

tained from the input image I and surface normals SN . LR

features φLR(I, SN ) are extracted with a stacked hourglass

network (LR-FE) to guarantee a large receptive field, which

is required to maintain holistic reasoning [46]. LR features

are also used by the 3D feature extractor since the SparseC-

onvNet requires that each input voxel is linked to an em-

bedding. Instead of using random embedding like previous

works [44], performance improves when features extracted

from the input image are used (see Sec. 5.2). High-quality

details cannot be reconstructed if only LR features are used.

To embed local details of I and SN , we introduce a sec-

ond stacked hourglass architecture (HR-FE) to retrieve HR

features φHR(I, SN ). These HR features are pixel-aligned

with the input data via orthographic projection π.

3D Feature Extractor. Learning spatial relationships in 3D

space is fundamental to solving the problems of depth ambi-

guity derived by the single-view input. We process a voxel

retrieved from the input depth D with a novel SparseC-

onvNet U-Net style architecture: Voxel Feature Extractor

(VFE). Due to the requirements of the VFE, the LR feature

φLR(I, SN ) are linked to the voxels to provide additional

information from the 2D RGB input before extracting the

3D features. Instead of using a 3D convolutional neural net-

work as in [22, 64], we extract voxel-aligned features γ(D)
with 3D sparse convolution layers, which have been proven

to be efficient when the input is sparse such as in the point

cloud created from a single view. This also ensures a per-

formance gain at training and testing times with faster speed

in the order of magnitude compared to the 3D ConvNets.

Voxel-alignment is obtained by trilinear interpolation of 3D

points x with φV .

Multi-layer Perceptron (MLP). The 2D pixel-aligned fea-

tures are concatenated with the 3D voxel-aligned feature

and processed by a multi-layer perceptron that models the

implicit function fx and estimates the final SDF ŝHF .

3.2. Depth­Supervision Strategy

To improve the learning of the SDF of the 3D reconstructed

surface, we propose to leverage the depth channel of the

RGB-D input and estimate an implicit representation of the

input sparse point cloud ζ by extracting pixel-aligned fea-

ture φHR(I, SN ) from HR-FE and voxel-aligned features

γ(ζ) = φV (φLR(I, SN ), ζ) from the VFE. An implicit

function fζ representing ζ is learned with an MLP that

shares the weight with the one previously applied:

ŝζ = fζ
(

φHR(π(I, SN )), z(xζ), γ(ζ)
)

, ŝζ ∈ R, (3)

where xζ are the points of the input point cloud, which are

projected into φHR(I, SN ) for pixel alignment. The SDF

of xζ should be 0 since xζ lies on the surface of the re-

constructed shape. The network significantly improves its

ability to estimate which points lie on the surface (Sec. 5.2).

The network is trained end-to-end with two Huber

losses, one to train the implicit function fx of 3D points

x sampled on the 3D ground-truth shape:

Lsdf =

{

0.5 (ŝHF − sHF )
2, if ∥ŝHF − sHF ∥2< δ,

δ (|ŝHF − sHF |−0.5δ), otherwise,
(4)

and the other for the depth-supervision strategy:

Ldepth =

{

0.5 (ŝζ − sζ)
2, if ∥ŝζ − sζ∥2< δ,

δ (|ŝζ − sζ |−0.5δ), otherwise,
(5)

where sζ is the ground-truth label for the Nζ points of the

depth map ζ and δ is a threshold for estimation correctness.

The learning is thus supervised with both points sampled in

the 3D space of the full body to learn its full representation,

and with points from the depth to improve the SDF estima-

tion of points that lie on the visible surface, resulting in a

more accurate representation of high-quality details.

Inference. Instead of using M3 random 3D points dis-

tributed in a 3D grid in space as related works, we consider

the input point cloud to create a 3D grid to sample the SDF.

A bounding box is created around the sparse point cloud

augmented with Gaussian sampling. The resolution of the

novel 3D grid is computed as (m×H,m×W,m×D) where

m = 3

√

M3/L, M = 256, L = H×W×D and (H,W,D) is

the dimension of the bounding box. The points are not ran-

domly distributed in a squared grid but are concentrated in

the region where the shape is generated. The 2D and 3D fea-

tures are extracted from the RGB-D input and aligned with

the grid of points. The final SDF is estimated with the MLP

and the shape is obtained by extracting iso-surface fx = 0
of the probability field ŝHF via Marching Cubes [36].

Extension to consumer-grade RGB-D camera. RGB-D

data acquired in real-world scenarios are affected by the

noise propagated in the capture systems. Applying ANIM

directly on data acquired with a consumer-grade camera

(e.g. Azure Kinect) reveals severe reconstruction artifacts

due to the sensor noise (Fig. 3a). ANIM should learn the

noise added to captured data to perform effectively in real-

world scenarios. A solution is to fine-tune ANIM with real

noisy data. However, datasets that combine RGB-D data

with high-resolution 3D ground-truth shapes, necessary to

achieve high-quality reconstruction, are unavailable. We

thus create the new dataset ANIM-Real with a multi-modal

setup consisting of a consumer-grade RGB-D camera and a
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RGB-D input w/o finetuning

(a)

w. finetuning

(b)

high-res scan

(c)

Figure 3. ANIM reconstructions from real-world capture with a

consumer-grade RGB-D camera (Azure Kinect) before (a), and

after (b) fine-tuning on the proposed dataset ANIM-Real, which

quality is closer to a high-res scan capture (c).

high-resolution 4D scanner, as explained in Sec. 4. We then

fine-tune ANIM parameters on ANIM-Real to learn typi-

cal consumer-grade sensor noise, resulting in a significant

improvement in the 3D shape (see Fig. 3b).

4. Datasets

ANIM-Real dataset. We present ANIM-Real, a new multi-

modal dataset that can be used to obtain high-quality recon-

structions from consumer-grade RGB-D camera for real-

world applications. Consumer-grade monocular RGB-D

cameras (e.g. Azure Kinect) while ubiquitous produce less

accurate and incomplete reconstructions than high-end cap-

ture systems such as full-body 3D scanners that are based

on multi-view capture [24]. Depth sensors from consumer-

grade cameras contain noise that directly affects surface re-

construction accuracy [21, 51]. To date, it is not possible

to generate high-fidelity full-body 3D reconstruction from

a one-shot capture with a consumer-grade RGB-D sensor.

Hence, we create ANIM-Real as follows:

• We acquire high-quality 3D scans with a high-resolution

camera system that uses active stereo and multi-view

cameras [24]. It comprises 16 high-resolution RGB cam-

eras and stereo pairs. However, raw scan reconstructions

can contain holes from self-occlusions, lack of cover-

age, or challenging regions (e.g. hair), leading to incor-

rect sampling and SDF estimation. We therefore apply

the Fast Winding Numbers algorithm [7], hence produc-

ing high-quality watertight shapes (see Fig.3c).

• RGB-D data is captured with a consumer-grade camera

(Azure Kinect), to allow ANIM to learn the sensor noise

introduced in the input RGB-D images (see Fig.3).

• Intrinsics and extrinsics camera calibrations and capture

synchronization are crucial to align the 3D shape with the

corresponding RGB-D input. The extrinsics calibration

between capture systems is obtained using a generic cali-

bration object with salient shapes, while synchronization

is obtained using Sync I/O and generated trigger signals.

The transformation matrix obtained with the calibration

is used to project the 3D points sampled in the 3D shape

to the 2D image feature, achieving pixel-alignment. The

Figure 4. Semantic-aware sampling. Compared to uniform sam-

pling (left), semantic-aware sampling (right) enables finer learning

of human features on specific regions such as the head and hands.

input depth map is also aligned with the 3D ground-truth

shape, ensuring voxel-alignment.

• For evaluation, we simultaneously capture 28 subjects in

motion using the 2 systems. We fine-tune ANIM with an

additional 16k frames, consisting of around 800 frames

on average from a single view of 21 subjects.

Synthetic datasets. For additional quantitative and quali-

tative evaluations, we use large public synthetic datasets of

3D humans in various poses and clothing, providing a com-

prehensive assessment of the effectiveness of the proposed

approach. We use 909 RenderPeople [1] scans and split

them into 800 for training and 109 for testing. To evaluate

the generalization power of ANIM, we use 200 human mod-

els THuman2.0 dataset [60] as another test set. We evaluate

the reconstruction accuracy with 3 quantitative metrics: the

average point-to-surface Euclidean distance (P2S), the nor-

mal reprojection [46], and the Chamfer distance (CD), cm.

5. Experiments

We quantitatively and qualitatively evaluate the proposed

approach to the task of reconstructing 3D human shapes

from a single RGB-D image. We conduct in-depth ablation

studies where the proposed modules are removed. Finally,

we show reconstruction examples from real-world RGB-D

data where ANIM faithfully reconstructs the clothed geom-

etry despite the presence of sensor noise.

5.1. Implementation details

We render the training RGB-D images and surface normals

at 512x512 pixel resolution with a virtual camera that ro-

tates around the 3D model with a step of 2o.

To create the ground-truth SDF sHF , state-of-the-art

works [46, 47, 64] label a set of 3D points that are sam-

pled around the surface with a mixture of uniform sampling

and randomly added offset following normal distribution

N (0, σLR). Since the sampling is homogeneous, smaller

parts of the body have a lower number of 3D sampled points

and cannot be reconstructed by these methods. We propose

to augment the sampling in a semantic-aware manner.

Semantic-Aware Body Surface Sampling. We augment

the number of points sampled in the face and hands regions

by selecting the points that reproject in the same regions
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Design
RenderPeople THuman2.0

CD Normal P2S CD Normal P2S

2D LR only 2.653 .5611 2.682 1.998 .3734 1.939

2D HR only 2.170 .5131 1.973 1.147 .3074 1.008

3D only 3.021 .6302 2.715 1.961 .5179 1.631

w. rand. feat. 2.136 .5081 1.947 1.052 .2823 0.954

ANIM (Ours) 2.075 .4990 1.936 0.913 .2545 0.878

Table 1. Quantitative results obtained by modifying the architec-

ture of the network.

of a semantic mask, estimated from the RGB image using

body-part segmentation [26]. We project Xb = 48, 000 3D

points sampled around the ground-truth surface on the 2D

mask. If the point is projected onto the face or hand regions

of the mask, we sample additional points around that point:

Xt =

{

Xb +Add(Xhh), if NXhh
<= NXb

/2,

Xb +Add(Xhh)[0 : NXb
/2], otherwise

(6)

where Xt = 36, 000 is the final number of sampled points,

Xhh are the semantic points corresponding to hands and

face and Add is defined as an NK-steps recursion addition:

Xhh = Xhh +Add(Xhh +N (0, σHR)) with σHR = 0.07
to sample closer to the surface where fine details lie while

σLR = 5. As shown in Fig. 4, the hands and face regions

contain more points and fine details can be represented in

those regions by the learned implicit function. As sampling

is done as a pre-processing step during training, this strategy

is more tractable in terms of training time compared to train-

ing separate networks for each body region, whose merging

is non-trivial. For the depth-supervision strategy, we select

Npc = 15000 sub-points of the input point clouds. See sup-

plementary for additional details about the implementation.

5.2. Ablation Studies

Network architecture. To prove the effectiveness of the

proposed network architecture, we modify it as follows:

• 2D feature only: Only RGB and normals are exploited

by either the HR-FE (2D HR only) or the LR-FE (2D LR

only) networks. The VFE is not implemented.

• 3D feature only: The final estimation is obtained by pro-

cessing only the depth map. HR-FE and LR-FE are not im-

plemented and RGB and surface normals are not used.

• w. random feature: Similar to previous work [44], we

link random features to the voxel as input to the SparseC-

onvNet instead of using the LR feature. This shows whether

linking RGB features retrieved from the input 2D image and

surface normals to the voxels improves the performance.

Our proposed configuration obtains the lowest errors

(see Tab. 1). The highest errors are obtained when either

the 3D or the 2D encoders are not used, proving the effec-

tiveness of using them together. Linking the LR feature to

the voxel for the VFE improves ANIM performance.

High quality details. Our framework can reproduce signif-

icantly high-quality details on the final shape. We want to

demonstrate the role of each component of the framework

Design
RenderPeople THuman2.0

CD Normal P2S CD Normal P2S

w/o normals 2.271 .5156 2.123 1.376 .3126 0.940

w/o LR feature 2.453 .5611 2.282 1.653 .2954 2.554

w/o HR feature 2.605 .5320 3.176 2.649 .2599 3.323

w/o SA sampl. 2.636 .5328 2.238 0.993 .2710 0.908

w/o Ldepth 2.060 .5647 1.956 0.947 .2689 0.915

ANIM (Ours) 2.075 .4990 1.936 0.913 .2545 0.878

Table 2. Quantitative evaluation to demonstrate the influence of

the adopted configuration to create fine details in the shapes.

in learning details by setting up the following baselines:

• w./o. normals: The normals are not concatenated with the

input RGB image and not considered in the reconstruction.

• w./o. LR feature: To show the importance of having a

large receptive field, we test the approach without the LR-

FE. The HR features are linked to the voxel as input to VFE.

• w./o. HR feature: The HR-FE is not implemented to

demonstrate the effect of exploiting local HR features in ad-

dition to just normals and LR features. The output of LR-FE

replaces the HR embedding of the original approach.

• w./o. SA sampling: To show how the semantic-aware

sampling approach is essential to retrieve more details on

the face and hands, we trained the approach without aug-

menting the sampling points on the face and hand regions.

• w./o. Ldepth: To demonstrate the effectiveness of the

depth-supervision, we train ANIM with only the Lsdf loss.

As shown in Tab. 2, we conclude that each component in

our proposed framework is fundamental to improving the

quality of reconstruction results. We observed performance

drops if any component is omitted, with the highest accu-

racy obtained when ANIM leverages all its components.

See supplementary for a qualitative evaluation.

5.3. Comparisons to the State of the Art

Our goal is to demonstrate the advantages of using RGB-D

data over other inputs by comparing ANIM with methods

that rely on different single-input data, such as only RGB

image (SuRS [45],PHORHUM [5]), surface normals and

parametric models (PaMIR [64], PIFuHD [47], ICON [57],

ECON [58]) or point cloud (IF-Net [12]). Additionally, we

want to highlight the superiority of ANIM against related

works that infer the 3D shape from a single RGB-D in-

put (NormalGAN [54], OcPlanes [62]). We further adapt

PIFu [46] to RGBD-based reconstruction (PIFu+D) to es-

tablish fair comparisons, by concatenating depth with the

RGB inputs. To demonstrate the effectiveness of the multi-

resolution image extractor and of the VFE, we modify the

architecture of PIFu and IF-Net by adding the VFE to PIFu

and the HR-FE to IF-Net. PIFu+VFE processes the depth

map with the VFE to extract geometric features, which are

concatenated with the features of PIFu 2D encoder. IF-

Net+HR processes RGB images with HR-FE and concate-

nates the feature with the output of the IF-Net 3D encoder.

We repeat all aforementioned modifications by adding sur-
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Methods
RenderPeople THuman2.0

CD Normal P2S CD Normal P2S

O
th

er
in

p
u

t

IF-Net [12] 4.546 .7732 4.375 1.924 .4181 1.847

PaMIR [64] 3.944 .6562 3.261 2.602 .3721 2.727

PIFuHD [47] 2.415 .5495 2.381 3.625 .2730 3.462

ICON [57] 2.330 .5886 2.301 2.093 .2791 1.112

PHORHUM [5] 2.390 .5341 2.349 3.199 .2634 2.988

ECON [58] 2.261 .5536 2.269 1.339 .2736 1.412

SuRS [45] 2.810 .5909 2.884 1.290 .2945 1.695

S
in

g
le

R
G

B
-D

in
p

u
t

PIFu+D 4.650 .7567 4.314 4.441 .3704 3.835

PIFu+D+SN 3.544 .6754 3.653 4.379 .4302 3.983

PIFu+VFE 2.718 .5747 2.089 4.444 .3240 3.834

PIFu+VFE+SN 2.242 .5218 2.076 0.924 .2548 0.880

IF-Net+HR 2.352 .5304 1.962 1.403 .3754 1.322

IF-Net+HR+SN 2.164 .4995 1.953 1.079 .2875 0.993

NormalGAN [54] 3.924 .7912 3.224 2.830 .5914 2.658

OcPlane [62] 5.619 .5324 4.188 3.734 .3303 3.728

ANIM (Ours) 2.075 .4990 1.936 0.913 .2545 0.878

Table 3. Quantitative comparisons with state-of-the-art ap-

proaches in 3D human reconstruction from a single input.

face normals as input (indicated by + SN ).

Quantitative comparisons. In Tab. 3 we report a plethora

of quantitative comparisons of ANIM against other works

on the RenderPeople [1] and THuman2.0 [60] datasets and

showcase that our approach outperforms top performing

competing methods by a large margin in both fidelity and

accuracy. Extracting geometric information from the input

depth map achieves better results compared to methods that

estimate surface normals and parametric models. Moreover,

the complete information extracted from the combination of

RGB, normals and depth allows ANIM to outperform all the

methods that rely on a single input. The novel architecture

of ANIM guarantees the highest performance compared to

methods that reconstruct 3D shapes from a single RGB-D.

Qualitative comparisons with works that reconstruct the

3D shape from input different than RGB-D for RenderPeo-

ple [1] are shown in Fig. 6, whilst Fig. 7 shows recon-

struction from RGB-D for THuman2.0 [60]. The quality

of the 3D shapes reconstructed by ANIM is significantly

higher than all the other methods. ANIM outperforms meth-

ods that do not process RGB-D data because the integra-

tion of depth information, alongside RGB, is essential for

achieving high-quality and accurate estimations. By learn-

ing spatial relationships from the geometric information ex-

tracted from the depth maps, ANIM effectively avoids depth

ambiguity, resulting in more accurate reconstructions com-

pared to methods that rely on estimating parametric mod-

els. The multi-resolution feature extractors employed by

ANIM ensure the reproduction of finer details in contrast

to other approaches. RGB-D methods are outperformed

thanks to the depth supervision strategy and the combi-

nation of 2D multi-resolution and 3D geometric features,

leveraging pixel-voxel-aligned properties inherent in the

implicit representation. Implementing the introduced mod-

ules within benchmark works (PIFu, IF-Net) significantly

improves their quantitative and qualitative performance, but

In
p

u
t

In
p

u
t

A
N

IM
A

N
IM

Figure 5. ANIM reconstructs fine-level cloth details such as wrin-

kles on the cloth and body with high accuracy even when the input

is a consumer-grade RGB-D camera (Azure Kinect).

the highest accuracy is still obtained by ANIM.

Real-world capture. We provide qualitative results of 3D

human shape reconstructed by ANIM after being fine-tuned

with the ANIM-Real dataset (Fig. 5). The RGB-D input ac-

quired with the Azure Kinect exhibits significant noise in

the depth maps and surface normals. However, thanks to

the fine-tuning, ANIM faithfully reconstructs the geometry

of the clothed human, capturing fine-level details such as

wrinkles and specific body features like the face and hands.

See supplementary materials for additional results.

6. Conclusion

We introduce ANIM, a novel neural implicit model that
reconstructs accurate and high-fidelity 3D humans from
single RGB-D images, outperforming existing methods
over other kinds of input and proving the benefit of
leveraging RGB-D data. We demonstrate the effectiveness
of combining both multi-resolution pixel-voxel-aligned
features and a novel depth-supervision strategy to address
depth ambiguity and reconstruct high-quality 3D human
shapes. We also present the multi-modal dataset ANIM-
Real consisting of high-quality 3D scans and real-world
captures, obtained with a high-resolution camera system
paired with a consumer-grade RGB-D camera. ANIM-Real
significantly leverages ANIM for human reconstruction,
and can be valuable to the community for neural implicit
3D human reconstruction. Future work includes exploring
temporal information for fusion of body pose and appear-
ance across time.
Acknowledgement: This work was supported by Meta, UKRI EPSRC

and BBC Prosperity Partnership AI4ME: Future Personalised Object-

Based Media Experiences Delivered at Scale Anywhere EP/V038087.
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Figure 6. Qualitative comparisons with state-of-the-art approaches on RenderPeople dataset given different kinds of input.
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Figure 7. Qualitative comparisons with state-of-the-art approaches on THuman2.0 dataset given an RGB-D image as input.
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[17] Valentin Gabeur, Jean-Sébastien Franco, Xavier Martin,

Cordelia Schmid, and Gregory Rogez. Moulding humans:

Non-parametric 3d human shape estimation from single im-

ages. In IEEE International Conference on Computer Vision,

2019. 2

[18] Salvatore Gaglio, Giuseppe Lo Re, and Marco Morana. Hu-

man activity recognition process using 3-d posture data.

IEEE Transactions on Human-Machine Systems, 45(5):586–

597, 2014. 3

[19] Benjamin Graham, Martin Engelcke, and Laurens van der

Maaten. 3d semantic segmentation with submanifold sparse

convolutional networks. In IEEE Conference on Computer

Vision and Pattern Recognition, 2018. 3

[20] Chen Guo, Tianjian Jiang, Xu Chen, Jie Song, and Otmar

Hilliges. Vid2avatar: 3d avatar reconstruction from videos in

the wild via self-supervised scene decomposition. In IEEE

Conference on Computer Vision and Pattern Recognition,

2023. 3

[21] Azmi Haider and Hagit Hel-Or. What can we learn from

depth camera sensor noise? Sensors, 22(14):5448, 2022. 5

[22] Tong He, John Collomosse, Hailin Jin, and Stefano Soatto.

Geo-pifu: Geometry and pixel aligned implicit functions for

single-view human reconstruction. In Annual Conference on

Neural Information Processing Systems, 2020. 2, 4

[23] Tong He, Yuanlu Xu, Shunsuke Saito, Stefano Soatto, and

Tony Tung. Arch++: Animation-ready clothed human re-

construction revisited. In IEEE International Conference on

Computer Vision, 2021. 2

[24] https://3dmd.com/. 3dmd 4d scanner. 5

[25] Zeng Huang, Yuanlu Xu, Christoph Lassner, Hao Li, and

Tony Tung. ARCH: Animatable reconstruction of clothed

humans. In IEEE Conference on Computer Vision and Pat-

tern Recognition, 2020. 2

[26] Anastasia Ianina, Nikolaos Sarafianos, Yuanlu Xu, Ignacio

Rocco, and Tony Tung. Bodymap: Learning full-body dense

correspondence map. In IEEE Conference on Computer Vi-

sion and Pattern Recognition, 2022. 6

[27] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian

Sminchisescu. Human3.6m: Large scale datasets and predic-

tive methods for 3d human sensing in natural environments.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 36(7):1325–1339, 2014. 3

[28] Aaron S. Jackson, Chris Manafas, and Georgios Tzimiropou-

los. 3d human body reconstruction from a single image via

volumetric regression. European Conference of Computer

Vision Workshops, 2018. 2

5456



[29] Angjoo Kanazawa, Michael J Black, David W Jacobs, and

Jitendra Malik. End-to-end recovery of human shape and

pose. In IEEE Conference on Computer Vision and Pattern

Recognition, 2018. 2

[30] Muhammed Kocabas, Nikos Athanasiou, and Michael J.

Black. Vibe: Video inference for human body pose and

shape estimation. In IEEE Conference on Computer Vision

and Pattern Recognition, 2020. 2

[31] Dongping Li, Tianjia Shao, Hongzhi Wu, and Kun Zhou.

Shape completion from a single rgbd image. IEEE Transac-

tions on Visualization and Computer Graphics, 23(7):1809–

1822, 2017. 2

[32] Ruilong Li, Yuliang Xiu, Shunsuke Saito, Zeng Huang, Kyle

Olszewski, and Hao Li. Monocular real-time volumetric per-

formance capture. In European Conference on Computer Vi-

sion, 2020. 2

[33] Xing Li, Yangyu Fan, Di Xu, Wenqing He, Guoyun Lv, and

Shiya Liu. Sfnet: Clothed human 3d reconstruction via sin-

gle side-to-front view rgb-d image. In International Confer-

ence on Virtual Reality, 2022. 1, 2

[34] Zhe Li, Tao Yu, Chuanyu Pan, Zerong Zheng, and Yebin Liu.

Robust 3d self-portraits in seconds. In IEEE Conference on

Computer Vision and Pattern Recognition, 2020. 2

[35] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard

Pons-Moll, and Michael J. Black. Smpl: A skinned multi-

person linear model. ACM Transactions on Graphics, 34(6):

248, 2015. 2

[36] William E Lorensen and Harvey E Cline. Marching cubes:

A high resolution 3d surface construction algorithm. ACM

Siggraph Computer Graphics, 21(4):163–169, 1987. 4

[37] Yang Lu, Han Yu, Wei Ni, and Liang Song. 3d real-time

human reconstruction with a single rgbd camera. Applied

Intelligence, pages 1–11, 2022. 1

[38] Qianli Ma, Jinlong Yang, Siyu Tang, and Michael J. Black.

The power of points for modeling humans in clothing. In

IEEE International Conference on Computer Vision, 2021. 2

[39] Qianli Ma, Jinlong Yang, Michael J. Black, and Siyu Tang.

Neural point-based shape modeling of humans in challeng-

ing clothing. In International Conference on 3D Vision,

2022. 2

[40] Aihua Mao, Hong Zhang, Yuxin Liu, Yinglong Zheng,

Guiqing Li, and Guoqiang Han. Easy and fast reconstruction

of a 3d avatar with an rgb-d sensor. Sensors, 17(5), 2017. 2

[41] Matteo Munaro, Andrea Fossati, Alberto Basso, Emanuele

Menegatti, and Luc Van Gool. One-shot person re-

identification with a consumer depth camera. Person Re-

Identification, pages 161–181, 2014. 3

[42] Ryota Natsume, Shunsuke Saito, Zeng Huang, Weikai Chen,

Chongyang Ma, Hao Li, and Shigeo Morishima. Siclope:

Silhouette-based clothed people. In IEEE Conference on

Computer Vision and Pattern Recognition, 2019. 2

[43] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani,

Timo Bolkart, Ahmed AA Osman, Dimitrios Tzionas, and

Michael J Black. Expressive body capture: 3d hands, face,

and body from a single image. In IEEE Conference on Com-

puter Vision and Pattern Recognition, 2019. 2

[44] Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang,

Qing Shuai, Hujun Bao, and Xiaowei Zhou. Neural body:

Implicit neural representations with structured latent codes

for novel view synthesis of dynamic humans. In IEEE Con-

ference on Computer Vision and Pattern Recognition, 2021.

4, 6

[45] Marco Pesavento, Marco Volino, , and Adrian Hilton. Super-

resolution 3d human shape from a single low-resolution im-

age. In European Conference on Computer Vision, 2022. 1,

2, 6, 7

[46] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-

ishima, Angjoo Kanazawa, and Hao Li. PIFu: Pixel-aligned

implicit function for high-resolution clothed human digitiza-

tion. In IEEE International Conference on Computer Vision,

2019. 2, 3, 4, 5, 6

[47] Shunsuke Saito, Tomas Simon, Jason Saragih, and Hanbyul

Joo. PIFuHD: Multi-level pixel-aligned implicit function for

high-resolution 3d human digitization. In IEEE Conference

on Computer Vision and Pattern Recognition, 2020. 1, 2, 5,

6, 7

[48] David Smith, Matthew Loper, Xiaochen Hu, Paris

Mavroidis, and Javier Romero. Facsimile: Fast and accu-

rate scans from an image in less than a second. In IEEE

International Conference on Computer Vision, 2019. 2

[49] Dae-Young Song, HeeKyung Lee, Jeongil Seo, and

Donghyeon Cho. Difu: Depth-guided implicit function for

clothed human reconstruction. In IEEE Conference on Com-

puter Vision and Pattern Recognition, 2023. 2

[50] Zhuo Su, Lan Xu, Dawei Zhong, Zhong Li, Fan Deng,

Shuxue Quan, and Lu Fang. Robustfusion: Robust volumet-

ric performance reconstruction under human-object interac-

tions from monocular rgbd stream. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 2022. 1

[51] Chris Sweeney, Greg Izatt, and Russ Tedrake. A supervised

approach to predicting noise in depth images. In Interna-

tional Conference on Robotics and Automation, 2019. 5

[52] Garvita Tiwari, Nikolaos Sarafianos, Tony Tung, and Ger-

ard Pons-Moll. Neural-gif: Neural generalized implicit func-

tions for animating people in clothing. In IEEE International

Conference on Computer Vision, 2021. 1

[53] Gul Varol, Duygu Ceylan, Bryan Russell, Jimei Yang, Ersin

Yumer, Ivan Laptev, and Cordelia Schmid. BodyNet: Vol-

umetric inference of 3D human body shapes. In European

Conference on Computer Vision, 2018. 2

[54] Lizhen Wang, Xiaochen Zhao, Tao Yu, Songtao Wang, and

Yebin Liu. Normalgan: Learning detailed 3d human from a

single rgb-d image. In European Conference on Computer

Vision, 2020. 1, 2, 6, 7

[55] Christian Wolf, Eric Lombardi, Julien Mille, Oya Celiktutan,

Mingyuan Jiu, Emre Dogan, Gonen Eren, Moez Baccouche,
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