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Abstract

Medical vision language pre-training (VLP) has
emerged as a frontier of research, enabling zero-shot patho-
logical recognition by comparing the query image with the
textual descriptions for each disease. Due to the complex
semantics of biomedical texts, current methods struggle to
align medical images with key pathological findings in un-
structured reports. This leads to the misalignment with the
target disease’s textual representation. In this paper, we
introduce a novel VLP framework designed to dissect dis-
ease descriptions into their fundamental aspects, leveraging
prior knowledge about the visual manifestations of patholo-
gies. This is achieved by consulting a large language model
and medical experts. Integrating a Transformer module,
our approach aligns an input image with the diverse ele-
ments of a disease, generating aspect-centric image repre-
sentations. By consolidating the matches from each aspect,
we improve the compatibility between an image and its as-
sociated disease. Additionally, capitalizing on the aspect-
oriented representations, we present a dual-head Trans-
former tailored to process known and unknown diseases,
optimizing the comprehensive detection efficacy. Conduct-
ing experiments on seven downstream datasets, ours im-
proves the accuracy of recent methods by up to 8.56% and
17.26% for seen and unseen categories, respectively. Our
code is released at https://github.com/HieuPhan33/MAVL.

1. Introduction

The advent of vision-language pre-training (VLP) methods,
notably CLIP [30], has yielded impressive zero-shot and
low-shot fine-tuning in object recognition [21, 22, 30, 42].
Pre-training on 400M image-text pairs, VLP models [21,
29, 30, 43] learn a strong semantic mapping between image
and text spaces. During inference, they enable zero-shot
recognition by computing the similarity between the query
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Figure 1. Predictions of CheXzero [34] (Left), a strong CLIP-
like model, and our multi-aspect matching model (Right).
Edema and Covid-19 belong to the domain of lung diseases,
while cardiomegaly is a heart disease. CheXzero [34] misaligns
the image feature with the target Covid-19, while it over-aligns
with edema. We leverage the medical knowledge base to decom-
pose disease terms into distinct visual components, enhancing the
image alignment with the representations of the target disease.

image and the text representation of each category. In the
medical field, recent methods [3, 34, 35, 39] adopt CLIP
and align images with their corresponding reports to enable
zero-shot disease recognition, i.e., classifying without fur-
ther fine-tuning. As such, this strategy reduces the reliance
on costly medical data annotation. Adding supervisory sig-
nals can enhance discriminative features, exemplified by a
concurrent work [39] that extracts disease terms from re-
ports and directly matches with the disease’s definitions.

However, current VLP methods [3, 34, 35, 39] often pro-
duce low compatibility scores when aligning with the tar-
get disease’s name, particularly for novel categories. Fig. 1
(Left) shows the misalignment between an image showing
previously unseen disease, Covid-19, and its target dis-
ease name. This issue arises from various inherent chal-
lenges of VLP. First, medical imaging analysis is inher-
ently fine-grained, which requires distinguishing between
diseases that are visually similar, such as differentiating
Covid-19 from other lung diagnoses like edema. Sec-
ondly, biomedical texts contain complex clinical terminolo-
gies, and there is an imbalance between important entities

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

11492



Pulmonary edema, also known as pulmonary congestion, 
is excessive liquid accumulation in the tissue and and air 
spaces of the lung. It  contains fluid in the alvaeolar walls.

butterfly patterns fine, grainy or 
mottled textureat lung base

LLM + ExpertsEdema

Worsening asymmetric pulmonary edema superimposed on 
chronic centrilobular emphysema. Follow-up radiograph is 
recommended at 4 wks to monitor changes. Above findings 
were discussed with Dr.___ at 5:45 p.m…

Figure 2. Illustrations of the three VLP paradigms: image-report
matching [3, 6, 34] (red arrow), image-disease definition match-
ing [39] (orange arrow), and our proposed fine-grained image-
aspect matching (green arrow).

(i.e., medical findings) and less relevant texts [6]. Fig. 2
shows sampled biomedical text inputs of current report
matching [3, 6, 34] and disease definition matching meth-
ods [39]. Constrained by the scarcity of medical image re-
ports [39], data-intensive models like CLIP struggle to align
fine-grained visual features with key disease textual repre-
sentations. Thirdly, current approaches represent text inputs
as raw reports [6, 34] or disease descriptions [39], failing to
capture generalized representations for novel medical find-
ings. Consequently, the misalignment issue is exacerbated
for diseases unmentioned in the pre-training dataset.

To resolve the image-text misalignment for both seen
and unseen categories, this paper proposes to introduce
a novel multi-aspect vision-language matching (MAVL)
framework. We dissect disease descriptions into elemen-
tal aspects (e.g., opacity level, shape) and harness pre-
established knowledge about the diseases’ visual profiles.
We present a semi-automatic pipeline to extract descrip-
tions of visual aspects of 75 medical findings using a large
language model (LLM), GPT-4, and meticulously curate by
consulting two medical experts. Our solution is motivated
by two observations. First, structuring the text inputs into
fine-grained visual aspects enhances alignments with the
target diseases. Second, new diseases can be described by
elemental visual aspects of base diseases, e.g., Covid-19 has
a texture of edema (grainy texture) and typically is located
in a similar position as pneumothorax (lung edges). Thus,
multi-aspect decomposition improves the recognition of un-
seen diseases by linking visual appearances of any new dis-
eases with the base visual knowledge. From Fig. 1 (Right),
our model effectively aligns the image’s features with the
target Covid-19 by leveraging the common aspects and
extrapolating visual descriptions of seen lung diseases (e.g.,
edema) to those of a novel category.

Furthermore, we empirically observe that contrastive
learning is non-optimal to capture discriminative features
for differentiating fine-grained seen diseases. Capitalizing

on the aspect representations, our secondary contribution is
to introduce a dual-head module dedicated to maximize the
detection accuracy of seen and novel diseases. Each head
is trained via a direct supervised loss and a contrastive loss.
The supervised head maximizes the discriminative ability
on base categories, while the contrastive head achieves per-
formant zero-shot recognition of novel categories.

Our main contributions in this work are:
• A novel multi-aspect vision-language pre-training

(MAVL) framework to improve the alignment between
an image and textual representations of diseases, es-
pecially for unseen categories. To the best of our
knowledge, this is the first study that exploits prior
knowledge about pathological visual profiles to optimize
fine-grained disease recognition.

• A dual-head Transformer that is trained via supervised
loss and contrastive loss. Simple yet effective, we show
that decoupling the learning signals is effective to maxi-
mize zero-shot recognition of unseen diseases, while pro-
tecting the discriminatory power toward base categories.

• State-of-the-art performance on zero-shot classification
and grounding on both seen and novel disease categories,
especially on rare diseases in a long-tailed distribution,
across seven downstream datasets. Through fine-tuning,
our model significantly surpasses previous methods, es-
tablishing a strong foundational model for both zero-shot
and low-shot learning.

2. Related Works
General vision-language pre-training. Self-supervised
VLP generates robust visual representations for various
downstream tasks by exploiting joint vision-language su-
pervision [21, 22, 29, 30, 42]. Current methods can be di-
vided into two categories: a dual-stream [18, 20, 29, 30]
with two encoders for each modality, or a single-stream [4,
12, 15, 23, 33] model, which enables deep V+L fusions.
The supervised head in our network uses Transformer-based
fusion layers to extract discriminative features.
Medical vision-language pre-training. Most medical VLP
methods [3, 6, 14, 24, 35, 38, 46] adopt the two-stream
approach, which applies image-report contrastive learn-
ing without using a deep fusion module. ConVIRT [46]
proposes a bidrectional contrastive loss for image-report
matching. GLoRIA [14] and LoVT [26] captures fine-
grained alignments by optimizing the local contrastive loss
between image regions and sentence-level tokens. Improv-
ing the biomedical text modelling, BioViL [6] adds clini-
cal vocabulary and augments report-specific data. Subse-
quently, BioViL-T [3] extends the prior work by exploit-
ing self-supervisory signals in a series of temporal images
and reports. MGCA [35] conducts a pseudo-entity level
alignment by assuming each disease prototype can be rep-
resented as a cluster in the feature space. A concurrent
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work, MedKLIP [39], proposes to extract disease entities
from reports and performs matching with the diseases’ de-
scription. Yet, by matching reports or diseases’ clinical def-
initions with complex terminologies, existing methods tend
to misalign the image with the target disease’s representa-
tions. Given the scarcity of medical data pairs and complex
biomedical texts, how to improve the image compatibility
with the pathological text representation is an open-ended
question in VLP.
Textual prompt engineering. Several techniques investi-
gate task-specific prompt engineering to adapt VLP for im-
age classification [30, 32], object detection [32], and visual
question answering [36]. In medical VLP, GloRIA [14]
generates a set clinical-specific prompts describing possible
sub-types, severities, and locations for each disease class.
CheXzero [34] constructs a binary prompt to obtain a bi-
nary classification of a disease. MedKLIP [39] obtains clin-
ical descriptions of medical findings from UMLS knowl-
edge base [5]. Current medical VLP works use descriptions
with domain-specific terminologies. In contrast, our pro-
posed method leverages pathological’s visual descriptions,
guiding the model to effectively detect diseases in images.
Visual description for explainable VL models. Language
concept bottleneck models (CBM) [25, 27, 40, 41, 44, 45]
are an emerging field in explainable AI, which leverage
visual descriptions of an object category to interpret VL
model’s decisions. Yet, they focus on explaining the pre-
trained model in the general domain, while our framework
leverages visual descriptions for pre-training medical mod-
els. Furthermore, extracting visual descriptions of diseases
are non-trivial tasks compared to objects in the natural
world. Ours is complementary to CBM studies, which po-
tentially enables explainability by providing scores for each
disease’s appearance when classifying their presence.

3. Proposed Method
In this section, we first describe the VLP’s reformula-
tion, which enables supervised training (Sec. 3.1). Sub-
sequently, we present our multi-aspect vision-language
matching (MAVL) framework, which decomposes disease
entities into a set of visual aspects leveraging the knowledge
of medical experts and LLMs (Sec. 3.2). And thirdly, cap-
italizing on the aspect representations, Sec. 3.3 introduces
our dual-head Transformer model, maximizing the comple-
mentary detection of both unseen and seen pathologies.

3.1. Problem setting

Given a set of B image-report pairs, D =
{(I1,R1), . . . , (IB ,RB)}, we aim to train a multi-
modal model to diagnose the presence of certain diseases
in downstream datasets. At inference time, we can query
the likelihood of a given disease category c, which is either
seen or unseen during training, in the image I ∈ RH×W×3
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Figure 3. Pipeline to extract visual aspect’s descriptions of dis-
eases mentioned in the pre-training MIMIC dataset [19].

by prompting the textual disease description Tc:

p̂, m̂ = Φfusion(fvision(I), ftext(Tc)), (1)

where fvision, ftext, and Φfusion refer to vision, language and
fusion modules. Here, p̂ is the predicted likelihood of the
disease; and m̂ ∈ RH×W denotes a heatmap with high ac-
tivation on pixels indicating disease’s visual presence. This
heatmap is used for zero-shot visual grounding.
Reformulate VLP as a multi-label recognition. As clini-
cal reports pose linguistic challenges (e.g., negation expres-
sions, dense clinical terminologies), contrastively match-
ing with raw reports struggles to capture discriminative fea-
tures. Given the availability of well-established medical en-
tity tagging models, such as RadGraph [17], we reformu-
late VLP as a supervised multi-label recognition. Inspired
by [39], we adopt RadGraph [17] to extract entities (i.e.,
diseases or any medical findings) in the reports:

ϕ(Ri) = {entityt, locationt, existt}, t ∈ [0, ti], (2)

where ti refers to the number of medical entities in the re-
port, and locationt is the location (e.g. lung, spine) where
the entityt occurs in the image Ii.

Let C = {c1, . . . , cN} and L = {l1, . . . , lM} denote the
disease entities and locations extracted from all the report
databases. Given an image I, we reformulate VLP as a
multi-label classification by directly predicting the presence
of all diseases p̂i ∈ RN . Here, the ground-truth will be
Yi = {yi,1, . . . , yi,N}, where yi,j = 1 if the entity cj ∈ C
is indicated by the positive presence, i.e. existj = 1, in the
report Ri and 0 otherwise.

3.2. Multi-aspect vision-language pre-training for
enhanced pathology detection

To improve the image compatibility with the pathological
representation, our paper proposes to dissect the disease
description into a set of visual aspects by leveraging the
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prior knowledge from medical experts, and a large lan-
guage model (LLM). For each disease entity cj , our pro-
posed framework decomposes into a set of K visual aspects
Sj = {sj1, . . . , sjK} by querying a knowledge base from
medical professionals. We generate a description of each
aspect entity Description(sjk) using an LLM. To further
differentiate diseases, we also add a fine-grained descrip-
tion of a disease sj0 = Description(cj), extracted from the
UMLS knowledge base [5]. Our MAVL framework per-
forms a fine-grained matching between an image Ii and ev-
ery descriptive aspect Sj of the target disease cj to detect its
presence. An ablation study in Sec. 4 analyzes which aspect
yields higher performance gain.

This paper presents a semi-automatic pipeline to decom-
pose and describe disease’s visual aspects from the 75 med-
ical findings extracted by RadGraph [17]. Fig. 3 depicts our
proposed pipeline leveraging medical experts’ knowledge
base and the LLM. To reduce annotation bias, two medical
experts, a board-certificated cardiologist and a radiologist,
independently annotated the visual aspects of 75 medical
findings. Two experts independently annotate 23 visual as-
pects in total (see Suppl.), among which 7 aspects are in
consensus, as shown in Fig. 3. We also add an extra ‘other’
aspect for the experts and the LLM to fill in any extra dis-
tinct features to recognize the target disease. In total, we
have 8 visual aspects, plus a fine-grained disease descrip-
tion sj0, which is extracted from the UMLS [5]

Secondly, we use GPT-4 to programmatically generate
descriptions of the 8 annotated visual aspects. The pseudo-
code is presented in the Supplementary. Finally, we con-
sult two medical experts to curate the GPT-generated vi-
sual descriptions, which involves two steps. First, as LLMs
can hallucinate contents, the experts correct the informa-
tion. For example, GPT falsely describes ‘pneumothorax’
as ‘more opaque, less transparent’, which is then corrected
as ‘less opaque, more transparent’. Second, we articu-
late the distinct features of diseases to disambiguate fine-
grained categories. For instance, GPT-generated descrip-
tions can be vague, e.g., ‘edema’ has “hazy and patchy tex-
tures”. We add more unique characteristics of edema: “fine,
grainy, or mottled texture within the cloudy area, looking
like small speckled spots”.

3.3. Dual-head Transformer network.

This section presents our proposed aspect-oriented dual-
head Transformer network, which takes the decomposed vi-
sual aspects of each disease and searches for their presence
in the image. Given the image I, the visual encoder fvision
extracts the visual features V:

V = fvision(I) ∈ Rh×w×d, (3)

where h, w, and d refer to the height, width and channel
dimensions of the feature map. For a fair comparison with

a recent work [39], we adopt ResNet-50 for simplicity and
computational efficiency. Yet, our framework is network-
agnostic, and ViT backbones [11] can be applied.

Given an entity cj , and its K visual aspects Sj =
{sj1, . . . , sjK}, the text encoder produces a set of d-
dimension aspect embeddings Aj ∈ RK×d for disease cj :

Aj = {ftext(Description(sjk)) | k ∈ [0, . . . ,K]}. (4)

Capitalizing on the aspect representations, we develop a
dual-head network with decoupled losses: a contrastive
head for zero-shot recognition of unseen diseases, and a
supervised head to maximize fine-grained classification of
base diseases, as depicted in Fig. 4(A).
Contrastive head for zero-shot recognition of unseen dis-
eases. This head performs fine-grained (FG) contrastive
learning by matching an image representation F with each
aspect representation ajk of all disease cj . The contrastive
head first pools the image representation f from the visual
feature map V using the attention pooling from CLIP [30]:

f = AttentionPool(V) ∈ Rd. (5)

Given an image feature fi, we compute a FG contrastive loss
Lcl with each k-th aspect sjk of every disease cj :

Lcl =

K∑
k=1

log
∑

j∈P (i)

exp (fTi ajk)∑
t exp (f

T
i atk)

. (6)

Here, P (i) = [cj |yi,j = 1] denotes the set of diseases
cj that are positively present in the report Ri. During in-
ferencing, our model programmatically extracts visual de-
scriptions of new diseases using GPT-4, and compares its
similarity with visual appearances of healthy versus patho-
logical categories, as shown in Fig. 4(B).

Discussion. Diverging from previous report matching
methods [3, 6, 34], ours matches with the textual represen-
tations of a common visual knowledge base (e.g., disease’s
shape, opacity levels). This allows the model to link at-
tributes of new diseases with this knowledge base and cap-
tures extensible visual representations.
Supervised head for zero-shot recognition of base dis-
eases. Contrastive learning empirically struggles to extract
discriminative features, leading to sub-optimal classifica-
tion of fine-grained seen diseases. To optimize the fine-
grained classification of a large set of base categories men-
tioned in the pre-training dataset, we develop supervised
Transformer-based module Θground to extract discriminative
features by grounding the textual aspects in the image.

To extract features for a disease entity cj , we view its
descriptive visual aspects Aj ∈ RK×d as a disease query
set Qj . Note, we omit the sample index i for simplicity. A
Transformer-based fusion module Θground grounds a query
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Figure 4. Multi-aspect vision-language pre-training framework (MAVL) decomposes diseases into a set of shared visual aspects using
LLM and prior knowledge from two medical experts. An aspect-oriented dual-head Transformer (A) visually searches for the queried
visual aspects in the image and maximizes detection accuracy of both unseen and seen diseases via two learning signals. The contrastive
head (B) captures generalizable features and performs zero-shot classification of unseen diseases by comparing visual aspects between the
target disease and the healthy category. The supervised head (C) captures discriminative features to classify fine-grained seen diseases.

set Qj of textual visual aspects with image representation V
using multiple Transformer Decoder layers [8]. The cross-
attention views Qj as Query, and V as Key and Value. The
vision-text grounded features Fj ∈ RK×d for disease cj is
formulated as

Fj , m̃j = Θground(Qj ,V), (7)

where m̃j is the heatmap for visual grounding. The fea-
ture maps are flattened into Fj ∈ RKd and fed into a fully-
connected layer parameterized by W ∈ RKd×2 to predict
the binary outcome of the disease p̂j . To detect all diseases,
our fusion module takes a query set Q = {Q1, . . . , QN}
from all N medical findings that have been mentioned in
the pre-training report sets, extracts the grounded features,
and classifies their presence p̂ ∈ RN×2.

By reformulating VLP as a multi-label classification
(Sec. 3.1), we directly train the visual aspect-query Trans-
former using supervision labels Y , thus improving zero-
shot classification of seen diseases on downstream tasks.
The supervised head is trained via a cross entropy loss
Lsup = CE(p̂, Y ). Besides, the network predicts the loca-
tion embedding ẽj of each disease from its features Fj us-
ing a simple projection layer. If the disease cj is positively
present and appears at location lj , we adopt the location
contrastive loss Lloc from [39] to match the predicted lo-
cation embedding ẽj with the positive location embedding
ej = ftext(“It is located at {lj}”). The network is trained
end-to-end with the combined loss objectives:

L = αLcl + βLsup + γLloc. (8)

During inferencing, if the target category belongs to the
set of N base categories C, the model will use a supervised
head for inferencing, as depicted in Fig. 4(C).

Discussion. While MedKLIP [39] also converts VLP
into a supervised learning framework, we differ in two
folds. First, they represent each entity cj as a generic med-
ical description with complex clinical terminologies (refer
to Fig. 2). In contrast, our framework dissects the disease
into a set of descriptive aspects, thus improving the image
compatibility with the pathological representation. Impor-
tantly, we enable effective recognition of new diseases by
translating them into elemental aspects, shared with base
diseases. Second, MedKLIP [39] excludes the contrastive
loss between image and text representations. While achiev-
ing high performance on base categories, their supervised
model falters in unseen categories. In contrast, we decouple
learning signals and introduce a dual-head network, tailored
to process both known and unknown diseases.

4. Experimental Setting
4.1. Pre-training dataset

MIMIC-CXR v2 [19] consists of more than 227k studies
comprising paired image-report data derived from 65,379
distinct patients who underwent scanning procedures. Each
individual study may contain either one or two images, rep-
resenting different scan perspectives, resulting in a cumula-
tive dataset of 377,110 images.

4.2. Datasets for downstream tasks

ChestX-ray14 [37] comprises 112,120 frontal-view X-ray
images from 30,805 individual patients, collected by NIH
(National Institutes of Health) from 1992 to 2015. It in-
cludes labels for 14 prevalent diseases. We partition it into
0.8/0.1/0.1 for train/valid/test.
CheXpert [16] includes 224,316 chest X-ray images from
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Table 1. Comparisons with SOTA image-text pre-training models under zero-shot classification for base diseases that have been seen
during pre-training across 5 datasets.

Dataset CheXpert [16] ChestXray-14 [37] PadChest-seen [7] RSNA Pneumonia [31] SIIM-ACR [1]

Method AUC ↑ F1 ↑ ACC ↑ AUC ↑ F1 ↑ ACC ↑ AUC ↑ F1 ↑ ACC ↑ AUC ↑ F1 ↑ ACC ↑ AUC ↑ F1 ↑ ACC ↑
ConVIRT [46] 52.10 35.61 57.43 53.15 12.38 57.88 63.72 14.56 73.47 79.21 55.67 75.08 64.25 42.87 53.42
GLoRIA [14] 54.84 37.86 60.70 55.92 14.20 59.47 64.09 14.83 73.86 70.37 48.19 70.54 54.71 40.39 47.15

BioViL [6] 60.01 42.10 66.13 57.82 15.64 61.33 60.35 10.63 70.48 84.12 54.59 74.43 70.28 46.45 68.22
BioViL-T [3] 70.93 47.21 69.96 60.43 17.29 62.12 65.78 15.37 77.52 86.03 62.56 80.04 75.56 60.18 73.72

CheXzero [34] 87.90 61.90 81.17 66.99 21.99 65.38 73.24 19.53 83.49 85.13 61.49 78.34 84.60 65.97 77.34
MedKLIP [39] 87.97 63.67 84.32 72.33 24.18 79.40 77.87 26.63 92.44 86.57 63.28 79.97 89.79 72.73 83.99

Ours 90.13 65.47 86.44 73.57 26.25 82.77 78.79 28.48 92.56 86.91 63.41 82.42 92.04 77.95 87.14

65,240 patients collected at Stanford Hospital. The official
validation set comprises 200 chest radiographic studies an-
notated by three board-certified radiologists, while the of-
ficial test set contains 500 studies annotated by five board-
certified radiologists. Following the evaluation procedure
from previous works [16, 34], we evaluate five observations
in the official test set for the competition tasks.
PadChest comprises 160,868 chest X-ray images obtained
from 67K patients reported at Hospital San Juan Hospital
(Spain). They are annotated with 150+ distinct radiographic
findings, including both unseen and seen classes during pre-
training. We denote the 14 seen diseases as PadChest-seen,
and unseen ones as PadChest-unseen. Among novel classes,
we also evaluate rare diseases by selecting the top 20 dis-
eases with the lowest number of samples, and the pathol-
ogy recorded in the National Organization of Rare Disease
(NORD) database1, leading to 39 rare diseases in total. Ap-
proximately 27% of the data (39,053 examples) are anno-
tated by radiologists, while the remainder are generated by
a recurrent neural network. We only report the results on
expert-annotated test samples.
RSNA Pneumonia [31] includes over 260,000 frontal-view
chest X-rays with the annotated pneumonia masks collected
by the Radiological Society of North America (RSNA). The
dataset can be used for both pneumonia segmentation and
classification tasks [6, 14, 39]. We split it into 0.6/0.2/0.2
for train/valid/test.
SIIM-ACR Pneumothorax [1] comprises over 12,000
frontal-view chest X-rays with pneumothorax masks, col-
lected by the Society for Imaging Informatics in Medicine
and the American College of Radiology (SIIM-ACR). We
split it into 0.6/0.2/0.2 for train/valid/test.
COVIDx CXR-2 [28] and COVID Rural [9] provide
benchmark dataset for Covid-19 detection. COVIDx CXR-
2 [28] consists of 29,986 images from 16,648 COVID-
19 patients, labeled for classification. Following [39], we
split it into 0.7/0.2/0.1 for train/valid/test set. COVID Ru-
ral [9] consists of over 200 chest X-ray with annotated seg-
mentation masks for COVID-19, which is used for seg-

1https://rarediseases.org/rare-diseases/

mentation evaluation. We partition it into 0.6/0.2/0.2 for
train/valid/test set.

4.3. Evaluation metrics

Following previous works [3, 6, 39], we adopt standard met-
rics for classification, including AUC scores, F1 scores, and
accuracy, and those for segmentation, including Dice score,
IoU scores, and pixel-wise accuracy. The metrics refer to
the macro average on all the diseases present in the target
dataset. All metrics are reported in percentage (%).

4.4. Implementation details

In pre-training, the text encoders are initialized with the
weights of ClinicalBERT [2] and frozen. Only the visual
encoder and the Transformer fusion module are trained dur-
ing pre-training. All models are trained on 4 A100 GPUs.
In fine-tuning, following previous works [3, 6, 39], we use
ResNet50 [13] for classification, and ResUNet [10] for seg-
mentation, which will be initialized with our pre-trained vi-
sual encoder. More details about hyper-parameter analysis
can be found in the supplementary material.

5. Experimental results and discussion

This section presents the experimental results for zero-shot
and fine-tuning setting. In the zero-shot case (Sec. 5.1), we
benchmark our method against SOTA models for seen and
unseen diseases on classification and segmentation tasks.
In the fine-tuning case (Sec. 5.2), we evaluate the model’s
transferability on classification and segmentation tasks.

5.1. Zero-shot evaluation

Classification for seen diseases. Table 1 presents the
zero-shot classification benchmark of seen diseases. Super-
vised methods, including MedKLIP and ours surpass other
contrastive methods for base disease classification, show-
ing that contrastive learning is non-optimal to capture dis-
criminative features for fine-grained base disease classifi-
cation. Compared to MedKLIP, our model consistently im-
proves F1 scores by up to 8.56% across 5 datasets, collected
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Dataset Covid-19 CXR-2 PadChest-unseen PadChest-rare

Method AUC ↑ F1 ↑ ACC ↑ AUC ↑ ACC ↑ AUC ↑ ACC ↑

ConVIRT [46] 62.78 71.23 63.84 51.17 61.51 50.37 60.17
GLoRIA [14] 64.52 70.78 60.21 49.96 60.95 48.25 58.49

BioViL [6] 61.40 70.92 58.20 57.95 62.50 52.82 60.60
BioViL-T [3] 62.43 69.64 57.65 58.94 68.56 57.44 65.38

CheXzero [34] 73.13 76.13 71.45 66.70 81.19 65.08 81.17
MedKLIP [39] 76.28 76.54 71.96 60.31 76.69 59.75 77.84

MAVL - Sup 78.74 80.21 75.08 67.84 80.22 67.20 82.94
MAVL - Con 83.86 81.73 78.07 70.42 84.00 70.06 84.64

Table 2. Zero-shot classification results of
unseen classes on the two datasets. Results
on PadChest’s rare diseases are reported.
PadChest (from Spain) has a large distri-
bution shift from the pre-training MIMIC
data (from US), which is challenging for
zero-shot classification. Following a prior
work [34], we only consider AUC scores
and accuracy. ‘Sup’ and ’Con’ denote su-
pervised and contrastive heads.

from various demographics, e.g., US population for CheX-
pert [16] and RSNA [31], and Spanish for PadChest [7]. By
providing detailed visual aspects, our method excels at dis-
ambiguating fine-grained diseases, offering a robust foun-
dational model against different imaging distributions.
Classification for unseen diseases. Table 2 presents the
zero-shot classification benchmark of unseen diseases. We
include the performance of both supervised and contrastive
heads in our model for comparisons. We note three ob-
servations. First, both our heads consistently outperform
previous methods on both datasets. Our supervised head
drastically improves the AUC of a contrastive CheXzero,
and a supervised MedKLIP by up to 7.67% and 12.49%.
By decomposing the unstructured disease description into a
common set of structured elemental aspects, our model ef-
fectively links new disease aspects with base diseases, im-
proving feature representations of unseen diseases.

Second, contrastive models are generally more effective
for novel disease recognition than the supervised counter-
parts. While the supervised MedKLIP struggles to classify
many unseen diseases in PadChest, our contrastive head
improves the AUC score of MedKLIP and CheXzero by
16.76% and 5.58%, respectively. This shows the effec-
tiveness of our dual-head Transformer design, tailored to
process both known and unknown diseases. Third, both of
our heads surpass previous methods in classifying rare dis-
eases. Our contrastive head significantly improves the AUC
scores of MedKLIP and CheXzero by 17.26% and 7.65%.
Leveraging prior knowledge about pathological visual pro-
files boosts the classification of the long-tailed distribution.

Ground-truth BioViL MedKLIP MAVL (proposed)

0.0

1.0

0.5

Figure 5. Visual grounding prediction scores of RSNA Pneumonia
(Top) and Covid-19 (Bottom).

Visual grounding. In addition to the diagnosis, explainabil-
ity is equally important in the medical domain. To this end,
our model offers explainability by grounding the abnormal
regions in the image. Table 3 presents visual grounding
results of different models for both seen and unseen dis-
eases: Pneumonia on RNSA dataset [31] and Covid-19 on
Covid-19 Rural dataset [9]. Our model consistently sur-
passes previous methods on visual grounding. By dissect-
ing disease entities into descriptive aspects, our model ex-
hibits enhanced effectiveness in localizing abnormalities in
images. In particular, we improve the Dice score of Med-
KLIP on a novel disease, Covid-19 by 5.34%. Decompos-
ing the disease into a set of common visual aspects as in
our MAVL improves the generalization of unseen diseases.
Fig. 5 shows the visual grounding results of different meth-
ods on Pneumonia and Covid-19. Our model precisely lo-
calizes the abnormality, yielding lower false positive detec-
tion compared to other methods.

Table 3. Comparison with SOTA image-text pre-training models
on zero-shot region grounding tasks on Pneumonia and Covid-19.

Dataset RSNA Pneumonia [31] Covid-19 Rural [9]

Method IoU ↑ Dice ↑ ACC ↑ IoU ↑ Dice ↑ ACC ↑
GLoRIA [14] 21.82 34.68 75.14 8.18 12.49 66.73

BioViL [6] 30.29 43.86 82.15 11.52 15.77 70.48
MedKLIP [39] 34.41 49.23 86.90 20.88 32.38 76.23

MAVL (ours) 34.72 50.04 88.53 21.97 34.11 84.29

5.2. Fine-tuning evaluation

This section provides fine-tuning evaluations by using
the pre-trained models of different VLP methods to ini-
tialize weights and fine-tune downstream datasets. Ta-
ble 4 presents fine-tuning results on 4 datasets with
1%/10%/100% data portion, which is consistent with pre-
vious works [6, 39]. Our model yields consistent improve-
ments over previous works across all settings, especially
under 1% data portion for both classification and segmen-
tation. Notably, the proposed MAVL significantly outper-
forms the second-best method, MedKLIP, by 7.38% and
15.38% on SIIM Pneumothorax classification and RSNA-
Pneumonia segmentation when fine-tuning on 1% data. On
a fine-grained ChestXray-14 with 14 lung diseases, our
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Table 4. Results of different VLP models under fine-tuning classification and segmentation with different data portions. AUC scores and
Dice scores are respectively reported for the two tasks.

Task Classification Segmentation

Dataset Pneumonia [31] Pneumothorax [1] Covid-19 CXR-2 [28] ChestXray-14 [37] Pneumonia [31] Covid-19 Rural [9]

Data portion 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100%

Scratch 68.94 83.31 87.12 53.11 76.18 87.48 85.11 93.65 98.86 45.88 56.27 67.03 45.29 58.42 69.75 14.09 25.97 37.83
ConVIRT [46] 78.86 85.42 87.64 72.39 80.41 91.67 90.30 97.74 99.70 57.23 72.53 79.13 56.48 63.94 71.87 16.97 30.79 42.71
GLoRIA [14] 79.13 85.59 87.83 75.85 86.20 91.89 92.74 97.18 99.54 58.94 72.87 79.92 58.13 67.71 72.06 16.12 31.20 43.85

BioViL [6] 80.27 86.04 88.29 70.29 79.45 88.05 92.39 98.39 99.68 60.83 72.94 80.16 60.25 68.72 72.18 17.65 37.75 47.34
MedKLIP [39] 82.11 87.14 88.58 85.24 89.91 93.02 95.58 98.77 99.77 62.09 74.02 80.90 62.36 70.24 73.88 18.58 39.28 48.65
MAVL (ours) 86.09 87.90 88.94 91.53 93.00 94.48 97.18 99.15 99.90 68.65 80.50 86.22 71.95 73.51 76.97 24.51 40.71 50.25

MAVL offers drastic performance gain even when fine-
tuning with 100% data. Injecting prior knowledge about
the disease’s visual aspects during pre-training improves the
model’s transferability under low-shot learning, especially
on fine-grained disease recognition.

5.3. Ablation study

Effectiveness of multi-aspect decomposition for VLP.
This section answers two questions: (i) whether adding
more concepts improves zero-shot performance, and (ii)
which concept matching yields higher performance gain.
Fig. 6(a) presents the performance when adding a single
aspect. Matching with any single aspect boosts the accu-
racy of matching with a disease’s definition as in [39]. No-
tably, the AUC score gain on unseen Covid CXR-2 is 4.02%
when using the aspect ‘texture’. More distinct aspects such
as texture, patterns, and shapes yield higher gains. Fig. 6(b)
shows the AUC scores when adding increasing numbers of
visual aspects. Matching with higher numbers of aspects
improves the zero-shot classification.

(a) (b)

PadChest-unseen Covid-19 CheXpert

Figure 6. AUC scores of our method when (a) adding a single as-
pect, besides a disease clinical description and (b) when gradually
adding higher numbers of aspects by their increasing importance
order. The scores of using clinical description (desc.) of diseases
are included as the baseline.

Effectiveness of a dual-head design. This section analyzes
the effectiveness of our dual-head network, which decou-
ples contrastive and supervised learning. We implement a
single-head model using only either a contrastive branch as
in [3, 34] or a supervised branch as in [39] First, Table 5

shows that using a single-head network design as in current
literature compromises the performance of either seen and
unseen classes. Capitalizing both branches in our dual-head
design offers the highest F1 scores of 81.73% and 26.25%
respectively on unseen Covid-19 and seen ChestXray-14.
Second, adding supervised learning in our Dual-Con boosts
the AUC scores of the single contrastive head by 14.63% on
ChestXray-14. Similarly, adding CL in our Dual-Sup im-
proves single supervised network. Integrating both learning
signals as in our dual-head design complements the learning
on both seen and unseen diseases.

Table 5. Zero-shot classification results between a single-head
(Single) network, and our dual-head network. Con and Sup de-
note contrastive and supervised heads of our dual-head network.

Dataset Covid-19 CXR-2 [9] ChestXray-14 [37]

Method Loss AUC ↑ F1 ↑ ACC ↑ AUC ↑ F1 ↑ ACC ↑
Single - Con CL 81.65 80.75 76.98 62.08 18.27 62.53
Dual - Con CL/CE 83.86 81.73 78.07 71.16 25.58 75.81

Single - Sup CE 77.85 78.85 76.85 72.71 25.06 79.09
Dual - Sup CL/CE 78.74 80.21 75.08 73.57 26.25 82.77

6. Conclusion

This study introduces a Multi-Aspect Vision-Language Pre-
training (MAVL) framework, designed to intricately dissect
pathological entities into distinct, visually descriptive as-
pects, thereby significantly enhancing pathology detection.
Our MAVL framework incorporates a dual-head, aspect-
oriented Transformer, which decouples learning signals to
optimize performance across both seen and unseen diseases.
This approach is particularly effective for novel diseases,
achieving a remarkable 16.76% performance gain over ex-
isting methods. Moreover, MAVL’s aspect-based matching
leads to an impressive 17.26% AUC improvement for rare
unseen diseases.
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