
DiffusionLight: Light Probes for Free by Painting a Chrome Ball

Pakkapon Phongthawee*1 Worameth Chinchuthakun*1,2 Nontaphat Sinsunthithet1

Varun Jampani3 Amit Raj4 Pramook Khungurn5 Supasorn Suwajanakorn1

1VISTEC 2Tokyo Tech 3Stability AI 4Google Research 5Pixiv
https://diffusionlight.github.io/

Figure 1. We leverage a pre-trained diffusion model (Stable Diffusion XL) for light estimation by rendering an HDR chrome ball. In each
scene, we show our normally exposed chrome ball on top and our underexposed version, which reveals bright light sources, on the bottom.

Abstract
We present a simple yet effective technique to estimate

lighting in a single input image. Current techniques rely
heavily on HDR panorama datasets to train neural networks
to regress an input with limited field-of-view to a full environ-
ment map. However, these approaches often struggle with
real-world, uncontrolled settings due to the limited diversity
and size of their datasets. To address this problem, we lever-
age diffusion models trained on billions of standard images
to render a chrome ball into the input image. Despite its
simplicity, this task remains challenging: the diffusion mod-
els often insert incorrect or inconsistent objects and cannot
readily generate chrome balls in HDR format. Our research
uncovers a surprising relationship between the appearance
of chrome balls and the initial diffusion noise map, which we

*Authors contributed equally to this work.

utilize to consistently generate high-quality chrome balls. We
further fine-tune an LDR diffusion model (Stable Diffusion
XL) with LoRA, enabling it to perform exposure bracketing
for HDR light estimation. Our method produces convinc-
ing light estimates across diverse settings and demonstrates
superior generalization to in-the-wild scenarios.

1. Introduction
Single-view lighting estimation is the problem of inferring
the lighting conditions from an input image. In this work, we
represent lighting as an environment map [8], which facili-
tates seamless insertion of virtual objects, including highly
reflective ones. This problem is ill-posed because the envi-
ronment map extends beyond the limited field of view of the
input image. Moreover, the output must have a high dynamic
range (HDR) to capture the true intensity of the incoming
light. These difficulties have spurred numerous attempts to
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regress HDR environment maps from LDR images.
A common strategy used in state-of-the-art techniques is

to train a neural regressor with a dataset of HDR panoramas.
For example, StyleLight [59] trains a GAN on thousands of
panoramas and, at test time, uses GAN inversion to find a
latent code that generates a full panorama whose cropped
region matches the input image. Everlight [12] trains a con-
ditional GAN on 200k panoramas to directly predict an HDR
map from an input image. However, these training panora-
mas offer limited scene variety, often featuring typical view-
points like those from a room’s center due to tripod use.
Panoramas featuring elephants from inside a Safari Jeep,
would be extremely rare (Figure 8). So, how can we estimate
lighting in-the-wild for any image under any scenario?

Our key idea is to use a pre-trained large-scale text-to-
image (T2I) diffusion model to render a chrome ball into
the input image.* One clear advantage of our approach is
the ability to leverage the image prior in the T2I diffusion
models. Our method also does not assume a known camera
pose, unlike many methods that outpaint panoramas [12, 59].

Inpainting a chrome ball into an image, while seemingly
simple, poses challenges even for SOTA diffusion models
with inpainting capabilities [6, 7, 63, 64] (see Figure 2).
These models frequently fail to generate a chrome ball or
generate one with undesirable patterns (e.g., a disco ball
with tiny square mirrors) that do not convincingly reflect
environmental lighting. Another key limitation is that these
diffusion models were trained on low dynamic range (LDR)
images and cannot produce HDR chrome balls.

To produce consistent, high-quality chrome balls, our
solution involves three key ideas. First, we make inserting a
ball reliable by using depth map conditioning [69] on top of
a standard T2I diffusion model (Stable Diffusion XL [45]).
Second, to better mimic genuine chrome ball appearance,
we fine-tune the model using LoRA [30] on a small number
of synthetically generated chrome balls. Third, we start the
diffusion sampling process from a good initial noise map,
and we propose an algorithm to find one. The last idea is
based on surprising findings we discovered about diffusion
model behavior and chrome ball appearance.

To generate HDR chrome balls, our idea is to generate and
combine multiple LDR chrome balls with varying exposure
values, similar to exposure bracketing. One naive method
that requires no additional training is to use two text prompts:
one for generating a standard chrome ball, and the other with
“black dark” added to the text prompt. Alternatively, we
propose utilizing our previous LoRA [30] to map continuous
interpolations of the two text prompts to a target ball image
with varying, known exposures. This enables specifying the
exposure values of the generated balls at test time. While
this fine-tuning requires a small number of panoramas for

*Note that the practice of physically placing a chrome ball into the scene
dates back to the early days of computer graphics and photography [15].

training, the core task of producing reflective chrome balls
still relies on the model initial’s capability, which remains
generalizable to a broad range of scenes.

We evaluate our method against StyleLight [59], Ev-
erLight [12], Weber et al. [62], and EMLight [67] on stan-
dard benchmarks: Laval Indoor [20] and Poly Haven [3]
datasets. Our method is competitive with StyleLight and
achieves better performance on two out of three metrics
across both datasets, while ranking second and third, when
tested using a protocol in [12] on Laval Indoor. Note that the
baselines were directly trained on the datasets, with some
tailored to indoor scenes. When applied to more challenging,
in-the-wild images beyond the benchmarks, our method still
produces convincing results while the baselines fail to do so.

To summarize, our contributions are:
• A novel light estimation technique that generalizes across a

wide variety of scenes based on a simple idea of inpainting
a chrome ball using a pre-trained diffusion model.

• An iterative inpainting algorithm that enhances quality and
consistency by leveraging our discovered relationship be-
tween the initial noise map and chrome ball appearances.

• A continuous LoRA fine-tuning technique for exposure
bracketing to produce HDR chrome balls.

2. Related Work
Lighting estimation. While there exists light estimation
methods that require specific light probes [13, 23, 37, 44,
61, 66] or naturally occurring elements [9, 43, 65] in the
image, we focus our review on approaches that do not require
such probes. These methods are designed to handle indoor
[21, 22, 62, 67] or outdoor scenes [27, 28], or both [12, 34].

Unlike earlier approaches that rely on limited lighting
models [21, 22, 27, 29, 31–33], modern techniques have
shifted towards predicting 360◦ HDR environment maps,
which are essential for tasks such as virtual insertion of
highly reflective objects. A common strategy among these
technique involves regressing an LDR input with a limited
field of view into an HDR map with neural networks. Gard-
ner et al. [20] use a CNN classifier to locate lights using a
large dataset of LDR panoramas and then fine-tune the CNN
to predict HDR maps using a smaller HDR dataset. Hold-
Geoffroy et al. [28] first train an autoencoder for outdoor sky
maps, then use another network to encode and decode an
input image. Weber et al. [62] predict LDR maps along with
parametric light sources [21], also with a CNN. Somanath
et al. [52] introduce two loss functions based on randomly
masked L1 and cluster classification to enhance estimation
accuracy. Zhan et al. [67, 68] a two-step process involving a
spherical light distribution predictor and an HDR map pre-
dictor. These methods are typically demonstrated in either
indoor or outdoor settings due to the specific lighting models
or the lack of sufficiently large and diverse HDR datasets.

To solve both indoor and outdoor settings, LeGendre et al.

99



In
pu

t
im

ag
e

B
le

nd
ed

D
if

-
fu

si
on

[6
,7

]
Pa

in
t-

by
-E

x
am

pl
e

[6
3]

IP
-A

da
pt

er
[6

4]
D

A
L

L
·E

2
[1

]
A

do
be

Fi
re

fly
[2

]
SD

X
L

[4
5]

O
ur

s

Figure 2. Chrome ball inpainting results from various methods. The
red circle indicates the inpainted region, and we show a zoomed-in
view of the blue crop. These diffusion models tend to produce dis-
torted balls with undesirable textures, or completely fail to produce
a ball and instead just reconstruct the original content. Our method
addresses all these issues and precisely follows the inpainting mask.

[34] collected a new dataset of natural scenes captured using
a mobile device with three reflective probing balls. Their
method, DeepLight, regresses HDR lighting from an input
image using a loss function that minimizes the difference
between ground truth and rendered balls under the predicted
lighting. Dastjerdi et al. [12]’s EverLight combines multiple
indoor and outdoor datasets and predicts an editable lighting
representation, which then conditions a GAN to generate
a full HDR map. Some GAN-based techniques focus on
outpainting an input image to a 360◦ panorama [4, 5, 11],
but they perform poorly in light estimation due to the LDR
prediction [12, 60]. In contrast, StyleLight by Wang et al.
[59] trains a two-branch StyleGAN network to predict LDR
and HDR maps from noise and, at test time, uses GAN
inversion to predict an HDR map from an input image.

Despite many attempts to combine indoor and outdoor
panoramas, the resulting datasets remain small and limited
in diversity. In contrast, we leverage diffusion models trained
on billions of images, leading to better generalization.

Image inpainting using diffusion models. Our method

relies on text-conditioned diffusion models to synthesize
chrome balls. While there are many diffusion models for im-
age editing or inpainting [6, 7, 41, 46, 50, 54, 57, 58, 63, 64],
we only discuss work related to object insertion in images.
Blended Diffusion [6, 7] allows arbitrary object insertion
using text prompts for masked regions in an input image.
This is done using guided sampling [16] based on the cosine
distance between the CLIP embedding of the inpainted re-
gion and the prompt. Paint-by-Example [63] uses example
images and their CLIP embeddings as prompts to condition
diffusion models. ControlNet [69] and IP-Adapter [64] en-
able conditioning pre-trained diffusion models for image
generation using both image and text prompts. Commercial
products like DALL·E2 [1] and Adobe Firefly[2] also offer
similar inpainting capabilities with text prompts.

Unfortunately, these methods fail to consistently produce
chrome balls or produce ones that do not convincingly reflect
the environmental lighting (see Figure 2).

Personalized text-to-image diffusion models. Our work
enhances pre-trained diffusion models for consistent gen-
eration of known objects, which is related to personalized
image generation. For this task, models are fine-tuned using
single or a few reference object images while preserving
their unique appearance. DreamBooth [51] uses a special
token during fine-tuning to represent the object while main-
taining the pre-trained distribution. Gal et al. [19] introduce
a learned word in the embedding space for representing ref-
erenced objects, and Voynov et al. [56] adopt separate word
embeddings per network layer. Additionally, there are stud-
ies exploring techniques to simplify fine-tuning of diffusion
models [25, 30, 47], with LoRA [30] being a popular choice
that enforces low-rank weight changes.

These methods can be adapted to our task by providing
chrome ball images for fine-tuning. In fact, a portion of our
pipeline can be viewed as a variant of DreamBooth with
LoRA, albeit without the prior preservation loss.

3. Approach
Given a standard LDR input image, our goal is to estimate the
scene’s lighting as an HDR environment map. Our solution
is based on inserting a chrome ball into the image using a
diffusion model, then unwraps it to an environment map. We
tackle two key challenges of (1) how to consistently generate
chrome balls and (2) how to use an LDR diffusion model to
generate HDR chrome balls.

Overview. As shown in Figure 3, our key component is
based on Stable Diffusion XL [45] with depth-conditioned
ControlNet [69]. We first predict a depth map from the input
image using an off-the-shelf depth prediction network [48,
49]. Then, we paint a circle both at the depth map’s center
with the distance closest to the camera (visualized as white)
and in an inpaint mask. We feed them along with the input
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Figure 3. (a) We use Stable Diffusion XL [45] with depth-conditioned ControlNet [69] to inpaint a chrome ball. (b) Our iterative inpainting
algorithm helps improve generation quality and consistency by constraining the initial noise through sample averaging (Section 3.2). (c) We
train LoRA for exposure bracketing, which produces multiple LDR chrome balls with varying exposures for HDR merging (Section 3.3).

image and the prompt “a perfect mirrored reflective chrome
ball sphere” to the diffusion model.

We make two improvements to the above base model.
First, we propose a technique called ‘iterative inpainting’ to
locate a neighborhood of good initial noise maps that lead
to consistent and high-quality chrome balls (Section 3.2).
Second, to further improve the generated appearance and
generate multiple LDR images for exposure bracketing, we
fine-tune the diffusion model using LoRA [30] on a set of
synthetically generated chrome balls with varying exposures
(Section 3.3). To explain our method in detail, we first cover
background and standard notations of diffusion models.

3.1. Preliminaries

Diffusion models [26] form a family of generative mod-
els that can transform a prior distribution (Gaussian dis-
tribution) to a target data distribution pdata by learning
to revert a Gaussian diffusion process. Following the
convention in [53], it is represented by a discrete-time
stochastic process {xt}Tt=0 where x0 ∼ pdata, and xt ∼
N (xt−1;

√
αt/αt−1xt−1, (1−αt/αt−1)I). The decreasing

scalar function αt, with constraints that α0 = 1 and αT ≈ 0,
controls the noise level through time. It can be shown that

xt =
√
αtx0 +

√
1− αtϵ, where ϵ ∼ N (0, I). (1)

A diffusion model is a neural network ϵθ trained to predict
from xt the noise ϵ that was used to generate it according to
(1). The commonly employed, simplified training loss is

L = Ex0,t,ϵ∥ϵθ(
√
αtx0 +

√
1− αtϵ, t,C)− ϵ∥22, (2)

where C denotes conditioning signals such as text. The
trained network can then be used to convert a Gaussian noise
sample to a data sample through several sampling methods
[26, 53, 70]. In this paper, we use Stable Diffusion [45, 50],
which operates on latent codes of images according to a
variational autoencoder (VAE). As such, we use xt to denote
images and zt to denote latent codes.

Lora fine-tuning. Instead of fine-tuning each full weight
matrix Wi ∈ Rm×n, LoRA[30] optimizes a learnable low-
rank residual matrix ∆Wi = AiBi, where Ai ∈ Rm×d,
Bi ∈ Rd×n, and d ≪ m,n. The final weight matrix is given
by W′

i = Wi + α∆Wi, where α is the “LoRA scale.”

3.2. Iterative inpainting for improving quality

We found that the base depth-conditioned Stable Diffusion
model could reliably insert a chrome ball as opposed to
merely recovering the masked out content. However, the
chrome balls often contain undesirable patterns and fail to
convincingly reflect environment lighting (Figure 4).

Our first improvement stems from a few observations: The
same initial noise map leads to the generation semantically
similar inpainted areas regardless of the input image. For
instance, there exists a “disco” noise map that consistently
produces a disco ball across different input images, while a
good noise map almost always produces a reflective chrome
ball (Figure 4). When searching for images of a “chrome
ball” on the Internet, not all results match the specific re-
flective chrome ball we want. So, the encoded semantics
found within the noise map are perhaps understandable, as
text prompts alone cannot encode all visual appearances of
“chrome ball.” Here, adding “disco” to the negative prompt
may fix this specific instance, but many other failure modes
are not as easy to describe and exclude via text prompts.

Another observation is that the average of multiple ball
samples tends to approximate the overall lighting reasonably
well, but the average ball itself is too blurry and not as useful.

Based on these insights, we propose a simple algorithm
to automatically locate a good noise neighborhood by sam-
ple averaging. Specifically, we first inpaint N chrome balls
onto an input image using different random seeds. Then, we
calculate a pixel-wise median ball and composite it back to
the input image. Let us denote this composited image by B.
To sample a better chrome ball, we apply SDEdit [41]† by
adding noise to B to simulate the diffusion process up to time
†Commonly known as “image-to-image” by Stable Diffusion users [17].
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Figure 4. Observations: the initial noise map encodes some seman-
tic patterns. We found certain noise maps to consistently produce a
disco chrome ball or bad patterns across input images. In contrast,
our results produce consistently clean chrome balls.

Median ball

Figure 5. Balls before (left) and after (right) iterative inpainting.

Figure 6. Simply adding “black dark” to the prompt allows the
overexposed sun to emerge. However, we need a way to specify the
target EV, which is addressed by our LoRA (Section 3.3).

step t: B′ =
√
αtB +

√
1− αtϵ where ϵ ∼ N (0, I) and

t < T , the maximum timestep. Then, we continue denoising
B′ starting from t to 0. In our implementation, t = 0.8T .

We can repeat the process by using SDEdit to generate
another set of N chrome balls from the output and recom-
pute another median chrome ball. This repetition not only
minimizes artifacts and spurious patterns from incorrect ball
types but also enhances the consistency of light estimation.

In our implementation, we perform two iterations of me-
dian computation. This involves generating N chrome balls
with standard diffusion sampling to compute the first median,
performing N SDEdits from the first median to compute the
second, and doing one last SDEdit to generate the output.

3.3. Predicting HDR chrome balls

The main issue with using pre-trained diffusion models for
HDR prediction is that they have never seen HDR images.
Nonetheless, these models can still indirectly learn about
HDR and the wide range of luminance through examples of
under and overexposed images in their training sets. This
ability is evident in our experiment where adding ‘black

dark’ to our text prompt can reduce the overexposed white
sky, allowing the round sun to emerge on outdoor scenes
(see Figure 6). To leverage this ability, we propose to use
the exposure bracketing technique by inpainting multiple
chrome balls with different exposure values and combining
them to produce a linearized HDR output. Our idea is to
train a LoRA to steer the sampling process such that the
output conforms to the appearances associated with specific
exposure compensation values (EVs).

Training set. We construct our LoRA training set using
HDR panoramas synthetically generated from Text2Light
[10] to avoid direct access to scenes in benchmark datasets.
As illustrated in Figure 3, each training pair consists of a
random EV, denoted by ev, and a panorama crop with a
chrome ball rendered with EV=ev at the center. This crop is
constructed by projecting a full HDR panorama to a small
field-of-view image and then tone-mapping to LDR without
exposure compensation (EV0). The chrome ball is rendered
using the panorama as the environment map in Blender [18],
but its luminance is scaled by 2ev before being tone-mapped
to LDR. Following [59], we use a simple γ-2.4 tone-mapping
function and map the 99th percentile intensity to 0.9.

Here, we assume that the typical output images from the
diffusion model have a mean EV of zero. For light estima-
tion purposes, our focus is on recovering high-intensity light
sources, which are crucial for relighting and are captured
in underexposed or negative EV images. Therefore, we ran-
domly sample the EV values from [EVmin, 0].

Training. To generate a chrome ball with a specific EV, we
condition our model on an interpolation of two text prompts
as a function of ev. The two prompts are the original prompt
and the original with “black dark” added. We denote their
text embeddings by ξo and ξd, respectively. The resulting
embedding is given by:

ξev = ξo + (ev/EVmin)(ξd − ξo). (3)

We train our LoRA with a masked version of the standard
L2 loss function computed only on the chrome ball pixels
given by a mask M:

L = Ez0,t,ϵ,ev

[
∥M⊙ (ϵθ(z

ev
t , t, ξev)− ϵ)∥22

]
, (4)

where zevt is computed using Equation (1) from our training
image with EV=ev. We choose to train a single LoRA as
opposed to multiple LoRAs for individual EVs because it
helps preserve the overall scene structure across exposures
due to weight sharing. Refer to Appendix C for details.

LDR balls generation and HDR merging. We generate
chrome balls with multiple EVs = {-5, -2.5, 0}, each using
their own median ball computation (Section 3.2). While our
LoRA can maintain the overall scene structure across ex-
posures, some details do become altered. As a result, using
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standard HDR merging algorithms can lead to ghosting arti-
facts when details in each LDR are not fully aligned. As our
primary goal is to gather high-intensity light sources from
underexposed images to construct a useful light map, we can
merge the luminances while retaining the chroma from the
normally exposed EV0 image to reduce ghosting.

In particular, we first identify overexposed regions in each
LDR image with a simple threshold of 0.9, assuming the
pixel range is between 0 and 1. Then, the luminance values
in these regions are replaced by the exposure-corrected lumi-
nances from lower EV images. This luminance replacement
is performed in pairs, starting from the lowest EV to the
normal EV0 image, detailed in Algorithm 2 in Appendix A.

4. Experiments
Implementation details. We fine-tuned SDXL [45] for
multi-exposure generation using a rank-4 LoRA [30]. We
trained our LoRA on 1,412 HDR panoramas synthetically
generated by Text2Light [10] for 2,500 steps with a learning
rate of 10−5 and a batch size of 4. The process took about
5 hours on an NVIDIA RTX 3090Ti. During training, we
sampled timestep t ∼ U(900, 999) as we found that the light
information is determined at the early stage of the denoising
process. When applying iterative inpainting (Section 3.2), we
generated N = 30 chrome balls per each median computa-
tion iteration. We use UniPC [70] sampler with 30 sampling
steps, a guidance scale of 5.0, and a LoRA scale of 0.75.
Datasets. We evaluated our approach on two standard bench-
marks: Laval Indoor HDR [20] and Poly Haven [3]. The
latter covers both indoor and outdoor settings.
Evaluation metrics. Following previous work [59, 67], we
used three scale-invariant metrics: scale-invariant Root Mean
Square Error (si-RMSE) [24], Angular Error [34], and nor-
malized RMSE. The normalization for the last metric is
done by mapping the 0.1st and 99.9th percentiles to 0 and 1,
following [40]. We chose these metrics instead of standard
RMSE because each benchmark dataset has its own specific
range and statistics of light intensity, but our method was not
trained on any of them.

4.1. Evaluation on benchmark datasets

We adopt two different evaluation protocols used in the lit-
erature: from each input LDR image, we generate an HDR
panorama of size 128 × 256 pixels and use it to render (1)
three spheres with different materials (gray-diffuse, silver-
matte, and silver-mirror spheres) [20, 21, 59] or (2) an array
of diffuse spheres [12, 62]. Then, we computed the evalua-
tion metrics on these renderings. Many studies do not publish
their source code and use only one of the protocols, resulting
in missing baselines’ scores in some experiments.

Evaluation on three spheres. We compared our method
to StyleLight [59] on (1) 289 panoramas from the Laval

Input image GT StyleLight [59] Ours (I) Ours (I+LR)

(a) Laval Indoor [20]

(b) Poly Haven [3]

Figure 7. Qualitative results on benchmark datasets. For each in-
put image, we show the rendered chrome ball (1st row) and the
corresponding environment map (2st row) from each method. (I:
iterative, LR: LoRA).

Indoor dataset and (2) 500 panoramas from Poly Haven
dataset. It is important to note that StyleLight was trained
on the Laval Indoor dataset; its scores on Poly Haven are
provided solely as a reference to demonstrate how existing
methods perform in out-of-distribution scenarios. Following
StyleLight’s protocol, we created one input image from each
panorama by cropping it to a size of 192×256 with a vertical
FOV of 60◦and then applying tone-mapping, setting the 99th
percentile to 0.9 and using γ = 2.4. In only our pipeline, we
upscale the image while keeping the aspect ratio for SDXL.

Table 1 shows that our method outperforms StyleLight in
terms of Angular Error and Normalized RMSE on Laval in-
door dataset, with significantly lower Angular Error: 49.5%
(diffuse), 27.8% (matte), and 12.4% (mirror). Our method
is also effective in Poly Haven outdoor scenes, while Style-
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Dataset Method Scale-invariant RMSE ↓ Angular Error ↓ Normalized RMSE ↓
Diffuse Matte Mirror Diffuse Matte Mirror Diffuse Matte Mirror

Laval Indoor [20] StyleLight (reported by the paper) 0.11 0.29 0.55 2.41 2.96 4.30 - - -

Laval Indoor [20]

StyleLight (reproduced using official code) 0.13 0.31 0.55 4.24 4.74 6.78 0.23 0.40 0.51
SDXL† 0.20 0.45 0.72 5.87 6.20 8.28 0.32 0.47 0.51
SDXL† + iterative (ours) 0.15 0.39 0.67 3.58 4.55 7.05 0.25 0.41 0.47
SDXL† + LoRA (ours) 0.15 0.38 0.65 3.47 3.86 6.15 0.25 0.40 0.45
SDXL† + iterative + LoRA (ours) 0.14 0.33 0.60 2.14 3.42 5.94 0.20 0.36 0.43

Poly Haven [3]

StyleLight (reproduced using official code) 0.17 0.44 0.64 3.53 4.44 7.12 0.23 0.41 0.49
SDXL† 0.22 0.59 0.80 2.98 4.25 5.74 0.30 0.50 0.54
SDXL† + iterative (ours) 0.16 0.50 0.73 2.57 4.18 5.31 0.22 0.44 0.50
SDXL† + LoRA (ours) 0.16 0.50 0.72 2.35 3.56 4.43 0.24 0.43 0.47
SDXL† + iterative + LoRA (ours) 0.14 0.45 0.66 2.14 3.60 4.29 0.20 0.39 0.43

Table 1. Comparison using the three-sphere evaluation protocol between StyleLight [59], simple inpainting with SDXL [45] and depth-
conditioned ControlNet [69] (“SDXL†” in the table), and ablated versions of our method. The best and second-best are color coded.

Method si-RMSE ↓ Angular Error ↓
EverLight [12] 0.091 6.36
StyleLight [59] 0.123 7.09
Weber et al. [62] 0.081 4.13
EMLight [67] 0.099 3.99
Ours 0.090 5.25

Table 2. Scores on indoor array-of-spheres protocol (Section 4.1)

Sphere Method si-RMSE ↓ Angular
Error ↓ Normalized

RMSE ↓

Diffuse StyleLight 0.143 3.741 0.236
Ours 0.135 2.337 0.219

Matte StyleLight 0.347 4.492 0.429
Ours 0.359 3.483 0.369

Mirror StyleLight 0.606 7.655 0.544
Ours 0.644 5.988 0.438

Table 3. Scores on the random-camera protocol (Section 4.2).

Dataset Method RMSE ↓ si-RMSE ↓ Angular
Error ↓

Laval Indoor [20] StyleLight 0.246 0.271 5.814
Ours 0.187 0.303 4.412

Poly Haven [3] StyleLight 0.241 0.324 6.291
Ours 0.179 0.275 4.567

Table 4. Scores on LDR environment maps (Section 4.3).

Light’s performance drops with a large 39.7% gap in Angular
Error for mirror spheres. Qualitative results are in Figure 7
and Appendix E.1. Note that we used StyleLight’s official
code to produce these scores; however, discrepancies exist
with those reported in the paper. (See Appendix J for details
and our discussion with StyleLight’s authors on this issue).

Evaluation on array of spheres. We compared our approach
with StyleLight, Everlight [12], EMLight [67], and Weber
et al. [62]. We used 224 panoramas (the same ones used to

evaluate Everlight) from the Laval Indoor dataset. For each
panorama, we generated 10 input LDR images by centering
the panorama at certain azimuthal angles and cropping it
to 50◦ FOV, following Weber et al. [62]. As a result, the
metrics were computed from 2240 input-output pairs. In
Table 2, our method ranks after Weber et al. and EMLight;
however, it outperforms Everlight and StyleLight, despite
not being explicitly trained on the dataset.

4.2. Evaluation on unknown camera parameters

Evaluation protocols in the last section crop HDR panora-
mas at fixed camera angles and FOVs. In real-world settings,
however, we often do not know the camera parameters of a
photograph. This evaluation considers more challenging sce-
narios that reflect this situation better. In particular, to gener-
ate an input LDR image, we randomly sample the FOV from
the interval [30◦, 150◦], the elevation from [−45◦, 45◦], and
the azimuth from all 360◦. We then crop an HDR panorama
accordingly. We generate one LDR image from 289 HDR
panoramas of the Laval Indoor dataset and compare our
method with Stylelight using the generated input-output pairs
and the three-sphere protocol. Table 3 shows that our method
outperforms StyleLight in Angular Error and Normalized
RMSE and remains competitive in si-RMSE.

4.3. Evaluation on LDR panoramas

We demonstrate that our method can generate more plausi-
ble panoramas than SOTA approaches. In this evaluation,
we generated one LDR input image from each panorama
in the test dataset as in the three-sphere protocol. However,
we compared output LDR panoramas directly to the ground
truth. Again, since each dataset uses its own brightness scale
unknown to our method, comparison was done in the LDR
image domain, where the scale is explicitly defined. Specifi-
cally, we compared our panoramas to those from StyleLight
at a resolution of 256× 512 after performing tone-mapping
as described in [59]. Table 4 shows that our method out-
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StyleLight [59] Ours (inpainted image) Prediction #1 EV-0.5 EV-1.6 EV-3.9 Prediction #2 Prediction #3

Figure 8. Qualitative results for in-the-wild scenes. We show chrome balls generated from our pipeline along with their HDR outputs,
rendered at different EVs in columns 3 to 6. Additional plausible chrome balls are depicted in columns 7 and 8.

performs StyleLight with respect to nearly all metrics and
datasets, suggesting that our method can leverage the strong
generative prior in pre-trained diffusion models.

4.4. Qualitative results for in-the-wild scenes

We present additional qualitative results on diverse in-the-
wild scenes available on Unsplash (www.unsplash.com) and
other websites under CC4.0 license in Figure 8 and Appendix
E.2. Compared to other existing techniques, our method can
produce chrome balls that “reflect” what is in the input image:
the car’s ceiling, the zebra crossing, and the red garment of
the snowboarder, as well as reveal overexposed details, such
as window frames and the sun (see also Figure 1).

4.5. Ablation studies

We perform an ablation study on our iterative inpainting and
LoRA using Laval Indoor and Poly Haven datasets. Table
1 shows that our full method surpasses all ablated versions
on all metrics except Angular Error on matte balls in Poly
Haven. Studies on the size and number of balls, as well as the
trade-off between running time and quality are in Appendix
B. Studies on LoRA scale and timesteps are in Appendix C.

4.6. Limitations

Given the absence of focal length or FOV information, we
assume orthographic projection when converting a chrome
ball to an environment map, which may not reflect the pro-
jection model rendered by the diffusion model. Our chrome
balls occasionally fail to reflect surrounding environments
in overhead or bird’s eye-view images, shown in Appendix I.
Our method is currently slow with iterative inpainting and
diffusion sampling, but utilizing sampling-efficient diffusion
models [36, 38, 39] can directly improve its speed.

5. Conclusion
This paper presents a novel HDR light estimation approach
by inpainting a chrome ball into the scene using a pretrained
LDR diffusion model. To consistently render high-quality
chrome balls, we propose an iterative algorithm to locate
a suitable initial noise neighborhood and apply continuous
LoRA fine-tuning for exposure bracketing and generating
HDR chrome balls. Our method performs competitively with
the state of the art in both indoor and outdoor settings and
marks the first work that achieves good generalization to
in-the-wild images.
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