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Figure 1. Controllable text-to-image synthesis with attention refocusing. We introduce a new framework to improve the controllability
of text-to-image synthesis. Given a text prompt, we first leverage GPT-4 to generate spatial layouts and then use grounded text-to-image
methods to generate the images given the layouts and prompts. However, the detailed information, like the quantity, identity, and attributes,
often remains incorrect or mixed using existing models. We propose a training-free approach — attention-refocusing — to substantially
improve the controllability. Our method is model-agnostic and can be applied to enhance the control capacity of methods like GLIGEN
[32] and ControlNet [64]

Abstract

Driven by the scalable diffusion models trained on large-
scale datasets, text-to-image synthesis methods have shown

compelling results. However, these models still fail to pre-
cisely follow the text prompt involving multiple objects, at-
tributes, or spatial compositions. In this paper, we reveal
the potential causes in the diffusion model’s cross-attention
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and self-attention layers. We propose two novel losses to
refocus attention maps according to a given spatial layout
during sampling. Creating the layouts manually requires
additional effort and can be tedious. Therefore, we explore
using large language models (LLM) to produce these lay-
outs for our method. We conduct extensive experiments on
the DrawBench, HRS, and TIFA benchmarks to evaluate our
proposed method. We show that our proposed attention re-
focusing effectively improves the controllability of existing
approaches.

1. Introduction

Despite the unprecedented zero-shot capacity and photore-
alism achieved by the recent progress in text-to-image syn-
thesis [4, 28, 45–47, 49, 63], existing models still strug-
gle with text prompts containing multiple objects and at-
tributes with complex spatial relationships among them [3,
10, 11, 14, 42, 59]. Some objects, attributes, and spatial
compositions specified in the text prompts are often mixed,
swapped, or even completely missing in the synthesized im-
age. Our work aims to mitigate this problem by ground-
ing the text-to-image synthesis using explicit spatial layouts
without extra training.

The deep level of language understanding exhibited by
the text-to-image models can be attributed to using pre-
trained language models [43] as the text encoder [49]. The
computed text embeddings are processed using the cross-
attention layers, key for various problems [25, 26], in the
denoising models [38, 39]. Upon careful analysis of the fail-
ure examples generated by Stable Diffusion [47], we iden-
tify a potential cause of the failure above in the attention
layers [55], where the pixels with similar features produce
similar attention queries and consequently attend to a sim-
ilar set of regions or tokens. The information of these pix-
els is thus mixed through these attention layers. Note that
such pixels can come from two different objects with simi-
lar features. For example, given the prompt “A dog on the
right of a cat”, a pixel associated with the token “dog” could
have similar features to the pixels in the “cat” region. As a
result, the model could incorrectly attend to the “cat” to-
ken through the cross-attention layers or the “cat” region
through self-attention layers, causing the missing object or
blended attribute issues.

Previous studies propose to mitigate this issue by manip-
ulating the cross-attention maps during the sampling pro-
cess [10, 11, 14]. However, they overlook a similar issue
in self-attention layers, where distinguishing between pix-
els of the same object and those of different objects with
similar features becomes a challenge. To this end, we lever-
age explicit layout representations for grounded synthesis
following the previous works [11, 32].

In this paper, we propose two novel losses based on the
input layout during the sampling process to refocus the at-

tention in both self- and cross-attention layers. Our anal-
ysis shows that with our losses the attention can be effec-
tively refocused to the desired region instead of similar but
irrelevant regions. We also explore using LLMs to generate
explicit layout representations. We demonstrate that these
models have strong spatial reasoning capabilities and can
predict the plausible layout of the objects when using our
designed prompts with in-context learning. We will release
code and data in the future.

We show that when combining the bounding boxes gen-
erated by GPT4 [40] and our attention-refocusing losses,
our method significantly and consistently improves over
several strong baselines on the DrawBench [49], HRS
benchmarks [3], and TIFA benchmark [24]. Our main con-
tributions are summarized below:
• We propose attention-refocusing losses to regularize both

cross- and self-attention layers during the sampling to im-
prove the controllability given the layout and text prompt;

• We explore using LLMs to generate layouts given text
prompts, allowing the exploitation of the up-to-date
LLMs with trained text-to-image models;

• We conduct a comprehensive experiment on existing
methods of grounded text-to-image generation and show
that our method compares favorably against the state-of-
the-art models.

2. Related work
Large-scale text-to-image models High-resolution text-
to-image synthesis has been dramatically advanced by the
development of large-scale text-to-image models [4, 16, 28,
45, 47, 49, 63]. Such rapid progress can be attributed to sev-
eral critical techniques. First, the availability of large-scale
text-image datasets [8, 51] makes it possible to train data-
hungry models on a massive volume of samples from di-
verse resources. The development of the scalable model ar-
chitectures, including GANs [28, 50], autoregressive mod-
els [9, 13, 45, 63], and diffusion models [4, 22, 38, 46, 49],
together with various training and inference techniques [21–
23, 52]. Our work focuses on the problem of improving the
controllability of the generated images with respect to the
input text with large-scale diffusion models.

Improving the controllability of text-to-image models
Enhancing the user control of large-scale text-to-image
models has drawn great attention recently. Previous work
proposes to boost the controllability through various input
formats such as rich text [17], personal images [30, 48],
edge maps, segmentation masks, depth maps [64], and
bounding boxes [2, 6, 32]. There are also works focus-
ing on strengthing the controllability of the original input
text, motivated by the observation that existing models of-
ten fail to fulfill the description from the input text accu-
rately [3, 10, 14, 41]. For example, when multiple ob-
jects and attributes occur in the text prompt, some are of-
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Figure 2. The proposed Attention-Refocusing framework. At each denoising step, we update the noised sample by optimizing our
LCAR and LSAR losses (red block) before denoising with the predicted noise (yellow block). For each cross-attention map, LCAR is
designed to encourage a region to attend more to the corresponding token while discouraging the remaining region from attending to that
token. For each self-attention map, LSAR prevents the pixels in a region from attending to irrelevant regions (LCAR and LSAR in blue
blocks).

ten missing or mixed in the synthesized images [10, 14].
Attend-and-Excite [10] proposes optimizing cross-attention
maps during sampling to ensure all the tokens are attended.
Similarly, A-STAR [1] tries to separate attention region of
different objects, avoiding objects mixing. Several studies
finetune the existing models with human feedback [31, 58]
or use improved language models [36, 41, 53, 62, 65] to
enhance the text-image alignment. Similar to these recent
efforts, our work also focuses on improving the alignment
between the generated images and input texts. However,
we leverage an intermediate spatial layout generated by
LLMs [40, 43, 44, 53] and ground the image synthesis on
the layout.

Layout-conditioned text-to-image synthesis. Several ap-
proaches have been developed to extend the Stable Diffu-
sion [47] to condition its generation on the layouts through
finetuning on layout-image pairs [2, 32, 38, 64] or modify-
ing the sampling process [4–6, 11]. For example, GLIGEN
[32] finetunes a gated self-attention layer to incorporate

the box information from the input to the Stable Diffusion
model. Mixture-of-Diffusion [27] and MultiDiffusion [30]
perform a denoising process on each region and fuse the
predicted scores. Others, including SD-Pww [4], layout-
predictor [57], direct-diffusion [37] Layout-guidance [11],
BoxDiff [61], and R&b [60] directly optimize the cross-
attention layers during the sampling process. However, our
approach not only optimizes cross-attention maps but also
self-attention maps, which is not commonly addressed by
these methods. Unlike the optimization of multiple values
in these methods, which can lead to image quality degra-
dation, our method iteratively optimize peak values in the
attention maps, preserving image quality. Universal guid-
ance [5] leverages a trained object detector and constructs
a loss to force the generated images to match location guid-
ance. DenseDiffusion [29] directly modifies all attention
maps based on mask guidance without any optimization
steps. Differing from DenseDiffusion, our method opti-
mizes the latent space, indirectly influencing attention maps
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Stage 1: Text-to-layout Stage 2: Grounded text-to-image

Figure 3. Our pipeline. Our approach includes 1) text-to-layout
using GPT-4 model and 2) grounded text-to-image using a pre-
trained diffusion model with our attention-refocusing.

under mask guidance. Our approach yields improvements
demonstrated in our experiments. Our proposed method
to ground the text-to-image generation on the layout uses
both cross-attention and self-attention layers without need-
ing extra training or additional models. We demonstrate
that adding the proposed attention-based guidance to var-
ious base models improves their performance consistently.
Layout predictions. Several concurrent works lever-
age the potential of large language models for enhancing
text-to-image models. Similar to ours, the concurrent work
LLM-grounded Diffusion [33] uses GPT-4 as a layout gen-
erator. Their extended work, LDM [34], produces dynamic
scene layouts rather than single layouts, guiding a diffusion
model for video generation. Another concurrent work, Lay-
outGPT [15], leverages GPT to create layouts from text
conditions, then uses GLIGEN [32] to generate images
from the created layouts. Cho et al. [12] finetune an open-
source language model for the specific text-to-layout task
and use standard layout-to-image models for image genera-
tion. However, as demonstrated in the experimental results,
existing grounded text-to-image models still fail to fulfill
the details in the text prompts, like quantity, identity, and
attributes. Our work further improves the controllability us-
ing attention-based guidance.

3. Method
In this section, we discuss our method for grounded text-to-
image generation. Our approach includes two main phases,
as shown in Fig. 3: 1) text-to-layout and 2) grounded text-
to-image. In both phases, we use off-the-shelf pretrained
models without any extra training. We exploit the spatial
understanding ability in the latest large language models
(LLMs) to produce visual representations such as bounding
boxes as the layout given a text prompt.

3.1. Preliminaries

Text-to-image diffusion models. The key to the text-
to-image diffusion model is the iterative denoising process.
A UNet model is trained to progressively denoise the ran-
dom Gaussian noise by computing the score ϵt = U(xt; c),
where t is the time step and c is the embedding for condi-
tional information. Next, we briefly describe the two types
of attention layers used in our method.

Cross-attention layer. Text-to-image diffusion mod-
els condition its generation on the text prompt via cross-
attention layers. Specifically, a pretrained CLIP en-
coder [43] is often used to encode the text prompt w =
(w1, w2, · · ·wn) and obtain the text embeddings c =
fCLIP(w) ∈ Rn×e, where e is the embedding dimension.
The key K ∈ Rn×d and value V ∈ Rn×d are obtained from
text embedding c with a linear mapping (d is the feature di-
mension). As shown in the third row of the Fig. 2, given a
set of queries Q ∈ Rhw×d computed from the features map
of size h × w, the cross-attention map At at the step t is
computed as:

At = softmax
(
QK⊤
√
d

)
∈ [0, 1]hw×n, (1)

which is formed by n attention maps {At
1, ..., A

t
n}, where

At
i ∈ [0, 1]hw denotes the strength of association between a

word token wi and each spatial location in the feature map.

Self-attention layer. It is used to facilitate the use of global
information. It propagates the feature at each spatial lo-
cation to a similar region in the feature map of resolution
h × w. With all key-value-query obtained from the same
feature map through linear mappings and Eq. (1), the self-
attention map is denoted as St ∈ [0, 1]hw×hw. Similarly,
we use St

p ∈ [0, 1]h×w to denote the self-attention map of
all pixels attending to pixel p.

3.2. Grounded text-to-image generation

We now introduce two losses on the attention layers to im-
prove the controllability of the layout-conditioned image
synthesis. We consider spatial layouts defined by k bound-
ing boxes B ∈ (Z+)k×4. Each box is associated with a
box caption describing the content inside the box. Given
the captions associated with every box, we denote their in-
dices in the input text prompt w as I = {i1 · · · iq} (q is the
number of those tokens of interest). Note that each token
index i can relate to one or more bounding boxes Bi. Let
Mask(Bi) be the binary mask generated from the boxes Bi,
where the regions inside the boxes are one, and the rest are
zero, as shown in the fourth row of Fig. 2.

3.2.1 Cross-Attention Refocusing (CAR)
When generating images using GLIGEN, given the text
prompt “three parrots”, we notice in the cross-attention
layer that the token “parrot“ incorrectly attends to the un-
related regions, as visualized in Fig. 4a, leading to four par-
rots generated in the result. To this end, we propose a loss
to refocus the cross-attention of these tokens according to
the layout.

Post-processing cross-attention maps. First, we skip the
attention maps of < sot > token, then use Softmax for
the remaining cross-attention maps. After that, we apply
Gaussian Smoothing to the attention maps following [10].
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Figure 4. (a) Cross-Attention-Refocusing (CAR) visualization. Without CAR, the token ”parrot” attends to background regions. Using
CAR calibrates the cross-attention map to attend to the correct regions. (b) Self-Attention-Refocusing (SAR) visualization. The dots in
each box represent the pixel query of the self-attention map. Applying SAR loss helps refocus the self-attention layer to attend less to the
incorrect regions.

Designing cross-attention refocusing loss. To encour-
age the generated objects to present in corresponding boxes,
we aim to boost the scores of masked attention map At

i ·
Mask(Bi):

LFG =
1

q

∑
i∈I

(1−max(At
i ·Mask(Bi))) (2)

We also propose a background loss to discourage the to-
kens from being attended by the irrelevant regions:

LBG =
1

q

∑
i∈I

max(At
i · (1−Mask(Bi))) (3)

The overall CAR loss is then defined as LCAR = LFG+
LBG. As shown in Fig. 4a, when applying with our loss,
the model effectively mitigates the incorrect attention to the
grounded tokens and synthesizes three parrots as desired.

3.2.2 Self-Attention Refocusing (SAR)

Similar to the observation in the cross-attention layers, as
shown in Fig. 4b, the pixels of one region (e.g., “car”) may
attend outside of the region to similar regions (e.g., “chair”)
in self-attention layers. As a result, the attributes of the two
regions get mixed in the generation. To this end, we develop
a loss to help self-attention refocus to the correct regions.

Recall that St
p is the self-attention map of pixel p. For

each pixel p ∈ Bi, we denote St,BG
p as the background

region of the self-attention map:

St,BG
p = St

p · (1−Mask(Bi)) (4)

We aim to ensure each pixel p ∈ Bi attends less to the
regions outside the boxes Bi. To achieve this, we define
self-attention loss for each pixel p as follows:

Lp =

∑
(St,BG

p )∑
(1−Mask(Bi))

(5)

The overall self-attention loss is defined as follows:

LSAR =
1

q

∑
i∈I

∑
p∈Bi

Lp (6)

As shown in Fig. 4b, using self-attention loss helps each
box to focus less on the irrelevant regions, and the model
consequently generates distinct attributes for each region.

3.2.3 Sampling with the attention-refocusing losses

With the CAR and SAR losses, we modify the noised sam-
ple xt at each denoising step to minimize the loss using gra-
dient descent. We show the update process in Fig. 2:

x̂t ← xt − α∇xt
(LCAR + LSAR) , (7)

where α is the step size that controls the influence of the
optimization in the denoising process. However, a single
update step is often insufficient to refine the cross-attention
and self-attention maps. We thus update τ times every early
denoising step. After finishing the τ updates, we feed the
output to the diffusion UNet to resume the denoising pro-
cess and compute xt−1. Intuitively, we use the gradient de-
rived from attention-refocusing losses to guide the denois-
ing process. More details about τ setting and algorithm can
be found in the supplementary material.

3.3. Text-to-layout prediction

Generating an image from text requires strong text com-
prehension and reasoning capacity. The limited power
of text encoders could be another reason existing meth-
ods fail. However, once a text-to-image model is trained
with a specific language model, upgrading the text en-
coder without additional (costly) training becomes non-
trivial. Such schema could hinder the existing text-to-image
models from benefiting from recent large language models
(LLMs) breakthroughs. Given this challenge, we explore
the direct use of LLMs to generate intermediate visual pre-
sentations, such as box layouts. We exploit GPT-4 [40], the
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Method CAR
& SAR

Counting Compositions

F1 ↑ Spatial ↑ Size ↑ Color ↑

Stable Diffusion
[47]

× 58.31 8.48 9.18 12.61
✓ 60.62 (+2.3) 24.45 (+16.0) 16.97 (+7.7) 23.54 (+10.9)

Attend-and-excite
[10]

× 60.47 9.98 10.58 19.56
✓ 62.71 (+2.2) 20.76 (+10.8) 14.17 (+3.6) 20.83 (+1.3)

Layout-guidance
[11]

× 56.22 16.47 12.38 14.39
✓ 63.01 (+6.8) 25.84 (+9.4) 15.56 (+3.2) 21.50 (+7.1)

MultiDiffusion
[6]

× 55.18 14.27 10.58 17.15
✓ 57.37 (+2.19) 22.65 (+8.2) 10.78 (+0.2) 24.59 (+7.3)

GLIGEN [32] × 66.58 30.74 26.75 18.78
✓ 67.54 (+0.7) 40.22 (+9.5) 27.74 (+1.0) 26.32 (+7.5)

Boxdiff [61] - 67.02 33.93 28.54 22.50

Table 1. The CAR and SAR losses increase the F1 score in count-
ing and accuracy(%) in all spatial, size, and color categories of the
HRS benchmark. The small, green numbers represent value im-
provement.

Method
CAR

& SAR Counting Spatial Average

Stable Diffusion 1.4
[47]

× 68 .15 72.01 78.38
✓ 69.37 (+1.22) 73.33 (+1.32) 78.87 (+0.49)

Stable Diffusion 2.1
[47]

× 73.63 76.11 81.84
✓ 74.44 (+0.81) 76.29 (+0.18) 81.89 (+0.05)

Table 2. TIFA score( ↑) in two baselines: Stable Diffusion 1.4 and
2.1.The small, green numbers represent value improvement.

Method IoU ↑ Clip Score ↑ SOA-I ↑

SD-Pww [4] 23.76 ± 0.50 0.2800 ± 0.0005 73.92 ± 1.84
DenseDiffusion [29] 34.99 ± 1.13 0.2814 ± 0.0005 77.61 ± 1.75
Stable Diffusion + Our 38.97 ± 0.56 0.3177 ± 0.0011 78.80 ± 1.27

Table 3. Evaluation of image generation based on mask guidance,
highlighting the performance of our approach (± indicates stan-
dard deviation). The results of other methods are directly taken
from DenseDiffusion [29].

state-of-the-art large language model that can understand
the number and spatial compositions of objects in our ex-
periments. Specifically, given the input text for image gen-
eration, we create a new prompt to request GPT-4 to gener-
ate box coordinates and the label of objects in each box. We
outline the details of this in-context learning in the supple-
mentary.

4. Experiments
We evaluate our methods on several benchmarks, conduct
ablation experiments on each component.

4.1. Experiment setup

Dataset. For text-to-image tasks, we utilize the bench-
mark HRS [3] and Drawbench [49] to evaluate the text-
to-image generation performance on various categories, in-
cluding counting, spatial, color, and size compositions. To

Stable Diffusion [47] GLIGEN [32]

CAR&SAR × ✓ × ✓

20.82 21.03 20.63 20.37

Table 4. FID ( ↓) in Stable Diffusion and GLIGEN with and with-
out CAR & SAR in COCO 2014 [35]
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Figure 5. Plug & play use of our attention-based guidance. Our
method applies to various base models. Here we show improved
controllability across multiple text-to-image methods: Stable Dif-
fusion [47], Attend-and-excite [10], MultiDiffusion [6], Layout-
guidance [11], GLIGEN [32]

further assess the alignment of the generated image and in-
put text, we use TIFA [24] benchmark. We include more
details about these datasets in the supplementary material.

For quality evaluation, we utilize the COCO2014 [35]
validation dataset to assess images generated from textual
descriptions and corresponding bounding boxes.

Our mask-and-text-to-image evaluation utilizes the
dataset provided by DenseDiffusion [29].

Evaluation metrics. Regarding text-to-image evaluation,
we follow the protocol in HRS [3] to compute the metrics
on individual categories: counting, spatial, size, and color.
For TIFA benchmark, we assess the alignment between the
generated images and input texts using the TIFA score [24].

In box-and-text evaluations, we report FID [19] in
COCO2014 [35], using available bounding boxes from
this benchmark as input layouts for grounded text-to-image
models.

For mask guidance evaluation, we measure the align-
ment with IoU used in DenseDiffusion [29], assess the tex-
tual similarity with CLIP Score [18], and ensure the object
presence using the SOA-I score [20] using YOLOv7 [56]
for object detection. More details about these metrics are
presented in the supplementary.

Implementation details. In terms of bounding boxes
guidance, we evaluate our method by plugging it into
various open-source text-to-image models and methods,
including Stable Diffusion (SD) V-1.4 [47], Attend-and-
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CAR SAR Counting Spatial Size Color

Precision ↑Recall ↑ F1 ↑ Acc. ↑ Acc. ↑ Acc. ↑

× × 78.81 59.44 66.58 30.74 26.75 18.78
× ✓ 79.76 59.34 67.03 36.43 30.34 18.39
✓ × 82.11 59.35 67.59 36.92 28.94 23.88
✓ ✓ 81.25 59.39 67.54 40.22 27.74 26.32

Table 5. Abaltion study of the CAR and SAR losses using the
GLIGEN model on the HRS benchmark.

excite [10], Layout-guidance [11], MultiDiffusion [30], and
GLIGEN [32]. For mask guidance, we integrate our losses
to Stable diffusion [47] and compare with other free-
training methods: DenseDiffusion [29] and Pww [4]. All
the mentioned methods are configured as default settings.

4.2. Quantitative results

We show the results on the HRS benchmark [3] in Ta-
ble 1. Using our losses consistently enhances F1 scores in
counting by an average of 2%, with Layout-guidance [11]
models showing a notable 7% improvement. Spatial accu-
racy gains an average of 10% with our losses. Our method
boosts accuracy by up to 10.9% in the size and color cate-
gories. It can be seen that Attention-refocusing losses out-
performs Boxdiff [61] in counting, spatial and color cate-
gories, especially 7% improvement in spatial composition.
Specifically, GLIGEN [32] sees an increase in spatial and
color accuracy by around 10% and 8%, respectively. Stable
Diffusion [47] , which relies solely on text input, lags be-
hind other grounded text-to-image models. However, with
our attention-guided enhancements, it outperforms several
methods like Layout-guidance and MultiDiffusion. A sim-
ilar trend also can be observed in the DrawBench [49] re-
sults in our supplementary material. The TIFA evaluation
in Table 2 further demonstrates the efficacy of our CAR
and SAR losses, particularly enhancing counting and spatial
accuracy across all baseline versions without detriment to
other categories. This is reflected in the overall TIFA score
improvements. Moreover, our attention-refocusing losses
improve textual alignment in models like Stable Diffusion
and GLIGEN without affecting image quality, ensuring that
FID scores remain compatible with the originals. The eval-
uation of FID can be seen in Table 4.

For mask guidance evaluation, we report the quantitative
evaluation in Table 3. Our method outperforms the current
state-of-the-art approaches with an IoU of 38.97± 0.56 and
a leading SOA-I score and Clip score, indicating improved
layout fidelity and object detection in generated images.

4.3. Qualitative results

Note that we generate each pair of images with the same ini-
tial noise and the layouts in all figures are generated from
GPT-4 api. Fig. 5 illustrates the qualitative comparison of
various methods with and without our losses. In all the

A car on the left of a chair

A horse on the right of an airplane

CAR × × ✓ ✓

SAR × ✓ × ✓

Figure 6. Ablation study. We show sample grounded text-to-
image generation demonstrating the effects of the two proposed
attention guidance.

A baby and a teddy bear

An apple and an orange

A woman with a bouquet of flowers holding the hand of a man

Input ControlNet [64] ControlNet + Ours

Figure 7. ControlNet with attention-based guidance. The input
of ControlNet is a small image in the top right of the first column.
With an extra segmentation map (the bigger images in the first
column), our losses can refine the attribute blending of ControlNet.

cases, our losses help generate images with more precise
spatial locations, colors, and numbers of objects. For exam-
ple, attention-refocusing loss helps to mitigate the attribute
mixing problem of Layout-guidance [11] (in the fourth col-
umn).

In Fig. 8, we show the results using prompts from the
HRS benchmark. While MultiDiffusion [30] and Layout-
guidance [11] often do not respect the input layouts, partic-
ularly in smaller boxes, GLIGEN incorrectly aligns objects
with grounded input or mismatch colors. In contrast, in-
tegrating our attention-refocusing losses with GLIGEN en-
hances alignment and color accuracy. The results of our
approach underscore our method’s effectiveness in creating
novel spatial configurations and attributes.

Additionally, as shown in Fig. 7, our CAR and SAR
losses can adapt to segmentation mask guidance, refining
ControlNet’s output by reducing attribute mixing and avoid-
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A dog on the right of a horse

A car on the left of a bus

An orange dog and a green cat

Orange dog
Green 

cat

Layout
from GPT

Layout-
guidance [11]

MultiDiffu-
sion [30]

GLIGEN
[32]

GLIGEN
+ Ours

Figure 8. Visual comparisons on HRS benchmark. Here, we ap-
ply our attention-based guidance to grouned text-to-image models.
All methods take the same grounded texts as inputs. The results
show the capability of our method in synthesizing novel spatial
compositions and attributes.

ing generating additional and irrelevant objects.

4.4. Ablation studies
We ablate the two losses using GLIGEN [32] as the base-
line method in Fig. 6. GLIGEN sometimes struggles with
prompts including multiple objects, especially objects in the
same category or size. CAR loss can mitigate this problem,
but the generated objects still have attributes blended from
others. For instance, with only CAR loss, a generated car
might have a mixed chair feature and vice versa. Incorpo-
rating CAR and SAR losses further mitigates the attribute
blending problem.

We further perform quantitative evaluation in Table 5 for
all categories in the HRS benchmark. Adding CAR or SAR
loss to the GLIGEN model improves the baseline in all four
categories. Particularly in spatial relationships, using SAR
or SAR can improve GLIGEN by approximately 6%. When
using both losses, we can achieve an around 10% accuracy
improvement.

4.5. Large language model evaluation

We examine the latest large language models, GPT-4 [40]
GPT-3 [7], Llama 1 [53] and Llama 2 [54] (version 13b-
chat) by evaluating their ability to comprehend the visual
concept. We randomly chose 200 prompts from four cate-
gories in the HRS benchmark and report three metrics: For-
mat, Validness, and Correctness. (The details of three met-
rics can be found in the supplementary.)

In Table 6, GPT-4 outperforms Llama 1, Llama 2, and
GPT-3 in three metrics. Leveraging the leading large lan-
guage model, our two-stage text-to-image model surpasses
the single-stage Stable Diffusion [47] in understanding ob-
ject relationships and textual alignment, as shown in Fig. 9.

Model Format ↑ Valid ↑ Correct ↑
Llama 1 [53] 67.5 46.0 38.5
Llama 2 [54] 98.5 84.0 63.5
GPT-3 [7] 98.5 97.5 83.5
GPT-4 [40] 98.5 98.5 88.5

Table 6. Performance evaluation of LLMs using 200 random
prompts in the HRS benchmark (%)

An Owl riding a bicycle with the moon in the background, studio lighting, quality 
photography by Wes Anderson, trending on art station

Anthro furry humanoid racoon, military uniform, holding a machinegun and sitting on the 
tank, character concept design, painting, ruined city background

Layout
from GPT

GLIGEN + Ours Stable
Diffusion [47]

Figure 9. Comparisons of Stable Diffusion and our two-stage
pipeline. Our two-stage pipeline excels over Stable Diffusion [47]
in prompt understanding.

Four elephants and four people playing 
frisbee in a large open field. A horse riding an astronaut

elephant

elephant

elephant

perso
n perso

n

perso
n perso

n

Figure 10. The failures cases of our framework. GPT-4 some-
times misinterprets object quantity or size and instances of the
text-to-image model not aligning with GPT-4’s layout

5. Limitation
The Fig. 10 illustrates failure cases where our framework
struggles. When dealing with prompts describing a large
number of objects, GPT-4 occasionally produces an incor-
rect count or generates small boxes. Additionally, there are
instances where GPT-4 accurately generates the layout, yet
the grounded text-to-image model fails to adhere to these
out-of-distribution layouts (the second example).

6. Conclusion
In this paper, we propose a novel attention-refocusing ap-
proach to improve the alignment of cross- and self-attention
layers given layouts during the sampling process. Further-
more, we explore the usage of Large Language Models for
generating visual layouts from text prompts. Our proposed
losses can be easily incorporated into existing text-to-image
diffusion models. The comprehensive experiments show fa-
vorable performance against state-of-the-art grounded text-
to-image models.
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