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Abstract

The integration of visual inputs with large language
models (LLMs) has led to remarkable advancements in
multi-modal capabilities, giving rise to vision large lan-
guage models (VLLMs). However, effectively harnessing
LLMs for intricate visual perception tasks, such as detec-
tion and segmentation, remains a challenge. Conventional
approaches achieve this by transforming perception signals
(e.g., bounding boxes, segmentation masks) into sequences
of discrete tokens, which struggle with the precision errors
and introduces further complexities for training. In this pa-
per, we present a novel end-to-end framework named Per-
ceptionGPT, which represent the perception signals using
LLM’s dynamic token embedding. Specifically, we leverage
lightweight encoders and decoders to handle the perception
signals in LLM’s embedding space, which takes advantage
of the representation power of the high-dimensional token
embeddings. Our approach significantly eases the training
difficulties associated with the discrete representations in
prior methods. Furthermore, owing to our compact repre-
sentation, the inference speed is also greatly boosted. Con-
sequently, PerceptionGPT enables accurate, flexible and ef-
ficient handling of complex perception signals. We validate
the effectiveness of our approach through extensive exper-
iments. The results demonstrate significant improvements
over previous methods with only 4% trainable parameters
and less than 25% training time.

1. Introduction
The rapid advancements in deep learning and natural lan-
guage processing have given rise to large language models
(LLMs) capable of comprehending and generating human-
like text [3, 4, 6, 8, 31, 37, 38, 42]. Recently, the devel-
opment of visual large language models (VLLMs), which
combine visual inputs with LLMs, has demonstrated im-
pressive multi-modal capabilities and opened up new possi-
bilities beyond text-based tasks [2, 7, 24, 30, 39, 52].

However, enabling VLLMs to perform complex visual
perception tasks, such as object detection and segmenta-
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Figure 1. Illustration of different strategies to encode and decode
visual perception information. Previous approaches formulate the
visual information into discrete tokens in the same way as text. On
the other hand, our PerceptionGPT leverages lightweight visual
encoder (Enc) and decoders (Dec) to fuse visual perception signals
into the embedding space of LLM.

tion, remains a significant challenge. Current state-of-the-
art approaches can be divided into two categories: 1) two-
stage-based approaches that leverage a vision expert along-
side the reasoning ability of the LLM to handle visual per-
ception tasks [19, 33, 41, 48]. While these approaches
excel at visual tasks, their reliance on an external vision
expert makes them inflexible. In addition, the VLLMs
of such methods lack the ability to truly interpret visual
perception signals, thereby limiting their applicability; 2)
End-to-end approaches that integrate visual perception ca-
pabilities into the LLM [2, 5, 32, 44] , which we refer to
as perception-enhanced vision-language models (P-VLMs).
These approaches enable the model to encode and decode
visual perception signals (e.g., bounding boxes, segmen-
tation masks, depth map, etc.) by themselves, without us-
ing external visual experts, and further endows the model
to interpret perception information. However, the design
choices of previous P-VLM approaches demonstrate several
weaknesses, which not only affect the performance, but also
poses challenges during training.

In contrast to natural languages, visual perception sig-
nals are inherently continuous and lack causal dependency.
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27124



User Query

Large Language Model

Word 
Embedding

Perception 
Encoder

Visual 
Encoder

Perception  
Decoder

<vis>

User Query PerceptionGPT:  The image depicts a 
turtle and a rabbit racing down a dirt road. 
The turtle <vis> is the slower runner 
among the two.

“I need the segmentation mask 
and bounding box for the slower 
runner.”

: <vis> embedding

: visual feature
: token embedding 

: inference

Figure 2. The illustration of PerceptionGPT framework. Rather than outputting the location and coordinates in the form of discrete tokens,
each box and mask can be represented by one single dynamic embedding, and handled by visual perception encoders and decoders.

For instance, segmentation masks can be presented in arbi-
trary shapes, and the pixels within the masks are not interde-
pendent. However, previous P-VLM approaches overlook
these distinctions and indiscriminately represent perception
signals as sequences of discrete tokens, which introduces
several issues: 1) discretizing continuous perception signals
unavoidably introduces precision errors, potentially leading
to decreases in accuracy; 2) discrete tokens are limited in
their ability to express continuous signals, resulting in re-
dundant tokens. For instance, representing the contour of a
segmentation mask requires more than 30 tokens [43, 51],
while completely disregarding the mask’s interior; 3) this
sub-optimal discrete representation adds complexity to the
training process. Specifically, all parameters in the model
need to be released for training, necessitating a consider-
able training time and significant computational resources.
For example, Shikra [5] takes 960 GPU hours on 80G A100,
while Kosmos-2 [32] takes 6144 GPU hours on 32G V100.

In this paper, we propose PerceptionGPT, a novel
framework that bypasses the discretization of perception
signals and represent them in their inherent continuous
forms. Our fundamental insight is that the LLM’s high-
dimensional token embedding is able to capture the essen-
tial information to represent the perception signals. This
potential was not harnessed by previous approaches due to
discrete representation. Specifically, we introduce a unique
token called <vis> , which acts as a marker within the con-
text to indicate the presence of a perception signal. Un-
like static discrete tokens employed by previous methods

[5, 19], the embedding of <vis> is dynamic, which is ca-
pable of encompassing a wide range of perception infor-
mation. For example, by using a lightweight encoder, we
can encode segmentation masks of various shapes into the
embedding. Consequently, the <vis> ’s embedding can be
decoded back into these masks, adapting their shapes based
on the preceding context, through a lightweight decoder.

Owing to the design of our framework, we are able to
use a combination of auto-regressive language modeling
loss and objective functions specifically designed for vision
tasks (e.g., GIoU loss for bounding box [36], DICE loss
for segmentation masks [40]). The language modeling loss
enables the Large Language Model (LLM) to generate re-
sponses to user inputs and to decide when to produce visual
outputs through the generation of <vis> tokens. Concur-
rently, the task-specific losses empower the model with en-
hanced visual perception capabilities, which further enables
efficiently acquiring visual perception ability by taking ad-
vantage of the intrinsic properties of the perception signals.

Our proposed method, PerceptionGPT, offers several
notable advantages. Firstly, by leveraging dynamic token
embeddings to represent perception signals, PerceptionGPT
significantly mitigate the training difficulty. Consequently,
PerceptionGPT achieves superior performance by tuning
less than 4% of the parameters compared to previous ap-
proaches (see Table 6). Secondly, our approach enables
more accurate representations of visual perception by pre-
dicting exact values, effectively addressing the issue of pre-
cision errors. Thirdly, in contrast to previous methods,
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Model Image Region Bounding Segmentation Multi-Instance End-to-End
Caption Caption Box Segmentation

Two Stage
Visual ChatGPT [46] ✓ ✗ ✓ ✓ ✓ ✗
DetGPT [33] ✓ ✗ ✓ ✗ ✗ ✗
LISA [19] ✓ ✗ ✗ ✓ ✗ ✗

End-to-End

MiniGPT-4 [52] ✓ ✗ ✗ ✗ ✗ ✓
LLaVA [24] ✓ ✗ ✗ ✗ ✗ ✓
InstructBLIP [9] ✓ ✗ ✗ ✗ ✗ ✓
GPT4RoI [50] ✓ ✓ ✗ ✗ ✗ ✓
Shikra [5] ✓ ✓ ✓ ✗ ✗ ✓
Kosmos-2 [32] ✓ ✓ ✓ ✗ ✗ ✓
PerceptionGPT ✓ ✓ ✓ ✓ ✓ ✓

Table 1. Comparisons of functionalities supported by different vision-language models. Our PerceptionGPT is an end-to-end model that
supports image-level and region-level understanding, object localization and segmentation tasks.

we only require the dynamic embedding of a single token,
<vis> , to represent each perception signal (see Table 4).
This eliminates the need for redundant tokens and signif-
icantly accelerates the decoding process. We specifically
demonstrate the effectiveness of PerceptionGPT through
two representative visual perception tasks: detection and
segmentation. However, our approach can easily be ex-
tended to integrate other perception tasks such as depth or
pose estimation.

We summarize the contributions of our paper as follows:
• We propose a novel framework for efficiently training

perception-enhanced vision language model using dy-
namic token embedding to represent perception signals.

• Our approach eliminates the precision error and re-
duces the redundant tokens suffered by previous methods,
which not only boosts the performance, but also increases
the inference efficiency.

• We conduct extensive experiments on various bench-
marks. Notably, we achieve competitive performances on
referring expression comprehension and referring expres-
sion segmentation tasks with less than 4% parameters and
25% training time of Shikra [5].

2. Related works

2.1. Vision Large Language Models

In recent years, significant progress has been made in large
language models [3, 4, 8, 14, 31, 37, 38, 42], pushing
the boundaries of language understanding and generation,
which have demonstrated human-level abilities in various
tasks. The success of language models has also driven re-
search on vision-language interaction, resulting in the de-
velopment of various multi-modal models [2, 9, 9, 11, 20,
24, 30, 39, 52]. These models have demonstrated promising
performances in generating detailed descriptions and con-
ducting conversations based on images.

2.2. Two-stage Vision Language Assistant

Recent research trends merge LLMs with vision expert
models for tasks needing reasoning. API-based ap-
proaches [13, 41, 46, 48] use LLMs as planners for visual
expert APIs. DetGPT [33] applies VLLMs for instruction
interpretation and uses external detectors for object local-
ization. LISA [19] combines VLLMs with the Segmenta-
tion Anything Model (SAM) [17] for predicting segmen-
tation mask. Although those methods excel on visual per-
ception tasks, they require an external vision expert, which
limits their flexibility and applicability for tasks that lack
such expert models. In addition, the VLLM is still unable
to understand the perception signal as inputs.

2.3. Perception-Enhanced Vision Language Model

More recently, a few works [2, 5, 32, 44, 50] have made
the initial attempt to integrate visual perception capability
into LLMs, which have demonstrated promising results and
open up a series of new possibilities. These model mainly
represent the perception information as a series of discrete
tokens. Specifically, [32, 44] introduce new tokens into the
LLM to represent the 2D coordinates, while [5] directly use
numbers to represent the bounding boxes, which improves
accuracy at the cost of longer sequence lengths and slower
inference. Despite the success of such methods, their dis-
crete formulation of perception signals faces disadvantages
such as precision error, redundant tokens and difficulty in
training. On the other hand, we propose a framework to
represent the perception signals in their natural continuous
forms, which addresses the above issues and provides a so-
lution for training a strong P-VLM efficiently.

3. Method
In this section, we present our PerceptionGPT, designed to
equip the Perception-enhanced Vision-Language Model (P-
VLM) with advanced visual perception capabilities.
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RefCOCO RefCOCO+ RefCOCOg
Model Type Method val testA testB val testA testB val test

Specialist SOTAs
SeqTR [51] 83.72 86.51 81.24 71.45 76.26 64.88 74.86 74.21

MDETR [15] 87.51 90.40 82.67 81.13 85.52 72.96 83.35 83.31
G-DINO-L [25] 90.56 93.19 88.24 82.75 88.95 75.92 86.13 87.02

Generalist VL SOTAs

GPV-2 [16] 51.59 - - - - - - -
OFA-L [43] 79.96 83.67 76.39 68.29 76.00 61.75 67.57 67.58

Unified-IO [26] 78.60 - - - - - - -
OFASys [1] - 80.10 - - - - - -

VisionLLM-H [44] - 86.70 - - - - - -
Shikra-7B [5] 87.01 90.61 80.24 81.60 87.25 73.20 82.27 82.19

Shikra-13B [5] 87.83 91.11 81.81 82.89 87.79 74.41 82.64 83.16

PerceptionGPT-7B 88.59 92.51 84.60 82.05 88.60 74.21 83.75 84.69
PerceptionGPT-13B 89.17 93.20 85.96 83.72 89.19 75.31 84.13 85.20

Table 2. Results on referring expression comprehension (REC). We compare our PerceptionGPT with both the generalist models and
specialist models. Our method achieves competitive performance on REC tasks amongst generalist models and comparable with SOTA
performance of specialist model, with only 4% trainable parameters as in Shikra [5].

3.1. Framework of PerceptionGPT

We illustrate the framework of PerceptionGPT in Fig-
ure 2. The model mainly consists of a large language
model (LLM) such as Vicuna [6], a pretrained vision trans-
former [35] (ViT) as image encoder, and a set of lightweight
visual perception encoders and decoders. In addition, a pro-
jection layer is required to map the visual features from the
image encoder to the same dimension as the LLM.

Dynamic Token Embedding Rather than representing
visual perception signals using discrete tokens as in pre-
vious approaches [2, 5, 26, 32, 43, 44], we resort to the
LLM’s dynamic token embedding. Specifically, we intro-
duce a special token <vis> , which indicates the presence
of a perception signal. Unlike previous P-VLM that em-
ploy static tokens, the embedding of <vis> is dynamic and
can represent various perception signals, such as bounding
boxes of any sizes, or masks with arbitrary shapes.

Lightweight Visual Perception Encoder-Decoder Our
PerceptionGPT leverages specially designed modules for
encoding different perception signals into the dynamic to-
ken embedding of <vis> , and for restoring the those sig-
nals back to their original representation from the dynamic
embedding. The architecture choices of such modules to
process perception signals can be flexible, which could be
determined based on the property of the signal. In our im-
plementation, we includes two perception encoder-decoder
pairs, each for detection and segmentation, respectively. For
bounding box detection, bot the encoder and decoder are
simple three-layer MLPs. For segmentation masks, the en-
coder comprises a ResNet followed by a linear layer, and the

decoder consistes of a two-layer, bidirectional transformer
block architecture. We leave the detailed design choices in
the Appendix.

Multi-Layer Visual Feature Fusion Previous VLLM ap-
proaches predominantly depend on the visual feature from
last layer of pretrained ViT. However, this is suboptimal for
perception tasks, since the representations from top layers
usually contain richer semantic features, while lacking fine-
grained visual information. Inspired by layer-wise feature
aggregation in computer vision [22], we propose to make
use of visual features across all layers of ViT. Specifically,
we learn an adaptive weighting term for each layer, and
leverage the weighted-sum of those layer representations:

V =

n∑
i=1

wi · Vi s.t.
n∑

i=1

wi = 1 (1)

where V is the input image feature to the LLM, wi is the
learnt weighting for image feature Vi from ith layer. We
demonstrate the impact of layer fusion in Section 4.4.

3.2. Training and Inference

Training Objective The design of our PerceptionGPT al-
lows us to harness the benefits of purposefully crafted train-
ing objectives for visual perception tasks, which take advan-
tage of the special characteristics inherent to the perception
signals. Throughout the training process, we employ a com-
bination of language modeling loss and task-specific losses.
The overall objective of PerceptionGPT during training is:

Lall(Star, Sin, Ptar, I) = Llang(Star, Sin, I) (2)
+Lvis(Sin, Ptar, I) (3)
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where I is the input image, Star, Sin, Ptar are the target
text, input instruction and target for visual perception sig-
nal, respectively. In our case, since we incorporate bound-
ing box and segmentation mask as perception signals, our
objective function can be formulated as:

Lall(Star, Sin, bgt,mgt, I) = Llang(Star, Sin, I) (4)
+Lbox(bgt, Sin, I) + Lmask(mgt, Sin, I) (5)

where bgt and mgt are the ground truth bounding boxes and
segmentation masks, respectively.

We adopt conventional auto-regressive loss for Llang(·):

Llang(Star, Sin, I) = −
L∑

t=1

log p
[
sttar|F(s

(<t)
tar , Sin, I)

]
(6)

where F represents the P-VLM. I represents the image; yt
denotes the tth token of the target output, and L stands for
its length. Llang supervises the model to generate corre-
sponding output sentences based on the image and the input
texts. In addition, it also teaches the model when to generate
the <vis> for predicting the perception signal.

For bounding box loss Lbox(·), we adopt the combination
of L1-norm and GIoU [36] losses; for mask loss Lmask(·),
we combine binary cross-entropy loss (BCE) with DICE
loss [40]. We leave the details of those losses in the Ap-
pendix. The use of visual task-specific training objectives
helps take advantage of the inherent property of such per-
ception signals, which not only boosts performance, but
also alleviates the difficulty for training.

Inference Procedure During inference, given an image
and a textual instruction, the image encoder first extracts
the visual tokens from the image, which are then mapped
to the dimension of LLM’s embedding space via the pro-
jection layer. Then, the mapped image features are con-
catenated with text embeddings to serve as the input to
the LLM. Subsequently, the LLM begins to perform next-
token-generation similar to previous VLLMs [24, 52].

Perception Signal as Input. When the input contains a
perception signal, our lightweight perception encoder maps
it into the embedding space of the large language model
(LLM), which is treated as the embedding for <vis> to-
ken. This embedding is then concatenated with other em-
beddings before being processed by the LLM.

Perception Signal as Output. During inference, when
a token is decoded as <vis> , its associated embedding is
extracted and processed by the perception decoder to recon-
struct the original signal.

4. Experiments
4.1. Training and Evaluation

Datasets Similar as in Shikra [5], to equip PerceptionGPT
with visual perception ability, we adopt RefCOCO [49], Re-

fCOCO+ [49], RefCOCOg [28], Visual Gemone [18] and
Flicker30k [34]. Since Visual Genome and Flicker30k do
not have segmentation mask annotations, we leverage the
powerful SAM [17] as an auto-labelling system to generate
masks from bounding box annotations. For captioning, we
leverage the COCO [21] dataset and the image caption data
in curated by LLAVA [24].

Hyperparameters If not otherwise specified, we use the
following hyper-parameters throughtout all experiments:
We initialize the LLM component with Vicuna [6] weights,
we adopt LoRA with rank set to 32, the learning rate is set
to 3e-4, the batch size is 32 on each GPU during training.
We run experiments on 8 A40 GPUs with 80G memory for
70 hours in total. For ablation study, we use Vicuna-7B as
the LLM backbone to conduct experiments.

4.2. Qualitative Results

We demonstrate some generated results of our Percep-
tionGPT in Figure 3, which showcases the following ca-
pabilities: (1) Spotting Captioning (first 4 rows), which is
capable of generating the captions while spoting the objects
with boxes and segmentation masks. (2) Reasoning-based
detection and Segmentation (row 5-7). (3) Image-level and
region-level captioning and question-answering (row 8-9).
We surprisingly find that PerceptionGPT is able to restore
perception signal via reasoning, even though such ability is
not specifically considered in the training data.

4.3. Quantitive Results

We show the performance of PerceptionGPT by conducting
evaluation on a variety of benchmarks.

Refering Expression Comprehension (REC) The REC
task mainly aims to understand the image and a textual
phrase, and then localize the referred object by drawing a
bounding box around it. This task requires understanding
of both image contents and the textual phrase. We com-
pare our PerceptionGPT with both generalist and special-
ist approaches in Table 2, which demonstrate the superior
performance our our model. Notably, our PerceptionGPT
outperforms Shikra [5] with only 4% trainable parameters.

Refering Expression Segmentation (RES) The RES
task requires the prediction of the segmentation mask that
separates the referred object from other contents in the im-
age. Compared with the REC task, the RES task requires
image-text understanding at the finer pixel level. We com-
pare our PerceptionGPT with other approaches in Table 3,
which demonstrates that PerceptionGPT is able to achieve
SOTA for end-to-end approach, and performs on par, if not
better than, the two-stage approach LISA [19] that leverages
a powerful SAM [17] as visual expert.
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Describe the image, detect 
and segment all the 
mentioned objects.

Answer: A man <vis>  in a 
blue shirt <vis> is looking at 
his cellphone <vis>.

Summerize the contents in the
image, and visalize all
mentioned objects.

Answer: Three cars <vis>  ; 
<vis>  ; <vis> are parked on a 
racetrack <vis>. They are about
to have a race at high speed.

Explain what's happening in 
the photo, provide masks and 
boxes for referenced items.

Answer: A woman <vis> in a 
purple black shirt <vis> is
riding a brown horse <vis>. She
looks like a skillful and
experienced rider.

Describe what you see, visalize
all the objects that appear in the
image.

Answer: Two boxers <vis> ; 
<vis> are competing the in the
ring <vis> . The scene depicts a 
ferocious battle unfolding 
between the two skilled boxers.

I need the mask 
specifically for the
food containing 
most protein.

Answer: <vis>.

visalize the 
green vegetable.

Answer: <vis>.

Please segment
the person that is
winning.

Answer: <vis>.

What about the
losing opponent?

Answer: <vis>.

visalize the
food not
allowed on a
diet.

Answer: <vis>.

Segment the
food with
low calory.

Answer: <vis>.

Describe the image briefly.

Answer: The image shows a
young man with an elderly woman
walking across the street. They are
both wearing masks. The young
man is carrying a shopping bag.

Describe the
content in the
masked area <vis>.

Answer: A brown
bear riding the horse.

Describe what’s in
the boxed area
<vis>.

Answer: A glass of
water positioned near
a cup of coffee.

How is this girl <vis> feeling?

Answer: The girl with her 
arms crossed seems angry.

What is he <vis>
doing?

Answer: He is
holding a wedding
ring and proposing
to the girl.

What’s funny about
the masked object
<vis>.

Answer: The bird is
standing on the man’s
nose.

Figure 3. Visualization of results from PerceptionGPT. Our proposed framework enables effectively fusing visual perception capability
into P-VLM while maintaining its generation and reasoning ability. Row [1-4], row [5-7] demonstrate spot captioning and reasoning
segmentation/detection, respectively. Row [8-9] demonstrates image-level captioning and region-level captioning and question-answering.
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RefCOCO RefCOCO+ RefCOCOg
Model Type Method val testA testB val testA testB val test

Two-stage LISA [19] 74.9 79.1 72.3 65.1 70.8 58.1 67.9 70.6

End-to-end

MCN [27] 62.4 64.2 59.7 50.6 55.0 44.7 49.2 49.4
VLT [10] 67.5 70.5 65.2 56.3 61.0 50.1 55.0 57.7
CRIS [45] 70.5 73.2 66.1 62.3 68.1 53.7 59.9 60.4
LAVT [47] 72.7 75.8 68.8 62.1 68.4 55.1 61.2 62.1
ReLA [23] 73.8 76.5 70.2 66.0 71.0 57.7 65.0 66.0

X-Decoder [53] - - - - - - 64.6 -
SEEM [54] - - - - - - 65.7 -

PerceptionGPT-7B 75.1 78.6 71.7 68.5 73.9 61.3 70.3 71.7
PerceptionGPT-13B 75.3 79.1 72.1 68.9 74.0 61.9 70.7 71.9

Table 3. Results on refer segmentation (RES) task. Our PerceptionGPT significantly outperforms other end-to-end methods on all dataset
splits, and also surpasses the two-stage approach LISA [19] by a large margin on majority of the splits.

METHOD QUANT ERROR FREE BOX MASK

Shikra ✗ 20 NA
Unified-IO ✗ 2 256
Kosmos-2 ✗ 2 NA

VisionLLM ✗ 2 16
PerceptionGPT ✓ 1 1

Table 4. Number of tokens needed to represent boxes or segmen-
tation mask. Our PerceptionGPT is able to represent both box and
mask with only one token, while prevents quantization error.

Figure 4. Performances of various perception signal representa-
tions. Left: full vs LoRA training; Right: different amount of
training data. Dynamic token embedding alleviates training diffi-
culty, making PerceptionGPT efficient in terms of both parameter
and data.

Conventional Vision-Language Tasks We evaluate our
PerceptionGPT’s ability on the conventional vision-
language tasks, namely image captioning (IC) and vi-
sual question answering (VQA). We finetune our Percep-
tionGPT on the training split of the datasets before evalua-
tion and compare the results in Table 5, which demonstrate
that our method is comparable with specialized and gen-
eralist models on conventional image-language tasks. The

superiority of our method compared with Shikra can be at-
tributed to the parameter-efficient training strategy that we
adopt. Training only a small number of parameters allevi-
ates the loss of original knowledge possessed by the LLM,
which is made possible by the use of dynamic token embed-
dings to represent perception signals.

4.4. Ablation Study

PerceptionGPT Alleviates Learning Difficulty Repre-
senting visual perception signals using our dynamic token
embedding greatly alleviates training difficulty. As shown
in Table 6 and Figure 4, we compare with two represen-
tations: 1) numerical, as adopted by [5], directly use the
number tokens in LLM; 2) Vocabulary, which introduces
new coordinate tokens into the LLM’s vocabulary, as used
in [32] and [44]. We train the models with only the con-
catenated RefCOCO training splits, and observe that nei-
ther numerical nor vocabulary tokenizations performs well
when trained with LoRA, while our PerceptionGPT is able
to perform well even with rank set to 8, as shown in Table 6
and left of Figure 4. In right side of Figure 4, we also show
that our approach enables achieving superior performance
with less training data.

The above may be attributed to the following: 1) the dis-
crete representations are suboptimal, since the spatial co-
ordinates do not have causal relationship; 2) the discrete
representations can not leverage the specially designed loss
functions for vision tasks as in PerceptionGPT; 3) the dy-
namic token embeddings encapsulate rich perception infor-
mation in a dense form, allowing for a more effective repre-
sentation than a sequence of discrete tokens.

Impact of Layer Fusion We evaluate different stratgies
for using Vision Transformers (ViT) visual features, as
shown in Figure 5. We discover that upper layer features
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Datasets PerceptGPT Shikra FM-80B FM-9B Kosmos-1 BLIP-2 Unified-IO VPGTrans

VQAv2 85.1 83.3 56.3 51.8 51.0 65.2 77.9 65.2
OK-VQA 56.2 53.8 50.6 44.7 - 45.9 54.0 45.0

Flickr30k 77.1 73.9 - - 67.1 - - -
COCO 123.2 117.5 84.3 79.4 84.7 - 122.1 114.2

Table 5. Comparison on VQA and Image Captioning tasks. For VQA, we conduct evaluation on VQAv2 [12] and OK-VQA [29] using
Accuracy (%) as the metric. For Image Captioning, we evaluate them on COCO [21] and Flickr30k [34] with CIDEr score.

Trainable Lora RefCOCO RefCOCO+ RefCOCOg

Method Params Rank val testA testB val testA testB val test

Numerical
27M 8 0.79 0.63 0.51 0.28 0.36 0.25 0.43 0.41
29M 32 10.5 10.1 9.64 8.72 10.4 9.27 8.63 10.2
6.8B full 45.7 53.6 49.2 43.5 44.1 39.7 42.1 41.3

Vocab
27M 8 1.31 0.97 1.24 0.59 0.63 0.42 0.94 0.80
29M 32 13.5 12.1 10.4 9.69 11.4 10.2 9.90 9.84
6.7B full 44.9 49.1 47.2 42.3 42.1 40.6 42.2 39.5

Embed
31M 8 69.7 73.2 72.5 68.4 70.3 68.1 71.6 70.5
33M 32 71.2 75.4 74.1 70.5 71.9 69.6 72.5 72.9
6.8B full 75.5 79.6 78.1 74.9 74.4 72.1 76.4 75.2

Table 6. Experiment on the influence of different representations for bounding boxes. We train with only the concatenated training sets of
RefCOCO, RefCOCO+ and RefCOCOg. Neither numerical nor vocabulary representations perform well with LoRA training. On the other
hand, leveraging our dynamic embedding representation, PerceptionGPT achieves good performances even using LoRA with low ranks.

Figure 5. Left: The performance of different strategy for fusing
visual features on various tasks. Right: The magnitude of learnt
adaptive weights for visual features across different ViT layers.

are key for tasks like image captioning due to their high-
level semantic content, while lower layer features are bet-
ter for detailed visual tasks. Our adaptive fusion strategy
dynamically adjusts weights for each layer’s features. The
figure’s right side displays the learned weight distribution,
highlighting each layer’s feature contributions

Inference Speed Comparison We compare the inference
speed between different formulations of visual perception
signals in Table 7. The number of discrete coordinates to
represent a mask contour is set to 32, which ensures accept-
able mask quality. Since PerceptionGPT requires only one
dynamic token embedding to carry the perception informa-
tion, the inference speed can be greatly boosted, especially

7b 13b
METHOD box mask box mask
Numerical 3.62 42.1 4.30 57.1

Vocab 0.26 4.01 0.45 6.16
Token Embed 0.15 0.18 0.21 0.23

Table 7. The inference time taken to decode a box or a mask
with different representations. PerceptionGPT represents percep-
tion signal in a single dynamic token embedding, greatly boosting
the inference efficiency.

for complex signals such as segmentation masks. Specifi-
cally, for a 7B P-VLM to decode a mask, PerceptionGPT
takes only 0.3% and 3.7% inference time of Numerical and
Vocabulary formulations, respectively.

5. Conclusion
In this paper, we propose PerceptionGPT, a novel frame-
work for perception-enhanced vision language models (P-
VLMs). Our approach addresses the limitations of existing
methods by taking advantage of the representation power of
the LLM’s dynamic token embeddings. Our PerceptionGPT
achieves promising results by tuning only a small fraction
of parameters, resulting in compact perception representa-
tions and significantly accelerated inference. We hope this
work provides new insights into future research of P-VLMs.
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