
UniDepth: Universal Monocular Metric Depth Estimation

Luigi Piccinelli1 Yung-Hsu Yang1 Christos Sakaridis1

Mattia Segu1 Siyuan Li1 Luc Van Gool1,2 Fisher Yu1
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Abstract

Accurate monocular metric depth estimation (MMDE)
is crucial to solving downstream tasks in 3D perception
and modeling. However, the remarkable accuracy of recent
MMDE methods is confined to their training domains. These
methods fail to generalize to unseen domains even in the pres-
ence of moderate domain gaps, which hinders their practical
applicability. We propose a new model, UniDepth, capable
of reconstructing metric 3D scenes from solely single images
across domains. Departing from the existing MMDE meth-
ods, UniDepth directly predicts metric 3D points from the
input image at inference time without any additional infor-
mation, striving for a universal and flexible MMDE solution.
In particular, UniDepth implements a self-promptable cam-
era module predicting dense camera representation to condi-
tion depth features. Our model exploits a pseudo-spherical
output representation, which disentangles camera and depth
representations. In addition, we propose a geometric invari-
ance loss that promotes the invariance of camera-prompted
depth features. Thorough evaluations on ten datasets in a
zero-shot regime consistently demonstrate the superior per-
formance of UniDepth, even when compared with methods
directly trained on the testing domains. Code and models
are available at: github.com/lpiccinelli-eth/unidepth.

1. Introduction
The precise pixel-wise depth estimation is crucial to under-
standing the geometric scene structure, with applications
in 3D modeling [9], robotics [10, 52], and autonomous ve-
hicles [31, 41]. However, delivering reliable metric scaled
depth outputs is necessary to perform 3D reconstruction ef-
fectively, thus motivating the challenging and inherently ill-
posed task of Monocular Metric Depth Estimation (MMDE).

While existing MMDE methods [2, 13, 15, 33, 34, 36,
50] have demonstrated remarkable accuracy across differ-
ent benchmarks, they require training and testing on datasets
with similar camera intrinsics and scene scales. Moreover,
the training datasets typically have a limited size and con-
tain little diversity in scenes and cameras. These characteris-
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Figure 1. We introduce UniDepth, a novel approach that di-
rectly predicts 3D points in a scene with only one image as input.
UniDepth incorporates a camera self-prompting mechanism and
leverages a pseudo-spherical 3D output space defined by azimuth
and elevation angles, and depth (θ, ϕ, z). This design effectively
separates camera and depth optimization by avoiding gradient flow-
ing to the camera module due to depth-related error (εz).

tics result in poor generalization to real-world inference sce-
narios [42], where images are captured in uncontrolled, arbi-
trarily structured environments and cameras with arbitrary
intrinsics.

Only a few methods [20, 48] have addressed the challeng-
ing task of generalizable MMDE. However, these methods
assume controlled setups at test time, including camera in-
trinsics. While this assumption simplifies the task, it has
two notable drawbacks. Firstly, it does not address the full
application spectrum, e.g. in-the-wild video processing and
crowd-sourced image analysis. Secondly, the inherent cam-
era parameter noise is directly injected into the model, lead-
ing to large inaccuracies in the high-noise case.

In this work, we address the more demanding task of gen-
eralizable MMDE without any reliance on additional exter-
nal information, such as camera parameters, thus defining
the universal MMDE task. Our approach, named UniDepth,
is the first that attempts to solve this challenging task with-
out restrictions on scene composition and setup and distin-
guishes itself through its general and adaptable nature. Un-
like existing methods, UniDepth delivers metric 3D predic-
tions for any scene solely from a single image, waiving the
need for extra information about scene or camera. Further-
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more, UniDepth flexibly allows for the incorporation of ad-
ditional camera information at test time.

Our design introduces a camera module that outputs a
non-parametric, i.e. dense camera representation, serving as
the prompt to the depth module. However, relying only on
this single additional module clearly results in challenges re-
lated to training stability and scale ambiguity. We propose
an effective pseudo-spherical representation of the output
space to disentangle the camera and depth dimensions of
this space. This representation employs azimuth and eleva-
tion angle components for the camera and a radial compo-
nent for the depth, forming a perfect orthogonal space be-
tween the camera plane and the depth axis. Moreover, the
camera components are embedded through Laplace spher-
ical harmonic encoding. Figure 1 depicts our camera self-
prompting mechanism and the output space. Additionally,
we introduce a geometric invariance loss to enhance the ro-
bustness of depth estimation. The underlying idea is that the
camera-conditioned depth features from two views of the
same image should exhibit reciprocal consistency. In par-
ticular, we sample two geometric augmentations, creating a
pair of different views for each training image, thus simulat-
ing different apparent cameras for the original scene.

Our overall contribution is the first universal MMDE
method, UniDepth, that predicts a point in metric 3D space
for each pixel without any input other than a single image. In
particular, first, we design a promptable camera module, an
architectural component that learns a dense camera represen-
tation and allows for non-parametric camera conditioning.
Second, we propose a pseudo-spherical representation of the
output space, thus solving the intertwined nature of camera
and depth prediction. In addition, we introduce a geometric
invariance loss to disentangle the camera information from
the underlying 3D geometry of the scene. Moreover, we ex-
tensively test UniDepth and re-evaluate seven MMDE State-
of-the-Art (SotA) methods on ten different datasets in a fair
and comparable zero-shot setup to lay the ground for the gen-
eralized MMDE task. Owing to its design, UniDepth consis-
tently sets the new state of the art even compared with non-
zero-shot methods, ranking first in the competitive official
KITTI Depth Prediction Benchmark.

2. Related Work

Metric and Scale-agnostic Depth Estimation. It is crucial
to distinguish Monocular Metric Depth Estimation (MMDE)
from scale-agnostic, namely up-to-a-scale, monocular depth
estimation. MMDE SotA approaches typically confine train-
ing and testing to the same domain. However, challenges
arise, such as overfitting to the training scenario leading to
considerable performance drops in the presence of minor
domain gaps, often overlooked in benchmarks like NYU-
Depthv2 [28] (NYU) and KITTI [17]. On the other hand,
scale-agnostic depth methods, including MiDaS [35], Om-

niData [12], and LeReS [47], show robust generalization by
training on extensive datasets. Their limitation lies in the ab-
sence of a metric output, hindering practical usage in down-
stream applications.
Monocular Metric Depth Estimation. The introduction
of end-to-end trainable neural networks in MMDE, pio-
neered by [13], marked a significant milestone, also intro-
ducing the optimization process through the Scale-Invariant
log loss (SIlog). Subsequent developments witnessed the
emergence of advanced networks, ranging from convolution-
based architectures [15, 23, 25, 33] to transformer-based ap-
proaches [2, 34, 46, 50]. Despite impressive achievements
on established benchmarks, MMDE models face challenges
in zero-shot scenarios, revealing the need for robust general-
ization against domain shifts in appearance and geometry.
General Monocular Metric Depth Estimation. Recent ef-
forts focus on developing MMDE models [3, 20, 48] for gen-
eral depth prediction across diverse domains. These models
often leverage camera awareness, either by directly incorpo-
rating external camera parameters into computations [14, 20]
or by normalizing the shape or output depth based on intrin-
sic properties, as seen in [1, 24, 48].

However, these generalizable MMDE methods often
adopt specific strategies to enhance performance, e.g. geo-
metric pretraining [3] or dataset-specific prior like reshap-
ing [48]. In addition, these methods assume access to noise-
less camera intrinsics both at training and test time, also lim-
iting their applicability to pinhole camera models. Addition-
ally, SotA methods depend on a predefined backprojection
operation, blurring the distinction between learning depth
and the 3D scene. In contrast, our approach aims to over-
come these limitations, presenting a more demanding per-
spective, e.g. universal MMDE. Universal MMDE involves
directly predicting the 3D scene from the input image with-
out any additional information other than the latter. Notably,
we do not require any additional prior information at test
time, such as access to camera information.

3. UniDepth

MMDE SotA methods typically assume access to the cam-
era intrinsics, thus blurring the line between pure depth es-
timation and actual 3D estimation. In contrast, UniDepth
aims to create a universal MMDE model deployable in di-
verse scenarios without relying on any other external infor-
mation, such as camera intrinsic, thus leading to 3D space
estimation by design. However, attempting to directly pre-
dict 3D points from a single image without a proper internal
representation neglects geometric prior knowledge, i.e. per-
spective geometry, burdening the learning process with re-
learning laws of perspective projection from data.

Sec. 3.1 introduces a pseudo-spherical representation of
the output space to inherently disentangle camera rays’ an-
gles from depth. In addition, our preliminary studies indi-
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Figure 2. Model Architecture. UniDepth utilizes solely the input image to generate the 3D output (O). It bootstraps dense camera
prediction (C) from the Camera Module, injecting prior knowledge on scene scale into the Depth Module via a cross-attention layer. The
camera representation corresponds to azimuth and elevation angles. The geometric invariance loss (Lcon) enforces consistency between
depth features tensors conditioned on the camera from different geometric augmentations (T1, T2). Stop-gradient is applied to the encoded
feature (F) flowing to the Camera Module to prevent the camera gradient from dominating the depth gradient in the encoder. The depth
output (Zlog) is obtained through three self-attention blocks interleaved with learnable 2x upsampling. The final output is the concatenation
of the camera and depth tensors (C||Zlog), creating two independent optimization spaces for LλMSE .

cate that depth prediction clearly benefits from prior infor-
mation on the acquisition sensor, leading to the introduc-
tion of a self-prompting camera operation in Sec. 3.2. Fur-
ther disentanglement at the level of internal depth features
is achieved through a geometric invariance loss, outlined in
Sec. 3.3. This loss ensures depth features remain invariant
when conditioned on the bootstrapped camera predictions,
promoting robust camera-aware depth predictions. The over-
all architecture and the resulting optimization induced by the
combination of design choices are detailed in Sec. 3.4.

3.1. 3D Representation

The general purpose nature of our MMDE method requires
inferring both depth and camera intrinsics to make 3D pre-
dictions based only on imagery observations. We design the
3D output space presenting a natural disentanglement of the
two sub-tasks, namely depth estimation and camera calibra-
tion. In particular, we exploit the pseudo-spherical repre-
sentation where the basis is defined by azimuth, elevation,
and log-depth, i.e. (θ,ϕ,zlog), in contrast to the Cartesian rep-
resentation (x,y,z). The strength of the proposed pseudo-
spherical representation lies in the decoupling of camera
(θ,ϕ) and depth (zlog) components, ensuring their orthogo-
nality by design, in contrast to the entanglement present in
Cartesian representation.

It is worth highlighting that in this output space, the non-
parametric dense representation of the camera is mathemat-
ically represented as a tensor C ∈ RH×W×2, where H
and W are the height and width of the input image and the
last dimension corresponds to azimuth and elevation values.
While in the typical Cartesian space, the backprojection in-
volves the multiplication of homogeneous camera rays and
depth, the backprojection operation in the proposed repre-
sentation space accounts for the concatenation of camera
and depth representations. The pencil of rays are defined

as (r1, r2, r3) = K−1[u,v,1]T , where K is the calibration
matrix, u and v are pixel positions in pixel coordinates, and
1 is a vector of ones. Therefore, the homogeneous camera
rays (rx, ry) correspond to ( r1r3 ,

r2
r3
).

Moreover, the angular dense representation can be em-
bedded via the Laplace Spherical Harmonic Encoding
(SHE). The camera embedding tensor is defined as E =
SHE(C),E ∈ RH×W×d, where d is the number of harmon-
ics chosen. SHE(·) computes the set of spherical harmonics,
i.e., {Y}l,m with degree l and order m, and concatenating
along the channel dimension, with Yl

m as

Y l
m(θ, ϕ) = αl

mP l
m(cos θ)eimϕ, (1)

where P l
m is the associated Legendre polynomial of degree

l and order m, and αl
m is a normalizing constant. In partic-

ular, the spherical harmonics on the unit sphere form an or-
thogonal basis of the spherical manifold and preserve inner
products. The total number of harmonics utilized is 81, re-
sulting from capping the degree l to 8. SHE is utilized as
a mathematic sounder choice compared to, e.g. the Fourier
Transform, to produce the camera embeddings.

3.2. Self-Promptable Camera
The camera module plays a crucial role in the final 3D pre-
dictions since its angular dense output accounts for two di-
mensions of the output space, namely azimuth and elevation.
Most importantly, these embeddings prompt the depth mod-
ule to ensure a bootstrapped prior knowledge of the input
scene’s global depth scale. The prompting is fundamental
to avoid mode collapse in the scene scale and to alleviate
the depth module from the burden of predicting depth from
scratch as the scale is already modeled by camera output.

Nonetheless, the internal representation of the camera
module is based on a pinhole parameterization, namely via
focal length (fx, fy) and principal point (cx, cy). The four
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tokens conceptually corresponding to the intrinsics are then
projected to scalar values, i.e., ∆fx, ∆fy, ∆cx, ∆cy. How-
ever, they do not directly represent the camera parameters,
but the multiplicative residuals to a pinhole camera initializa-
tion, namely H

2 for y-components and W
2 for x-components,

leading to fx = ∆fxW
2 , fy =

∆fyH
2 , cx = ∆cxW

2 , cy =
∆cyH

2 , leading to invariance towards input image sizes.
Subsequently, a backprojection operation based on the in-

trinsic parameters is applied to every pixel coordinate to pro-
duce the corresponding rays. The rays are normalized and
thus represent vectors on a unit sphere. The critical step in-
volves extracting azimuth and elevation from the backpro-
jected rays, effectively creating a “dense” angular camera
representation. This dense representation undergoes SHE to
produce the embeddings E. The embedded representations
are then seamlessly passed to the depth module as a prompt,
where they play a vital role as a conditioning factor. The
conditioning is enforced via a cross-attention layer between
the initialized feature of Depth Module D ∈ Rh×w×C and
the camera embeddings E where (h,w) = (H/16,W/16).
The camera-prompted depth features D|E ∈ Rh×w×C are
defined as

D|E = MLP(CA(D,E)), (2)

where CA is a cross-attention block and MLP is a Multi-
Layer Perceptron with one 4C-channel hidden layer.

Figure 3 illustrates one of the main benefits of our cam-
era module. In particular, in high-noise intrinsics or camera-
agnostic scenarios, UniDepth can bootstrap the camera pre-
diction, thus displaying total noise insensitivity. However,
we can substitute the camera module output to improve 3D
reconstruction peak performance if any external dense cam-
era representation is provided. This adaptability enhances
the model’s versatility, allowing it to operate seamlessly in di-
verse setups. Moreover, Figure 3 suggests that training with
noisy self-prompts enhances the robustness of UniDepth to
noisier external intrinsics if given at test time.

3.3. Geometric Invariance Loss

The spatial locations from the same scene captured by dif-
ferent cameras should correspond when the depth module
is conditioned on the specific camera. To this end, we pro-
pose a geometric invariance loss to enforce the consistency
of camera-prompted depth features of the same scene from
different acquisition sensors. In particular, consistency is en-
forced on features extracted from identical 3D locations.

For each image, we perform N distinct geometrical aug-
mentations, denoted as {Ti}Ni=1, with N = 2 in our experi-
ments. This operation involves involves sampling a rescal-
ing factor r ∼ 2U[−1,1] and a relative translation on the x-
axis t ∼ U[−0.1,0.1], then cropping it to the network’s input
shape. This is analogous to sampling a pair of images from
the same scene and extrinsic parameters but captured by dif-
ferent cameras. Let Ci and Di|Ei describe the predicted

Figure 3. Impact of noise in camera intrinsics. The amount of
relative distortion (εCAM(%)) of the intrinsics is shown on the x-
axis, while δ0.5 performance on OOD test sets on the y-axis. Rely-
ing on external input inherently leads to being subject to its noise.
UniDepth functions in dual regimes, with and without external in-
trinsic. In situations of unknown intrinsics or high noise, UniDepth
exhibits total robustness by bootstrapping camera prediction (Ours).
In contrast, with low-noise intrinsics, we leverage it for enhanced
peak performance (Ours-CAM).

camera representation and camera-prompted depth features,
respectively, corresponding to augmentation Ti. It is evident
that the camera representations differ when two diverse geo-
metric augmentations are applied, i.e., Ci ̸= Cj if Ti ̸= Tj .
Therefore, the geometric invariance loss can be expressed as

Lcon(D1|E1,D2|E2) =∥∥T2 ◦ T −1
1 ◦ (D1|E1)− sg(D2|E2)

∥∥
1
,

(3)

where Di|Ei represents the depth feature after being con-
ditioned by camera prompt Ei, as outlined in Sec. 3.2,
and sg(·) corresponds to the stop-gradient detach op-
eration needed to exploit D2|E2 as pseudo ground-
truth (GT). The bi-directional loss can be computed as:
1
2 (Lcon(D1|E1,D2|E2)+Lcon(D2|E2,D1|E1)). It is nec-
essary to apply the geometric invariance loss after the fea-
tures are conditioned on the viewing information, i.e., cam-
era. Otherwise, the loss would enforce consistency across
features that inherently carry distinct camera information.

3.4. Network Design

Architecture. Our network, described in Fig. 2, comprises
an Encoder Backbone, a Camera Module, and a Depth
Module. The encoder can be either convolutional or ViT-
based [11], producing features at different “scales”, i.e. F ∈
Rh×w×C×B , where (h,w) = (H16 ,

W
16 ) and B = 4.

The Camera Module parameters are initialized class to-
kens for ViT-style or pooled feature maps for convolutional-
style backbones. The encoded features from the Encoder
Backbone are passed to the Camera Module as a stack of de-
tached tokens, the encoder class tokens are utilized as cam-
era parameters initialization. The features are processed to
obtain the final dense representation C as detailed in Sec. 3.2,
and further embedded to E via SHE(·) outlined in Sec. 3.1.
Note that the stop-gradient operation is necessary because
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of the low variety of effective cameras compared to the im-
age diversity. In fact, the Camera Module component easily
overfits and clearly dominates the overall backbone gradient.

The Depth Module is fed with the encoder features to
condition the initial latent features L ∈ Rh×w×C via one
cross-attention layer to obtain the initial depth features, D.
The latent feature tensor L is obtained as the average of the
features F along the B dimension. Furthermore, the depth
features are conditioned on the camera prompts E to obtain
D|E as described in Sec. 3.2. The camera-prompted depth
features are further processed via self-attention layers where
the positional encoding utilized is E and upsampled to pro-
duce a multi-scale output. The log-depth prediction Zlog ∈
RH×W×1 corresponds to the mean of the interpolated inter-
mediate representations. The final 3D output O ∈ RH×W×3

is the concatenation of predicted rays and depth, O = C||Z,
with Z as element-wise exponentiation of Zlog.
Optimization. The optimization process is guided by a re-
formulation of the Mean Squared Error (MSE) loss in the
final 3D output space (θ,ϕ,zlog) from Sec. 3.1 as:

LλMSE(ε) = ∥V[ε]∥1 + λT (E[ε]⊙ E[ε]), (4)

where ε = ô − o∗ ∈ R3, ô = (θ̂, ϕ̂, ẑlog) is the predicted
3D output, o∗ = (θ∗, ϕ∗, z∗log) is the GT 3D value, and λ =

(λθ, λϕ, λz) ∈ R3 is a vector of weights for each dimension
of the output. V[ε] and E[ε] are computed as the vectors of
empirical variances and means for each of the three output
dimensions over all pixels, i.e. {ε(i)}Ni=1. Note that if λd = 1
for a dimension d, the loss represents the standard MSE loss
for that dimension. If λd < 1, a scale-invariant loss term is
added to that dimension if it is expressed in log space, e.g.
for the depth dimension zlog and a shift-invariant loss term is
added if that output is expressed in linear space. In particular,
if only the last output dimension is considered, i.e., the
one corresponding to depth, and λz = 0.15 is utilized, the
corresponding loss is the standard SIlog. In our experiments,
we set λθ = λϕ = 1 and λz = 0.15. Therefore, the final
optimization loss is defined as

L = LλMSE + αLcon, with α = 0.1. (5)
The loss defined here serves as a motivation for the de-

signed output representation. Specifically, employing a
Cartesian representation and applying the loss directly to the
output space would result in backpropagation through (x, y),
and zlog errors. However, x and y components are derived
as rx · z and ry · z as detailed in Sec. 3.1. Consequently,
the gradients of camera components, expressed by (rx, ry),
and of depth become intertwined, leading to suboptimal op-
timization as discussed in Sec. 4.3.

4. Experiments
4.1. Experimental Setup
In-domain training datasets. The training dataset utilized
is the ensemble of Argoverse2 [43], Waymo [39], Driv-

ingStereo [45], Cityscapes [6], BDD100K [49], Mapillary-
PSD [1], A2D2 [18], ScanNet [7], and Taskonomy [51]. The
resulting dataset amounts roughly to 3M real-world images
with different cameras and domains, compared to, e.g. Met-
ric3D [48] and ZeroDepth [20] which exploit 8M and 17M
training images, respectively.
Zero-shot testing datasets. We evaluate the generalizability
of the compared models by testing them on ten datasets not
seen during training. More precisely, each method is tested
on validation splits from SUN-RGBD [38] without NYU
split, Diode Indoor [40] , IBims-1 [22], VOID [44] HAM-
MER [21], ETH-3D [37], nuScenes [4], and DDAD [19]
with split proposed in [34] and evaluated with official masks.
Also, UniDepth and the models from [20, 48] are zero-shot-
tested on NYU-Depth V2 [28] and KITTI [17]. In particu-
lar, KITTI testing is performed on the corrected Eigen-split
test set [13] with the Garg evaluation mask [16], while NYU
testing uses the evaluation mask from [24].
Evaluation Details. All methods have been re-evaluated
with a fair and consistent pipeline. In particular, we do not
exploit any test-time augmentations. We use training image
shapes for zero-shot testing and evaluate on the same valida-
tion splits and masks. Unfortunately, ZeroDepth lacks full
code reproducibility, thus we report results from the original
paper only, and for visualization, we utilize their provided
code and weights. When methods do not report the configu-
ration for a specific test dataset, we use the settings of NYU
and KITTI for indoor and outdoor testing, respectively. We
utilize common depth estimation evaluation metrics: root
mean square error (RMS) and its log variant (RMSlog), ab-
solute mean relative error (A.Rel), the percentage of inlier
pixels (δi) with threshold 1.25i, scale-invariant error in log-
scale (SIlog): 100

√
Var(εlog). In addition, we report point-

cloud-based metrics proposed in [30], namely Chamfer Dis-
tance (CD) and F-score (FA), with the latter aggregated as
the area under the curve up to 1/20 of the datasets’ maxi-
mum depth. All methods exploit GT intrinsics during evalu-
ation. Nonetheless, we present results both with and without
GT intrinsics for UniDepth.
Implementation Details. UniDepth is implemented in
PyTorch [32] and CUDA [29]. For training, we use the
AdamW [27] optimizer (β1 = 0.9, β2 = 0.999) with an ini-
tial learning rate of 0.0001. The learning rate is divided by a
factor of 10 for the backbone weights for every experiment
and weight decay is set to 0.1. As the learning rate sched-
uler, we exploit Cosine Annealing to one-tenth starting from
30% of the training. We run 1M optimization iterations with
a batch size of 128, each training dataset is uniformly rep-
resented in each batch. In particular, we sample 64 images
and then we sample two different augmented views of the
same image for consistency loss. The augmentations include
both geometric and appearance (random brightness, gamma,
saturation, hue shift, and grayscale) augmentations. ViT-
L [11] backbone is initialized with weights from DINO-pre-
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Table 1. Comparison on zero-shot evaluation. All methods are tested in a zero-shot setting on eight different datasets without overlap with
any of the sets used for training. UniDepth-{C, V}: UniDepth-{ConvNext [26], ViT [11]}. (†): DDAD [19] in training set. (‡): predicted
intrinsics are utilized for conditioning and backprojecting. Best viewed on a screen and zoomed in.

Method NuScenes DDAD ETH3D Diode (Indoor) SUN-RGBD VOID IBims-1 HAMMER
δ1 ↑ SIlog ↓ FA ↑ δ1 ↑ SIlog ↓ FA ↑ δ1 ↑ SIlog ↓ FA ↑ δ1 ↑ SIlog ↓ FA ↑ δ1 ↑ SIlog ↓ FA ↑ δ1 ↑ SIlog ↓ FA ↑ δ1 ↑ SIlog ↓ FA ↑ δ1 ↑ SIlog ↓ FA ↑

BTS [24] 33.7 68.0 37.5 43.0 40.8 40.5 26.8 29.9 27.4 19.2 22.8 31.6 76.1 14.6 64.8 47.4 25.8 64.5 53.1 17.5 57.2 3.89 20.9 22.8
AdaBins [2] 33.3 61.4 35.2 37.7 44.4 35.6 24.3 28.3 25.2 17.4 21.6 28.7 77.7 13.9 65.4 50.5 23.8 65.0 55.0 15.6 57.8 7.21 21.5 27.7
NeWCRF [50] 44.2 49.4 42.2 45.6 34.9 41.6 35.7 26.1 32.3 20.1 18.5 35.3 75.3 11.9 61.6 53.1 22.3 67.9 53.6 14.7 59.2 1.43 14.9 20.8
iDisc [34] 39.4 37.1 34.5 28.4 32.2 25.8 35.6 27.5 31.4 23.8 15.8 33.4 83.7 12.4 71.0 55.3 20.3 68.6 48.9 13.2 55.4 2.58 14.0 32.6
ZoeDepth [3] 28.3 31.5 26.0 27.2 31.7 21.1 35.0 17.6 26.4 36.9 12.8 40.5 86.7 9.58 75.6 63.4 15.9 72.4 58.0 10.9 59.6 0.72 9.78 21.0
Metric3D† [48] 72.3 29.0 53.9 − − − 45.6 18.9 35.9 39.2 11.1 42.1 15.4 13.4 14.4 65.9 16.2 70.4 79.7 10.1 68.5 3.40 12.1 29.0

UniDepth-C 83.3 22.9 62.3 83.2 21.4 59.3 49.8 13.2 33.7 60.2 9.03 50.0 94.8 8.10 81.4 86.6 12.8 85.1 79.7 8.92 66.7 20.2 8.78 57.1
UniDepth-V 86.2 21.7 64.2 86.4 20.3 61.8 32.6 11.6 24.3 77.1 6.38 59.4 96.6 7.05 81.9 89.4 10.9 85.7 23.9 7.22 37.1 13.3 7.41 55.9

UniDepth-C‡ 83.3 22.9 60.9 83.1 21.4 57.3 22.9 13.1 25.4 60.4 9.01 49.9 92.3 8.27 75.2 86.5 12.8 85.0 79.4 8.88 64.2 12.7 9.30 54.8
UniDepth-V‡ 86.2 21.7 63.0 86.4 20.3 60.4 17.6 11.4 21.4 77.4 6.36 58.6 94.8 7.17 75.9 90.2 10.9 86.2 17.5 7.20 36.5 2.56 8.35 53.8

Table 2. Comparison on NYU test set. The first five methods are
trained on NYU and tested on it. The last four methods are tested in
a zero-shot setting. UniDepth-{C, V}: UniDepth-{ConvNext [26],
ViT [11]}. (†): MiDaS [35] pre-trained.

Method δ0.5 δ1 FA A.Rel RMS RMSlog CD SIlog
Higher is better Lower is better

BTS [24] 66.1 88.5 74.0 10.9 0.391 0.141 0.160 11.5
AdaBins [2] 68.1 90.1 74.7 10.3 0.365 0.131 0.156 10.6
NeWCRF [50] 69.6 92.1 75.8 9.56 0.333 0.119 0.147 9.16
iDisc [34] 74.5 93.8 78.2 8.61 0.313 0.110 0.133 8.85
ZoeDepth† [3] 78.4 95.2 80.1 7.70 0.278 0.097 0.125 7.19
ZeroDepth [20] − 90.1 − 10.0 0.380 − − −
Metric3D [48] 76.3 92.6 77.8 9.38 0.337 0.120 0.146 9.13

UniDepth-C 85.4 97.2 84.3 6.26 0.232 0.082 0.101 6.41
UniDepth-V 88.6 98.4 85.9 5.78 0.201 0.073 0.092 5.27

trained [5] models, and ConvNext-L [26] is ImageNet [8]-
pre-trained. The required training time amounts to roughly
12 days on 8 NVIDIA A100. Ablations are conducted with
three different seeds and for 100k training iterations, using
a randomly sampled subset with a size equal to 20% of the
original training set.

4.2. Comparison with the State of the Art

Our method consistently outperforms previous SotA meth-
ods as shown in Table 1. We particularly excel in the scale-
invariant aspect, represented by SIlog, with an average 34.0%
improvement, and an average 12.3% improvement for δ1 and
FA. However, UniDepth could fail to capture the specific
scene scales in certain cases, e.g. in ETH3D and IBims-1.
This pitfall is demonstrated by the drop in scale-dependent
metrics, e.g. FA drop is 11.8% and 31.4%, respectively, al-
though having a clear scale-invariant improvement of 36.9%
and 28.5%. Therefore, we speculate that our method would
still greatly benefit from domain-specific fine-tuning.

The last two rows in Table 1 present UniDepth in its whole
design, namely functioning with solely the input image by
self-prompting the predicted dense camera representation,
as detailed in Eq. (3). Experiments show that not only is
the performance preserved for most of the test sets, but
UniDepth with the bootstrapped camera can also outperform
models with GT camera, e.g. SIlog in ETH3D and IBims-1.
On the other hand, in cases with particularly out-of-domain
camera types, such as ETH3D or HAMMER, bootstrapping
camera prediction results in additional noise for scaled depth
prediction, thus worsening results for δ1.

Table 3. Comparison on KITTI Eigen-split test set. The first five
methods are trained on KITTI and tested on it. The last four meth-
ods are tested in a zero-shot setting. UniDepth-{C, V}: UniDepth-
{ConvNext [26], ViT [11]}. (†): MiDaS [35] pre-trained.

Method δ0.5 δ1 FA A.Rel RMS RMSlog CD SIlog
Higher is better Lower is better

BTS [24] 86.9 96.2 82.0 5.63 2.43 0.089 0.42 8.18
AdaBins [2] 86.2 96.3 81.5 5.85 2.38 0.089 0.429 8.10
NeWCRF [50] 88.9 97.5 82.7 5.20 2.07 0.078 0.388 7.00
iDisc [34] 89.2 97.5 83.1 5.09 2.07 0.077 0.380 7.11
ZoeDepth† [3] 87.4 96.5 82.1 5.76 2.39 0.089 0.431 7.47
ZeroDepth [20] − 89.2 − 10.2 4.38 0.196 − −
Metric3D [48] 88.9 97.5 82.9 5.33 2.26 0.081 0.392 7.28

UniDepth-C 91.1 97.9 83.9 4.69 2.00 0.072 0.371 6.71
UniDepth-V 93.4 98.6 85.0 4.21 1.75 0.064 0.338 5.84

Table 2 and Table 3 display results on the two popular
benchmark NYU [28] and KITTI [17] Eigen-split. UniDepth
sets the state of the art in these two benchmarks despite be-
ing compared with models trained on the same domain. Im-
portantly, the KITTI Depth Prediction Benchmark, which
provides a perfectly fair evaluation, underscores the excel-
lent zero-shot performance of our method and its robustness
compared to the current MMDE SotA methods, as UniDepth
ranks first on this benchmark at the time of submission, with
a 15.5% improvement in SIlog over the second-best method.
Performance disparities are not solely attributed to dataset
characteristics, as observed in the comparison with Metric3D
and ZeroDepth. Despite being trained on a smaller dataset,
UniDepth outperforms both of these methods. In particu-
lar, UniDepth improves in δ1 over Metric3D and ZeroDepth
by 5.8% and 7.3%, respectively, on NYU (Table 2) and by
1.1% and 9.4%, respectively, on KITTI (Table 3). Moreover,
ZoeDepth, which has a capacity similar to our ViT-based ap-
proach and is pre-trained on the diverse MiDaS dataset [35],
shows limitations in general zero-shot scenarios in Table 1,
exhibiting performance comparable to traditional MMDE
methods especially on scale-invariant metrics.

For the sake of fair comparison, we provide in Table 4 a
comparison between Metric3D, iDisc, and UniDepth where
the latter two are retrained on a strict subset of Metric3D’s
data, namely accounting for one-quarter of the original Met-
ric3D dataset, with same framework detailed in Sec. 4.1. The
results are two-fold: they demonstrate how UniDepth still
surpasses Metric3D with a subsplit of the training set, and
how MMDE SotA methods designed for single-domain can
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Figure 4. Zero-shot qualitative results. Each pair of consecutive rows corresponds to one test sample. Each odd row shows the input RGB
image and the predicted pointcloud color-coded with coolwarm based on the absolute relative error. Each even row shows GT depth and the
predicted depth. The last column represents the specific colormap ranges for depth and error. (†): KITTI and NYU in the training set.

Table 4. Comparison with equivalent training setup. All meth-
ods have the same backbone, ConvNext-L [26] and are tested in
a zero-shot regime on KITTI Eigen-split and NYU. iDisc and
UniDepth are retrained on a strict subset of Metric3D for 500k iter-
ations as in [48].

Method KITTI NYU
δ1 ↑ SIlog ↓ FA ↑ δ1 ↑ SIlog ↓ FA ↑

iDisc [34] 93.4 8.36 78.0 92.1 8.82 75.0
Metric3D [48] 97.5 7.28 82.9 92.6 9.13 77.8

UniDepth 97.9 6.66 83.8 97.1 6.69 84.3

not fully exploit the training diversity. Qualitative results in
Fig. 4 emphasize how the method excels in capturing the
overall scale and scene complexity in a zero-shot setup.

4.3. Ablation Study
The importance of each component introduced in UniDepth
in Sec. 3 is evaluated by ablating the method in Table 5. All
ablations exploit the predicted camera representation, if not
stated otherwise. The first distinction involves the Oracle
model, which operates under ideal conditions with known
camera information during training and testing, addressing
a task similar to [20, 48]. On the other hand, Baseline is
a straightforward encoder-decoder implementation with a
(x,y,z) output, as outlined at the beginning of Sec. 3, while
Baseline++ exploits the proposed pseudo-spherical repre-
sentation. Modules’ architectures are consistent across ex-
periments. The In-Domain column reflects testing on valida-

tion splits of training domains, while Out-of-Domain corre-
sponds to zero-shot testing, as detailed in Sec. 4.1. Notably,
In-Domain results exhibit a higher degree of homogeneity
compared to Out-of-Domain, which is noisier yet more infor-
mative for gauging expected performances in downstream
applications and in-the-wild deployment.
Architecture. The Oracle model demonstrates more robust
scale-dependent performance during zero-shot testing com-
pared to the Full model, highlighting how the proposed task
is inherently more demanding. The Baseline model illus-
trates an approach to the problem without utilizing external
information and lacking a proper design for both internal
and output space. This approach yields markedly inferior re-
sults for both In-Domain and Out-of-Domain scenarios in
terms of depth and 3D reconstruction metrics.
Camera Module. In Table 5, row 3, the benefit of the Cam-
era Module becomes apparent, revealing a substantial dis-
parity in the effect of this module on scale-invariant and
scale-dependent metrics for in- and out-of-domain testing.
This disparity stems from the absence of prior knowledge
of the model regarding scale, impeding its optimal utiliza-
tion of the diverse training set. Concentrating solely on pre-
dicting depth, rather than a complete 3D output, proves ad-
vantageous in averting convergence issues during training.
This is evident in comparison with methods predicting 3D,
either without reliance on camera information (rows 8 and
9) or influenced by intertwined optimization (row 4), as elu-
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Table 5. Ablations of UniDepth. In-Domain corresponds to the union of the training domain’s validation sets, while Out-of-Domain involves
the union of zero-shot testing sets. Oracle is the model with provided GT cameras at training and test time. Baseline directly predicts 3D
points in Cartesian space, Baseline++ in pseudo-spherical. Full represents the final UniDepth. All models have the same depth and camera
module architecture, if any. ARelC is the mean of elementwise absolute relative error for camera intrinsics. (†): GT camera intrinsics
utilized for backprojection. The backbone used is ConvNext-L [26]. Medians and median average deviations over three runs are reported.

Ablation In-Domain Out-of-Domain
δ1 ↑ SIlog ↓ FA ↑ ARelC ↓ δ1 ↑ SIlog ↓ FA ↑ ARelC ↓

1 Oracle† 89.06±0.03 13.15±0.02 65.45±0.13 n/a 68.11±0.17 14.78±0.01 57.17±0.09 n/a

2 Full 88.89±0.10 13.13±0.01 63.52±0.08 2.05±0.01 57.06±1.48 14.83±0.04 49.71±0.55 13.54±0.85

3 – Camera† 87.42±0.04 13.49±0.08 63.78±0.02 n/a 48.38±0.97 15.55±0.15 45.21±0.86 n/a
4 – Spherical 61.30±1.00 19.36±0.09 17.89±0.11 48.29±4.03 37.09±1.37 22.49±0.16 21.78±0.14 87.51±11.1

5 – Lcon 88.53±0.07 13.24±0.01 60.89±0.15 2.65±0.06 52.89±0.21 14.85±0.01 45.17±0.32 14.27±0.41

6 – Dense 87.62±0.11 13.41±0.05 61.33±0.54 1.91±0.04 55.65±0.18 15.04±0.04 43.19±0.24 16.61±0.41

7 – Detach 88.16±0.12 13.48±0.06 64.19±0.17 0.93±0.02 46.60±0.25 15.26±0.10 43.85±2.01 18.99±1.00

8 Baseline 77.36±0.22 21.17±0.28 16.29±0.26 n/a 48.19±1.02 23.05±0.45 14.29±0.36 n/a
9 Baseline++ 82.41±0.13 16.31±0.05 41.98±0.12 n/a 51.22±0.35 18.14±0.05 38.27±0.02 n/a

cidated in Sec. 3. Refraining from relying on the camera
also constrains the model’s capacity to recover a multimodal
distribution for out-of-domain samples. The lack of a (boot-
strapped) prior prevents the depth module from serving as
a corrective mechanism based on an initial scale estimation
and imposes an unnecessary computational burden, i.e. re-
covering the depth values from scratch. This limitation is
underscored by the marked variability observed for test sets
strongly out-of-distribution, such as KITTI, when compar-
ing the utilization or absence of camera information (rows
2 and 3, respectively). In particular, Full achieves 95.2% in
δ1 in KITTI, while “– Camera” obtains 58.9% for the same
test set, despite a mere 2% difference between the two ver-
sions on nuScenes and DDAD.

Optimization and Output Representation. All ablations
employ the same loss LλMSE , but across different output
spaces. In row 4, a Cartesian output space is used instead of a
pseudo-spherical from Sec. 3.1, which results in substantially
inferior performance due to the respective intertwined formu-
lation of camera and depth output spaces. The Baseline (row
8) also employs a Cartesian representation, but the negative
impact of this choice is less pronounced in this model be-
cause of the absence of a camera module. More specifically,
the decoder of Baseline is not conditioned on inaccurate
prior camera and scale information as in row 4. Moreover,
row 9 corresponds to Baseline with pseudo-spherical repre-
sentation. Comparison between row 8 and row 9 shows that
when predicting directly the 3D outputs, the choice of the
output representation is still relevant in defining a better in-
ternal representation and optimization. Row 5 demonstrates
the positive impact of the geometric invariance loss. This
loss contributes to enhanced in-domain and out-of-domain
performance by promoting the invariance of depth features
to appearance variations owing to different camera intrinsics.
Furthermore, stopping the gradient from propagating from
the Camera Module to the Encoder (row 7), as described
in Sec. 3.4, proves particularly beneficial in avoiding scale

and camera overfitting in zero-shot testing, and stabilizes the
training. The more stable training is obtained by limiting the
dominant effect that camera supervision has on the gradient
of the Encoder weights compared to depth supervision.
Camera Representation. In row 6, the model incorporates
a sparse camera representation, specifically the pinhole cam-
era model with (fx, fy, cx, cy), leading to sparse camera
prompting and scalar supervision; the camera module still
predicts the residual components as outlined in Sec. 3.2. This
approach hurts generalization, as evidenced by ARelC in the
out-of-domain evaluation, despite the slight improvement in
in-domain ARelC . We speculate that the four prompts con-
vey less robust information to the depth module than their
dense counterpart, resulting in inferior performance for depth
metrics compared to Full for both in- and out-of-domain.

5. Conclusion
In this work, we propose UniDepth to predict metric 3D
points in diverse scenes relying solely on a single input im-
age. Through meticulous ablation studies, we systematically
address the challenges inherent in universal MMDE tasks,
underscoring the pivotal contributions of our work. The de-
signed self-prompting camera allows camera-free test time
application and renders the model more robust against cam-
era noise. The introduced pseudo-spherical output space rep-
resentation adequately disentangles the camera and depth
of the optimization process. Furthermore, the proposed ge-
ometric invariance loss effectively ensures camera-aware
depth consistency. Extensive validations unequivocally ex-
hibit how UniDepth sets the new state of the art across mul-
tiple benchmarks in a zero-shot regime, even surpassing in-
domain trained methods. This attests to the robustness and
efficacy of our model and, most importantly, outlines its po-
tential to propel the field of MMDE to new frontiers.
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