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Figure 1. MMM can generate precise human motions given fine-grained textual descriptions while enabling motion editing applications. Blue frames
represent conditioned motion input and red frames are the generated motion. Motion in-betweening can be performed by filling the gaps between keyframes
or major motion points, conditioned on text or without conditions. Upper body part editing is done by fixing the lower body motion generated by one text
prompt and altering the upper body motion according to another input prompt. An arbitrary long motion sequence can be generated according to a story
(i.e., a sequence of text prompts), where MMM generates the motion for each prompt (red frames), while “hallucinating” the nature and smooth motion
transitions (blue frames) between neighboring prompts (without being explicitly trained on motion transition datasets)

Abstract

Recent advances in text-to-motion generation using dif-
fusion and autoregressive models have shown promising re-
sults. However, these models often suffer from a trade-off
between real-time performance, high fidelity, and motion
editability. To address this gap, we introduce MMM, a novel
yet simple motion generation paradigm based on Masked
Motion Model. MMM consists of two key components: (1)
a motion tokenizer that transforms 3D human motion into a
sequence of discrete tokens in latent space, and (2) a con-
ditional masked motion transformer that learns to predict
randomly masked motion tokens, conditioned on the pre-
computed text tokens. By attending to motion and text to-
kens in all directions, MMM explicitly captures inherent
dependency among motion tokens and semantic mapping
between motion and text tokens. During inference, this al-
lows parallel and iterative decoding of multiple motion to-
kens that are highly consistent with fine-grained text de-
scriptions, therefore simultaneously achieving high-fidelity
and high-speed motion generation. In addition, MMM has
innate motion editability. By simply placing mask tokens
in the place that needs editing, MMM automatically fills
the gaps while guaranteeing smooth transitions between
editing and non-editing parts. Extensive experiments on

the HumanML3D and KIT-ML datasets demonstrate that
MMM surpasses current leading methods in generating
high-quality motion (evidenced by superior FID scores of
0.08 and 0.429), while offering advanced editing features
such as body-part modification, motion in-betweening, and
the synthesis of long motion sequences. In addition, MMM
is two orders of magnitude faster on a single mid-range
GPU than editable motion diffusion models. Our project
page is available at https://exitudio.github.
io/MMM-page/.

1. Introduction

Text-driven human motion generation has recently become
an emerging research focus due to the semantic richness
and user-friendly nature of natural language descriptions,
with its broad applications in animation, film, VR/AR, and
robotics. However, generating high-fidelity motion that pre-
cisely aligns with text descriptors is challenging because
of inherent differences between language and motion data
distributions. To address this challenge, three predomi-
nant methods have been proposed, including (1) language-
motion latent space alignment, (2) conditional diffusion
model, and (3) conditional autoregressive model.

In the first method, text descriptions and motion se-
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quences are projected into separate latent spaces, forcibly
aligned by imposing distance loss functions such as cosine
similarity and KL losses [1, 12, 22, 23, 34, 41]. Due to
unavoidable latent space misalignment, this method falls
short of achieving high-fidelity motion generation, which
requires the synthesized motion to accurately reflect the
fine-grained textural descriptions. To this end, conditional
diffusion and autoregressive models are proposed recently
[15, 17, 19, 35, 38, 43, 44, 47]. Instead of brutally forc-
ing latent space alignment, these models learn a probabilis-
tic mapping from the textural descriptors to the motion se-
quences. However, the improvement in quality comes at the
cost of motion generation speed and editability.

Motion-space diffusion models learn text-to-motion
mapping by applying diffusion processes to raw motion se-
quences conditioned on text inputs [17, 35, 38, 44]. The use
of the raw motion data supports partial denoising on cer-
tain motion frames and body parts, naturally supporting se-
mantic motion editing, such as motion inpainting and body
part editing. However, the redundancy in raw data usually
leads to high computational overhead and thus slow mo-
tion generation speed. A recent latent-space motion diffu-
sion model [4] accelerates motion generation speed by com-
pressing raw motion data into a single latent embedding.
Nonetheless, this embedding hides rich temporal-spatial se-
mantics present in the original motion data, hindering effec-
tive motion editing.
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Figure 2. The motion generation quality (FID score) and speed (AITS)
comparisons between MMM and SOTA methods on HumanML3D dataset.
The model closer to the origin is better. MMM achieves the best FID
score (0.08) and the highest speed (0.081 AITS), while preserving motion
editability. “⃝” represents editibility and “×” otherwise. All tests are
performed on a single NVIDIA RTX A5000.

Compared with motion diffusion models, motion autore-
gressive models further improve motion generation fidelity
by modeling temporal correlations within motion sequences
[15, 43, 47]. Following a training paradigm similar to large
language models such as GPT [2], motion autoregressive
models learn to predict and generate the next motion to-
ken conditioned on the text token and previously generated
motion tokens. This process, known as autoregressive de-
coding, contributes to improved coherence and accuracy in
motion generation. However, this sequential and unidirec-
tional decoding approach not only results in significant de-

lays in motion generation but also makes motion editing an
extremely challenging, if not impossible, task.

As mentioned above, the existing text-driven motion
generation models suffer from a trade-off between real-time
performance, high fidelity, and motion editability. To ad-
dress this critical issue, we introduce MMM, a novel motion
generation paradigm based on conditional Masked Motion
Model. During the training phase, MMM follows a two-
stage approach. In the first stage, a motion tokenizer is
pretrained based on the vector quantized variational autoen-
coder (VQ-VAE) [37]. This tokenizer converts and quan-
tizes raw motion data into a sequence of discrete motion
tokens in latent space according to a motion codebook.
A large-size codebook is learned to enable high-resolution
quantization that preserves the fine-grained motion repre-
sentations. In the second stage, a portion of the motion to-
ken sequence is randomly masked out, and a conditional
masked transformer is trained to predict all the masked mo-
tion tokens concurrently, conditioned on both the unmasked
ones and input text.

By attending to motion and text tokens in all directions,
MMM explicitly captures inherent correlation among mo-
tion tokens and semantic mapping between motion and text
tokens. This enables text-driven parallel decoding during
inference, where in each iteration, the model concurrently
and progressively predicts multiple high-quality motion to-
kens that are highly consistent with text descriptions and
motion dynamics. This feature allows MMM to simulta-
neously achieve high-fidelity and high-speed motion gen-
eration. In addition, MMM has innate motion editabil-
ity. By simply placing mask tokens in the place that needs
editing, MMM automatically fills the gaps while ensuring
smooth and natural transitions between editing and non-
editing parts. Our contributions are summarized as follows.
• We introduce the generative masked motion model, a

novel yet simple text-to-motion generation paradigm.
This model departs from diffusion and autoregressive
models that currently dominate motion generation tasks.

• We conduct extensive qualitative and quantitative evalua-
tions on two standard text-to-motion generation datasets,
HumanML3D [12] and KIT-ML [24]. It is shown in Fig-
ure 2 that our model outperforms current state-of-the-art
methods in both motion generation quality and speed.

• We demonstrate that our model enables fast and coherent
motion editing via three tasks: motion in-between, upper
body modification, and long sequence generation.

2. Related Work
Text-driven Motion Generation. Early text-to-motion
generation methods are mainly based on distribution align-
ment between motion and language latent spaces by apply-
ing certain loss functions, such as Kullback-Leibler (KL) di-
vergences and contrastive losses. The representative meth-
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Figure 3. Overall architecture of MMM. (a) Motion Tokenizer transforms the raw motion sequence into discrete motion tokens according to a learned
codebook. (b) Conditional Masked Transformer learns to predict masked motion tokens, conditioned on word and sentence tokens obtained from CLIP
text encoders. (c) Motion Generation starts from an empty canvas and the masked transformer concurrently and progressively predicts multiple high-
confidence motion tokens.

ods include Language2Pose [1], TEMOS [22], T2M [12],
MotionCLIP [34], TMR [23] and DropTriple [41]. Due
to the significant variations between text and motion distri-
butions, these latent space alignment approaches generally
lead to unsatisfied motion generation quality.

Since denoising diffusion models [33][13] have demon-
strated notable success in vision generation tasks, [14,
21, 29, 32], diffusion models have been adopted for mo-
tion generation, where MDM [35], MotionDiffuse [44] and
FRAME [17] are recent attempts. However, these meth-
ods directly process diffusion models in raw and redundant
motion sequences, thus resulting in extremely slow during
inference. In our experiments, MDM [35] takes 28.11 sec-
onds on average to generate a single motion on Nvidia RTX
A5000 GPU. Inspired by pixel-based latent diffusion mod-
els [28], motion-space diffusion models MLD [4] mitigates
this issue by applying diffusion process in low-dimensional
motion latent space. Nonetheless, relying on highly com-
pressed motion embedding for speed acceleration, MLD
struggles to capture fine-grained details, greatly limiting its
motion editability.

Inspired by the success of autoregressive models in lan-
guage and image generations, such as GPT [2], DALL-E
[27] and VQ-GAN [7, 39, 42], autoregressive motion mod-
els, T2M-GPT [43], AttT2M [47] and MotionGPT [15],
have been recently developed to further improve motion
generation quality. However, these autoregressive models
utilize the causal attention for unidirectional and sequen-
tial motion token prediction, limiting its ability to model
bidirectional dependency in motion data, increasing the
training and inference time, and hindering the motion ed-
itability. To address these limitations, we aim to exploit
masked motion modeling for real-time, editable and high-
fidelity motion generation, drawing inspiration from the
success of BERT-like masked language and image model-

ing [3, 5, 6, 8, 25, 45, 46].
Motion Editing. MDM [35], FLAME [17], and Fg-

T2M [38] introduce text-to-motion editing, demonstrating
body part editing for specific body parts and motion in-
between for temporal interval adjustments. They achieve
this by adapting diffusion inpainting to motion data in both
spatial and temporal domains. PriorMDM [30] uses a pre-
trained model from MDM [35] for three forms of motion
composition: long sequence generation (DoubleTake), two-
person generation (ComMDM), and fine-tuned motion con-
trol (DiffusionBlending). OmniControl [40] controls any
joints at any time by combining spatial and temporal control
together. EDGE [36] introduces editing for dance genera-
tion from music tasks with similar editing capabilities, in-
cluding body part editing, motion in-betweening, and long
sequence generation. GMD [16] employs the concept of
editing spatial parts and temporal intervals to guide the po-
sition of the root joint (pelvic) in order to control the motion
trajectory. Recently, COMODO [31] controls motion tra-
jectory by integrating an RL-based control framework with
the inpainting method. However, all current approaches uti-
lize a diffusion process directly on motion space, which is
slow and impractical for real-time applications.

3. Method

Our goal is to design a text-to-motion synthesis paradigm
that significantly improves synthesis quality, accelerates
generation speed, and seamlessly preserves editability. To-
wards this goal, our paradigm, as depicted in Figure 3, con-
sists of two modules: motion tokenizer (Section 3.1) and
conditional masked motion transformer (Section 3.2). Mo-
tion tokenizer learns to transform 3D human motion into
a sequence of discrete motion tokens without losing rich
motion semantic information. Conditional masked motion
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transformer is trained to predict randomly masked motion
tokens conditioned on the pre-computed text tokens. Dur-
ing inference, masked motion transformer allows parallel
decoding of multiple motion tokens simultaneously, while
considering the context from both preceding and succeed-
ing tokens.

3.1. Motion Tokenizer

The objective of the first stage is to learn a discrete latent
space by quantizing the embedding from encoder outputs
z into the entries or codes of a learned codebook via vec-
tor quantization, as shown in Figure 3(a). The objective of
vector-quantization is defined as

LV Q = ∥ sg(z)− e∥22 + β∥z− sg(e)∥22, (1)

where sg(·) is the stop-gradient operator, β is the hyper-
parameter for commitment loss, and e is a codebook vector
from codebook E (e ∈ E). The closet Euclidean distance of
the embedding z and codebook vector index is calculated by
i = argminj ∥z−Ej∥22. To preserve the fine-grained mo-
tion representations, we adopt a large codebook with a size
of 8192 to reduce the information loss during embedding
quantization. Our experiments show that large codebook
size with a suitable code embedding dimension can lead to
improved motion generation quality. However, using large
codebook can aggravate codebook collapse, where the ma-
jority of tokens are assigned to just a few codes, rendering
the remaining codebook inactive. To boost codebook usage,
we adopt the factorized code, which decouples code lookup
and code embedding to stabilize large-size codebook learn-
ing [42]. In addition, moving averages during codebook up-
date and resetting dead codebooks are also adopted, which
are often employed for enhancing codebook utilization in
VQ-VAE and VQ-GAN [7, 39]. These schemes together
serve to transform 3D human motion into a sequence of dis-
crete motion tokes in a robust and efficient manner.

3.2. Conditional Masked Motion Model

Text-conditioned Masked Transformer. During training,
the motion tokens are first obtained by passing the output
of the encoder through the vector quantizer. The motion
token sequence, text embeddings, and special-purpose to-
kens serve as the inputs of a standard multi-layer trans-
former. Specifically, we obtain sentence embeddings from
the pre-trained CLIP model [26] to capture the global re-
lationships between the entire sentence and motion. The
sentence embedding is then prepended to the motion to-
kens. Due to the nature of self-attention in transform-
ers, all motion tokens are learned in relation to the sen-
tence embedding. In addition, we obtain word embeddings
from the same CLIP model [26] to capture the local re-
lationships between each word and motion through cross-
attention = softmax

(
QmotionK

T
word/

√
D
)
Vword [47].

[MASK], [PAD], and [END] are learnable special-
purpose tokens. During training, the [MASK] token is used
to represent input corruption, and the model learns to pre-
dict the actual tokens in place of [MASK]. During infer-
ence, [MASK] tokens not only serve as placeholders for
motion token generation but also prove useful in various
tasks by placing the [MASK] tokens where editing is re-
quired, as detailed in Section 4. [PAD] token is used to
fill up shorter motion sequences, allowing computation of
batches with multiple sequences of varying lengths. Lastly,
the [END] token is appended to the input tokens after the
last token, providing the model with an explicit signal of the
motion’s endpoint.

Training Strategy and Loss. The motion token se-
quence Y is represented as Y = [ei]

L
i=1, where L de-

notes the sequence length. We randomly mask out r × L
tokens and replace them with learnable [MASK] tokens,
where r is the masking ratio following a uniform distri-
bution truncated between α and 1. Then, the original mo-
tion token sequence Y is updated with [MASK] tokens to
form the corrupted motion sequence YM. This corrupted
sequence along with text embedding W are fed into a text-
conditioned masked transformer to reconstruct input mo-
tion token sequence with reconstruction probability or con-
fidence equal to p

(
yi | YM,W

)
. The objective is to min-

imize the negative log-likelihood of the predicted masked
tokens conditioned on text:

Lmask = − E
Y∈D

 ∑
∀i∈[1,L]

log p (yi | YM,W )

 . (2)

Inference via Parallel Decoding. To decode the motion
tokens during inference, we initiate the process by inputting
all [MASK] tokens, representing an empty canvas then pro-
gressively predict more tokens per iteration. Next, itera-
tive parallel decoding is performed, where in each iteration,
the transformer masks out the subset of motion tokens that
the model is least confident about and then predicts these
masked tokens in parallel in the next iteration. The number
of masked tokens nM is determined by a masked scheduling
function, i.e. a decaying function of the iteration t. The de-
caying function is chosen because at early iterations, there
is high uncertainty in the predictions and thus the model be-
gins with a large masking ratio and only keeps a small num-
ber of tokens with high prediction confidence. As the gen-
eration process proceeds, the masking ratio decreases due
to the increase of context information from previous itera-
tions. We experiment both linear nM = L((T − t)/T ) [8]
and cosine function nM = L cos( 12πt/T ) [3], where cosine
function yields better performance. To obtain the final nM ,
the length of the generated motion sequence L should also
be available. To address this issue, we adopt a pretrained
predictor that estimates the motion sequence length based
on the input text [12].

1549



Motion in-betweening

MM Long Sequence Generation

MM
MM
MM

Transition

L L
T

M M M L

L LM M M L

M M M M M M

Upper Body Editing

Transition Transition

Figure 4. Motion Editing. (Left) Motion in-betweening. (Middle) Long
Sequence Generation. (Right) Upper Body Editing. “M” refers to mask
token. “T” is text conditioned tokens and “L” denotes lower body part
conditioned tokens.

4. Motion Editing
As illustrated in Figure 4, the advantage of our masked mo-
tion modeling lies in its innate ability to edit motion.

Motion In-betweening. Thanks to its mask bidirec-
tional decoding nature, we can easily place the [MASK]
tokens wherever editing is needed regardless of past and fu-
ture context. As an important editing task, the motion in-
between involves interpolating or filling the gaps between
keyframes or major motion points to create a smooth, con-
tinuous 3D animation. Since the model has already learned
all possible random temporal masking combinations during
training, motion in-between can be accomplished without
any additional training.

Long Sequence Generation. Due to the limited length
of motion data in the available HumanML3D [12] and KIT
[24] datasets, where no sample exceeds a duration of 10
seconds, generating arbitrarily long motions poses a chal-
lenge. To address this, we use the trained masked motion
model as a prior for long motion sequence synthesis with-
out additional training. Particularly, given a story that con-
sists of multiple text prompts, our model first generates the
motion token sequence for each prompt. Then, we gener-
ate transition motion tokens conditioned on the end of the
previous motion sequence and the start of the next motion
sequence. Diffusion methods such as DoubleTakes in Pri-
orMDM [30] require multiple steps (up to 1,000 steps) to
generate transition and average the spatial differences be-
tween the previous and next motion before generating the
transition motion. Our approach only needs a single step to
generate realistic and natural transition motions.

Upper Body Editing. To enable body part editing, we
pretrain the upper and lower body part tokenizers sepa-
rately, each with its own encoders and decoders. The em-
bedding size of each motion token is half of the regular
full-body embedding size. In the second stage, the upper
and lower tokens are concatenated back to form full body
embeddings. Therefore, the embedding size and the condi-
tional masked transformer remain unchanged. Ideally, we
can train the transformer by predicting the masked upper
body tokens, conditioned on the text for upper body motion
along with the lower body tokens. However, the generated
motions are inconsistent with the text. To address this prob-

lem, we introduce random [MASK] tokens into lower body
part motion sequence via light corruptions so that the trans-
former can better learn the spatial and temporal dependency
of the whole body motions. Thus, the training loss can be
written as:

Lup = − E
Y∈D

 ∑
∀i∈[1,L]

log p
(
yup
i | Y up

M
, Y down

M ,W
) (3)

where Y up

M
denotes the upper tokens with mask and Y down

M
is the lower tokens with mask. It is important to note that
the [MASK] tokens of the lower part remain unchanged
throughout all iterations.

5. Experiments
In this section, we present comparisons to evaluate our mod-
els on both quality and time efficiency. In Section 5.1, fol-
lowing the standard evaluation from [12] across multiple
datasets, we observe that our method consistently outper-
forms the current state-of-the-art methods. Moreover, in
Section 5.2, evaluating with the time efficiency metric from
MLD [4], our method exhibits shorter inference times, both
on average and with respect to motion lengths.

Datasets. We conduct experiments on two standard
datasets for text-to-motion generation: HumanML3D [12]
and KIT Motion-Language (KIT-ML) [24] and follow
the evaluation protocol proposed in [12]. KIT Motion-
Language (KIT-ML) [24] contains 3911 motion sequences
and 6,278 text descriptions, with an average of 9.5 words
per annotation. One to four textual descriptions are pro-
vided for each motion clip, with an average description
length of around 8 sentences. Motion sequences are se-
lected from KIT [24] and CMU [41] datasets but have been
downsampled to a rate of 12.5 frames per second (FPS).
The dataset is split into training, validation, and test sets,
with respective proportions of 80%, 5%, and 15%. Hu-
manML3D [12] is currently the largest 3D human text-
motion dataset, covers a diverse array of everyday human
actions, including activities like exercising and dancing.
The dataset comprises 14,616 motion sequences and 44,970
text descriptions. The entirety of the textual descriptions
consists of 5,371 unique words. The motion sequences
are originally from AMASS [20] and HumanAct12 [10].
Each sequence is adjusted to 20 frames per second (FPS)
and trimmed to a 10-second duration, resulting in durations
ranging from 2 to 10 seconds. Each motion clip is paired
with at least three corresponding descriptions, with the aver-
age description length being approximately 12 words. Sim-
ilar to KIT, the dataset is split into training, validation, and
test sets, with respective proportions of 80%, 5%, and 15%.

Evaluation Metrics. The embeddings of textual de-
scriptions and motion are encoded by pre-trained models
from [12] for evaluation metrics as proposed by [12] with
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Figure 5. Qualitative comparison of state-of-the-art methods with textual description: “a person walks forward then turns completely around and does
a cartwheel.” MDM is one of the most representative motion-space diffusion models. MLD is the first and SOTA latent-space motion diffusion model.
T2M-GPT is the first and SOTA autoregressive motion model. Top-left: MDM [35] does not execute cartwheel motion. Top-right: MLD [4] generates
unrealistic motion and lacks a complete cartwheel motion. Middle-left: the trajectory of T2M-GPT [43] is not “completely around”. Middle-right: our
method generates realistic motion and trajectory compared to the ground truth on the bottom. Trajectories start from blue and end in red.

Wrong upper
body position

MDM Ours

Figure 6. Qualitative comparison of upper body editing, generating upper body part based on the text “a man throws a ball” conditioned on lower body
part of “a man rises from the ground, walks in a circle and sits back down on the ground.”
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Figure 7. Qualitative comparison of motion in-betweening, generating
50% motion in the middle (frame 50-146) based on the text “a man throws
a ball” conditioned on first 25% and last 25% of motion of “a person walks
backward, turns around and walks backward the other way.”. Compared
with MDM, MMM achieves smoother and more natural transitions be-
tween the conditioned and generated motions (at frames 146 and 147)

five metrics. R-precision and Multimodal Distance (MM-
Dist) measure how well the generated motions align with
the input prompts. Top-1, Top-2, and Top-3 accuracy are re-
ported for R-Precision. Frechet Inception Distance (FID)
measures the distribution distance between the generated
and ground truth motion features. Diversity is calculated by
averaging Euclidean distances of random samples from 300
pairs of motion, and MultiModality (MModality) repre-
sents the average variance for a single text prompt by com-
puting Euclidean distances of 10 generated pairs of motions.

5.1. Comparison to State-of-the-art Approaches

We evaluate our methods with state-of-the-art approaches
[4, 9, 11, 12, 18, 22, 35, 38, 43, 44, 47] on HumanML3D
[12] and KIT-ML [24]. We maintain the same architecture
and hyperparameters for the evaluation on both datasets.

Quantitative comparisons. Following [12], we report
the average over 20 repeated generations with 95% confi-
dence interval. Table 1 and Table 2 present evaluations on
HumanML3D [12] and KIT-ML [24] dataset respectively,
in comparison to state-of-the-art (SOTA) approaches. Our
method consistently performs best in terms of FID and Mul-
timodal Distance. For the R-Precision and Diversity metric,
our method still shows competitive results when compared
to SOTA methods. On HumanML3D [12], as shown in Ta-
ble 1, our method outperforms all SOTA methods in most of
the metrics. Specifically, our method excels in Top-1, Top-
2, and Top-3 R-Precision, FID, Multimodal Distance, and
Diversity metrics. It is worth noting that the HumanML3D
[12] dataset is significantly larger than the KIT-ML [24]
dataset, which suggests that our method tends to perform
better with more data.

Qualitative comparison. Figure 5 shows visual result
of the generated motion by textual description, “a person
walks forward then turns completely around and does a
cartwheel.”, compared to state-of-the-art models. MDM
[35] fails to generate a cartwheel motion. MLD [4] flips in
an unrealistic motion and lacks a complete cartwheel mo-
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Table 1. Comparison of text-conditional motion synthesis on HumanML3D [12] test set. For each metric, we repeat the evaluation 20 times and report
the average with 95% confidence interval. The right arrow (→) indicates that the closer the result is to real motion, the better. Red and Blue indicate the
best and the second best result. § reports results using ground-truth motion length.

Methods R-Precision ↑ FID ↓ MM-Dist ↓ Diversity → MModality ↑Top-1 ↑ Top-2 ↑ Top-3 ↑
Real 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -
VQ-VAE 0.503±.003 0.698±.003 0.793±.002 0.075±.001 3.027±.008 9.697±.076 -

Hier [9] 0.301±.002 0.425±.002 0.552±.004 6.523±.024 5.012±.018 8.332±.042 -
TEMOS§ [22] 0.424±.002 0.612±.002 0.722±.002 3.734±.028 3.703±.008 8.973±.071 0.368±.018

TM2T [11] 0.424±.003 0.618±.003 0.729±.002 1.501±.017 3.467±.011 8.589±.076 2.424±.093

T2M [12] 0.455±.003 0.636±.003 0.736±.002 1.087±.021 3.347±.008 9.175±.083 2.219±.074

MDM§ [35] 0.320±.005 0.498±.004 0.611±.007 0.544±.044 5.566±.027 9.559±.086 2.799±.072

MotionDiffuse§ [44] 0.491±.001 0.681±.001 0.782±.001 0.630±.001 3.113±.001 9.410±.049 1.553±.042

MLD§ [4] 0.481±.003 0.673±.003 0.772±.002 0.473±.013 3.196±.010 9.724±.082 2.413±.079

Fg-T2M§ [38] 0.492±.002 0.683±.003 0.783±.002 0.243±.019 3.109±.007 9.278±.072 1.614±.049

M2DM§ [18] 0.497±.003 0.682±.002 0.763±.003 0.352±.005 3.134±.010 9.926±.073 3.587±.072

T2M-GPT [43] 0.491±.003 0.680±.003 0.775±.002 0.116±.004 3.118±.011 9.761±.081 1.856±.011

AttT2M [47] 0.499±.003 0.690±.002 0.786±.002 0.112±.006 3.038±.007 9.700±.090 2.452±.051

MMM§ (ours) 0.515±.002 0.708±.002 0.804±.002 0.089±.005 2.926±.007 9.577±.050 1.226±.035

MMM (ours) 0.504±.003 0.696±.003 0.794±.002 0.080±.003 2.998±.007 9.411±.058 1.164±.041

Table 2. Comparison of text-conditional motion synthesis on KIT-ML [24] test set. For each metric, we repeat the evaluation 20 times and report the
average with 95% confidence interval. The right arrow (→) indicates that the closer the result is to real motion, the better. Red and Blue indicate the best
and the second best result. § reports results using ground-truth motion length.

Methods R-Precision ↑ FID ↓ MM-Dist ↓ Diversity → MModality ↑Top-1 ↑ Top-2 ↑ Top-3 ↑
Real 0.424±.005 0.649±.006 0.779±.006 0.031±.004 2.788±.012 11.080±.097 -
VQ-VAE 0.392±.006 0.606±.006 0.736±.006 0.641±.014 3.047±.012 11.075±.113 -

Hier [9] 0.255±.006 0.432±.007 0.531±.007 5.203±.107 4.986±.027 9.563±.072 -
TEMOS§ [22] 0.353±.006 0.561±.007 0.687±.005 3.717±.051 3.417±.019 10.84±.100 0.532±.034

TM2T [11] 0.280±.005 0.463±.006 0.587±.005 3.599±.153 4.591±.026 9.473±.117 3.292±.081

T2M [12] 0.361±.006 0.559±.007 0.681±.007 3.022±.107 3.488±.028 10.72±.145 2.052±.107

MDM§ [35] 0.164±.004 0.291±.004 0.396±.004 0.497±.021 9.191±.022 10.85±.109 1.907±.214

MotionDiffuse§ [44] 0.417±.004 0.621±.004 0.739±.004 1.954±.064 2.958±.005 11.10±.143 0.730±.013

MLD§ [4] 0.390±.008 0.609±.008 0.734±.007 0.404±.027 3.204±.027 10.80±.117 2.192±.071

Fg-T2M§ [38] 0.418±.005 0.626±.004 0.745±.004 0.571±.047 3.114±.015 10.93±.083 1.019±.029

M2DM§ [18] 0.416±.004 0.628±.004 0.743±.004 0.515±.029 3.015±.017 11.417±.97 3.325±.37

T2M-GPT [43] 0.402±.006 0.619±.005 0.737±.006 0.717±.041 3.053±.026 10.86±.094 1.912±.036

AttT2M [47] 0.413±.006 0.632±.006 0.751±.006 0.870±.039 3.039±.021 10.96±.123 2.281±.047

MMM§ (ours) 0.404±.005 0.621±.005 0.744±.004 0.316±.028 2.977±.019 10.910±.101 1.232±.039

MMM (ours) 0.381±.005 0.590±.006 0.718±.005 0.429±.019 3.146±.019 10.633±.097 1.105±.026

Table 3. Evaluation of two editing tasks, motion in-betweening and upper
body editing, both with text and without text conditioning, in comparison
to MDM [35], using evaluations from [12].

Methods R-Precision
Top-1 ↑

FID
↓

MM-Dist
↓

Diversity
→

In-betweening
(w/ text)

MDM 0.389 2.371 3.859 8.077

Ours 0.5226 0.0712 2.9097 9.5794

In-betweening
(w/o text)

MDM 0.284 3.417 4.941 7.472

Ours 0.4239 0.114 3.6310 9.3817

Upper Body Editing
(w/ text)

MDM 0.298 4.827 4.598 7.010

Ours 0.500 0.1026 2.9720 9.2540

Upper Body Editing
(w/o text)

MDM 0.258 7.436 5.075 6.647

Ours 0.4834 0.1338 3.1876 9.0092

tion. Meanwhile, the trajectory of T2M-GPT [43] does not
align with the “completely around” description in the text
prompt. Our approach shows the realistic motion and tra-
jectory compared to the ground truth. More visual results is
shown in the supplementary material.

5.2. Inference Speed and Editability

Inference Speed. Figure 2 in Section 1 compares the in-
ference speeds (AITS) of MDM [35], MotionDiffuse [44],
MLD [4], T2M-GPT [43], AttT2M [47] and MMM (our
method). All tests are performed on a single NVIDIA RTX
A5000. It can be shown that MMM is at least two times
faster than autoregressive motion models (T2M-GPT and
AttT2M) and latent-space diffusion model (MLD), while
being two orders of magnitude faster than motion-space dif-
fusion models (MDM and MotionDiffuse), which directly
operate on raw motion sequences. Since the maximum mo-
tion duration of HumanML3D dataset is 9.6 seconds, AITS
in Figure 2 actually measures the speed of generating short
motion. Such high inference speed offers a significant ad-
vantage for long-range generation. As discussed in Sec-
tion 4, to generate long-range motion, we combine multiple
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Table 4. Ablation results on the masking ratio during training.

Masking
Ratio

R-Precision
Top-1 ↑

FID
↓

MM-Dist
↓

Diversity
→

MModality
↑

Uniform 0-1 0.513 0.097 2.923 9.640 1.097
Uniform .3-1 0.520 0.089 2.901 9.639 1.149
Uniform .5-1 0.515 0.089 2.926 9.577 1.226
Uniform .7-1 0.505 0.098 2.975 9.523 1.245

Table 5. Ablation results on speed and quality influenced by the mask
scheduling during inference.

# of
iterations

AITS
(seconds) ↓

R-Precision
Top-1 ↑

FID
↓

MM-Dist
↓

Diversity
→

MModality
↑

5 0.043 0.505 0.169 3.003 9.370 1.414
10 0.081 0.515 0.089 2.926 9.577 1.226
15 0.118 0.516 0.091 2.919 9.576 1.134
20 0.149 0.518 0.096 2.912 9.590 1.058
25 0.176 0.517 0.102 2.911 9.682 1.008
30 0.205 0.515 0.100 2.908 9.698 0.937
35 0.213 0.519 0.105 2.896 9.701 0.969
49

(Linear) 0.345 0.517 0.109 2.911 9.716 0.952

Table 6. Ablation results on quality influenced by the number of codes and
the code dimension.

# of code x
code dimension

R-Precision
Top-1 ↑

FID
↓

MM-Dist
↓

Diversity
→

512 x 512 0.499 0.108 3.077 9.683
1024 x 256 0.496 0.0850 3.001 9.641
2048 x 128 0.504 0.093 3.033 9.795
4096 x 64 0.505 0.080 3.035 9.697
8192 x 32 0.503 0.075 3.027 9.697

short motions with transition tokens, where the transition
generation can be completed in a single iteration. In par-
ticular, our method generates a 10.873-minute sequence in
only 1.658 seconds.

Editability. Table 3 demonstrates that our bidirectional
mask modeling outperforms MDM [35] in two editing
tasks: motion in-betweening and upper body editing. We
conducted experiments with and without text conditioning,
evaluating on the test set of HumanML3D [12]. Motion
in-betweening is evaluated by generating 50% of the se-
quences conditioned by first and last 25% of the sequences.
Qualitative results are shown in Figure 1. Moreover,we
also visualize the upper body editing in Figure 6 and mo-
tion in-betweening in Figure 7 in compared to MDM [35].
MDM [35] generates unrealistic upper body distinct from
the lower part and exhibits discontinuous frame transitions.
Our approach, on the other hand, demonstrates realistic mo-
tion and smooth transitions for editing tasks. We show more
visual results in the supplementary material.

6. Ablation Study
The key success of our method lies in mask modeling. To
understand how mask scheduling during training and in-
ference impacts performance, we conduct ablation experi-
ments using the same evaluation on HumanML3D [12].

Masking Ratio during Training. During training, we
apply a random masking ratio drawn from an uniform dis-
tribution bounded between α and 1. The larger α indicates
that more aggressive masking is applied during training. As
a result, the model has to predict a large number of masked
tokens more based on the text prompt due to the reduced
context information from unmasked motion tokens. It is
shown in Table 4 that too aggressive (α = 0.7) or too mild
(α = 0) masking strategy is not beneficial for generating
high-fidelity motions with sufficient diversity.

Iteration Number. During inference, the number of it-
erations directly affects the speed and the quality of the gen-
eration. The number of iterations is the maximum number
of iterations for the longest motion sequence in the dataset
(196 frames). As shown in Table 5, increasing the num-
ber of iterations leads to higher generation latency with
slightly improved R-precision and MM-dist. However, us-
ing a small number of iterations like 10, the model already
achieves the lowest FID score along with high R-precision
and low MM-dist. The lowest FID score means the best
overall visual quality of the generated motion, ensuring that
its realism and naturalness is very close to the genuine and
ground-truth human movements. High R-precision and low
MM-dist indicate the precise alignment between the gener-
ated motion and the text description.

Codebook Size. By adopting codebook factorization,
we can learn a large-size codebook for high-resolution mo-
tion embedding quantization to preserve fine-grained mo-
tion representations, which directly affect motion genera-
tion quality. In particular, codebook factorization decou-
pling code lookup and code embedding, where codebook
uses low-dimensional latent space for code lookup and the
matched code is projected back to high-dimensional embed-
ding space. Table 6 shows that motion reconstruction qual-
ity is improved by increasing the number of code entries in
codebook from 512 to 8192, while reducing the dimension
of the codebook latent space from 512-d to 32-d.

7. Conclusion
In this work, we propose the generative masked motion
model (MMM) to synthesize human motion based on
textual descriptions. MMM consists of two key com-
ponents: (1) a motion tokenizer converting 3D human
motion into discrete latent space tokens, and (2) a con-
ditional masked motion transformer predicting masked
motion tokens based on text tokens. MMM enables
parallel and iteratively-refined decoding for high-fidelity
and fast motion generation. MMM has inherent motion
editability. Extensive experiments demonstrate that MMM
outperforms state-of-the-art methods both qualitatively
and quantitatively. MMM is at least two times faster than
autoregressive motion models and two orders of magnitude
faster than diffusion models on raw motion sequences.

1553



References
[1] Chaitanya Ahuja and Louis-Philippe Morency. Lan-

guage2pose: Natural language grounded pose forecasting.
In 2019 International Conference on 3D Vision (3DV), pages
719–728, 2019. 2, 3

[2] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, T. J.
Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeff Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-
ford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners. ArXiv, abs/2005.14165, 2020. 2, 3

[3] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and
William T. Freeman. Maskgit: Masked generative image
transformer. 2022 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 11305–11315,
2022. 3, 4

[4] Xin Chen, Biao Jiang, Wen Liu, Zilong Huang, Bin Fu, Tao
Chen, Jingyi Yu, and Gang Yu. Executing your commands
via motion diffusion in latent space. 2023 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 18000–18010, 2022. 2, 3, 5, 6, 7, 1, 4

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In North American
Chapter of the Association for Computational Linguistics,
2019. 3

[6] Ming Ding, Wendi Zheng, Wenyi Hong, and Jie Tang.
Cogview2: Faster and better text-to-image generation via hi-
erarchical transformers. ArXiv, abs/2204.14217, 2022. 3

[7] Patrick Esser, Robin Rombach, and Björn Ommer. Tam-
ing transformers for high-resolution image synthesis. 2021
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 12868–12878, 2020. 3, 4

[8] Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke
Zettlemoyer. Mask-predict: Parallel decoding of conditional
masked language models. In Conference on Empirical Meth-
ods in Natural Language Processing, 2019. 3, 4

[9] Anindita Ghosh, Noshaba Cheema, Cennet Oguz, Christian
Theobalt, and P. Slusallek. Synthesis of compositional ani-
mations from textual descriptions. 2021 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages 1376–
1386, 2021. 6, 7

[10] Chuan Guo, Xinxin Zuo, Sen Wang, Shihao Zou, Qingyao
Sun, Annan Deng, Minglun Gong, and Li Cheng. Ac-
tion2motion: Conditioned generation of 3d human motions.
Proceedings of the 28th ACM International Conference on
Multimedia, 2020. 5

[11] Chuan Guo, Xinxin Xuo, Sen Wang, and Li Cheng. Tm2t:
Stochastic and tokenized modeling for the reciprocal genera-
tion of 3d human motions and texts. ArXiv, abs/2207.01696,
2022. 6, 7

[12] Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji,
Xingyu Li, and Li Cheng. Generating diverse and natural 3d

human motions from text. In 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
5142–5151, 2022. 2, 3, 4, 5, 6, 7, 8, 1

[13] Jonathan Ho, Ajay Jain, and P. Abbeel. Denoising diffusion
probabilistic models. ArXiv, abs/2006.11239, 2020. 3

[14] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang,
Ruiqi Gao, Alexey A. Gritsenko, Diederik P. Kingma, Ben
Poole, Mohammad Norouzi, David J. Fleet, and Tim Sali-
mans. Imagen video: High definition video generation with
diffusion models. ArXiv, abs/2210.02303, 2022. 3

[15] Biao Jiang, Xin Chen, Wen Liu, Jingyi Yu, Gang Yu, and
Tao Chen. Motiongpt: Human motion as a foreign language.
ArXiv, abs/2306.14795, 2023. 2, 3

[16] Korrawe Karunratanakul, Konpat Preechakul, Supasorn
Suwajanakorn, and Siyu Tang. Gmd: Controllable hu-
man motion synthesis via guided diffusion models. ArXiv,
abs/2305.12577, 2023. 3

[17] Jihoon Kim, Jiseob Kim, and Sungjoon Choi. Flame: Free-
form language-based motion synthesis & editing. In AAAI
Conference on Artificial Intelligence, 2022. 2, 3

[18] Hanyang Kong, Kehong Gong, Dongze Lian, Michael Bi Mi,
and Xinchao Wang. Priority-centric human motion genera-
tion in discrete latent space. ArXiv, abs/2308.14480, 2023.
6, 7

[19] Yunhong Lou, Linchao Zhu, Yaxiong Wang, Xiaohan Wang,
and Yezhou Yang. Diversemotion: Towards diverse hu-
man motion generation via discrete diffusion. ArXiv,
abs/2309.01372, 2023. 2

[20] Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Ger-
ard Pons-Moll, and Michael J. Black. Amass: Archive of
motion capture as surface shapes. 2019 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages 5441–
5450, 2019. 5

[21] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav
Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and
Mark Chen. Glide: Towards photorealistic image generation
and editing with text-guided diffusion models. In Interna-
tional Conference on Machine Learning, 2021. 3

[22] Mathis Petrovich, Michael J. Black, and Gül Varol. Temos:
Generating diverse human motions from textual descriptions.
ArXiv, abs/2204.14109, 2022. 2, 3, 6, 7

[23] Mathis Petrovich, Michael J. Black, and Gül Varol. Tmr:
Text-to-motion retrieval using contrastive 3d human motion
synthesis. ArXiv, abs/2305.00976, 2023. 2, 3

[24] Matthias Plappert, Christian Mandery, and Tamim Asfour.
The KIT motion-language dataset. Big Data, 4(4):236–252,
2016. 2, 5, 6, 7

[25] Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin Qiu,
Weinan Zhang, Yong Yu, and Lei Li. Glancing transformer
for non-autoregressive neural machine translation. In Annual
Meeting of the Association for Computational Linguistics,
2020. 3

[26] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In International
Conference on Machine Learning, 2021. 4

1554



[27] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation. ArXiv, abs/2102.12092,
2021. 3

[28] Robin Rombach, A. Blattmann, Dominik Lorenz, Patrick
Esser, and Björn Ommer. High-resolution image synthesis
with latent diffusion models. 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
10674–10685, 2021. 3

[29] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily L. Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, Seyedeh Sara Mah-
davi, Raphael Gontijo Lopes, Tim Salimans, Jonathan Ho,
David J. Fleet, and Mohammad Norouzi. Photorealistic text-
to-image diffusion models with deep language understand-
ing. ArXiv, abs/2205.11487, 2022. 3

[30] Yonatan Shafir, Guy Tevet, Roy Kapon, and Amit H.
Bermano. Human motion diffusion as a generative prior.
ArXiv, abs/2303.01418, 2023. 3, 5

[31] Yi Shi, Jingbo Wang, Xuekun Jiang, and Bo Dai. Control-
lable motion diffusion model. ArXiv, abs/2306.00416, 2023.
3

[32] Uriel Singer, Adam Polyak, Thomas Hayes, Xiaoyue Yin, Jie
An, Songyang Zhang, Qiyuan Hu, Harry Yang, Oron Ashual,
Oran Gafni, Devi Parikh, Sonal Gupta, and Yaniv Taigman.
Make-a-video: Text-to-video generation without text-video
data. ArXiv, abs/2209.14792, 2022. 3

[33] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. ArXiv, abs/2010.02502, 2020.
3

[34] Guy Tevet, Brian Gordon, Amir Hertz, Amit H. Bermano,
and Daniel Cohen-Or. Motionclip: Exposing human motion
generation to clip space. In European Conference on Com-
puter Vision, 2022. 2, 3

[35] Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir,
Daniel Cohen-Or, and Amit H. Bermano. Human motion
diffusion model. ArXiv, abs/2209.14916, 2022. 2, 3, 6, 7, 8,
1, 4

[36] Jo-Han Tseng, Rodrigo Castellon, and C. Karen Liu. Edge:
Editable dance generation from music. 2023 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 448–458, 2022. 3
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