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Figure 1. Modular Customization of Diffusion Models. Given a large set of individual concepts (left), the goal of Modular Customization

is to enable independent customization (fine-tuning) per concept, while efficiently merging a subset of customized models during inference,

so that the corresponding concepts can be jointly synthesized without compromising fidelity. To tackle this, we propose Orthogonal

Adaptation, which encourages customized weights of one concept to be orthogonal to the customized weights of others.

Abstract
Customization techniques for text-to-image models have

paved the way for a wide range of previously unattainable

applications, enabling the generation of specific concepts

across diverse contexts and styles. While existing meth-

ods facilitate high-fidelity customization for individual con-

cepts or a limited, pre-defined set of them, they fall short

of achieving scalability, where a single model can seam-

lessly render countless concepts. In this paper, we ad-

dress a new problem called Modular Customization, with

the goal of efficiently merging customized models that were

fine-tuned independently for individual concepts. This al-

lows the merged model to jointly synthesize concepts in one

image without compromising fidelity or incurring any ad-

ditional computational costs. To address this problem, we

introduce Orthogonal Adaptation, a method designed to en-

courage the customized models, which do not have access to

each other during fine-tuning, to have orthogonal residual

weights. This ensures that during inference time, the cus-

tomized models can be summed with minimal interference.

Our proposed method is both simple and versatile, applica-

ble to nearly all optimizable weights in the model architec-

ture. Through an extensive set of quantitative and qualita-

tive evaluations, our method consistently outperforms rele-

vant baselines in terms of efficiency and identity preserva-

tion, demonstrating a significant leap toward scalable cus-

tomization of diffusion models.

1. Introduction

Diffusion models (DMs) mark a paradigm shift for com-

puter vision and beyond. DM-based foundation models for

text-to-image, video, or 3D generation enable users to cre-

ate and edit content with unprecedented quality and diver-

sity using intuitive text prompts [32]. Although these foun-

dation models are trained on a massive amount of data, in

order to synthesize user-specific concepts (such as a pet, an

item, or a person) with a high fidelity, they often need to be

fine-tuned.

Several recent approaches to customizing DMs to indi-

vidual concepts have demonstrated high-quality results [10,

18, 24, 36, 44]. A multi-concept DM strategy, however,

where several pre-trained concepts are mixed in a single

image, remains challenging. Existing multi-concept meth-

ods [12, 24] either show a degradation in the quality of in-

dividual concepts when merged or require access to multi-

ple concepts during training. The latter makes the process

unscalable and raises privacy concerns when the different

concepts belong to different users. Furthermore, in all cases

the mixing process is computationally inefficient.

We introduce orthogonal adaptation as a new approach

to enabling instantaneous multi-concept customization of

DMs. The primary insight of our work is that changing

how the DM is fine-tuned for novel concepts can lead to

very efficient mixing of these concepts. Specifically, we

represent each new concept using a basis that is approx-
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Concept Bank

Figure 2. Gallery of multi-concept generations. Our method enables efficient merging of individually fine-tuned concepts for modular,

efficient multi-concept customization of text-to-image diffusion models. Each concept shown above was fine-tuned individually using

orthogonal adaptation. Fine-tuned weight residuals are then merged via summation, enabling multi-concept generation.

imately orthogonal to the basis of other concepts. These

bases do not need to be know a priori and different con-

cepts can be trained independently of each other. A key

advantage of our approach is that our model does not need

to be re-trained when mixing several of our orthogonal con-

cepts together, for example to jointly synthesize different

concepts that were never seen together in any training ex-

ample. Importantly, our approach is modular in that it en-

ables individual concepts to be learned independently and

in parallel without knowledge of each other. Moreover, it

is privacy aware in the sense that it never requires access to

the training images of concepts to mix them.

Consider a social media platform where millions of users

fine-tune a DM using their personal concepts and want to

mix them with their friends’ concepts on their phones. Effi-

ciency of the customization and mixing processes as well as

data privacy are key challenges in this scenario. Our method

addresses precisely these issues. A core technical contribu-

tion of our work is a modular customization and scalable

multi-concept merging approach that offers better quality

in terms of identity preservation than baselines at similar

speeds, or similar quality to state-of-the-art baselines at sig-

nificantly lower processing times.

2. Related Work

Text-conditioned image synthesis. The field of text-

conditioned image synthesis has experienced significant ad-

vancements, driven by developments in GANs [6, 11, 21–

23] and diffusion models [8, 16, 17, 28, 30, 35, 42]. Ear-

lier efforts focus on applying GANs to various conditional

synthesis tasks, including class-conditioned image gener-

ation [6, 19, 21] and text-driven editing [2, 5, 9, 26, 29,

31, 34, 46]. More recently, the focus has shifted to large

text-to-image models [33, 35, 38, 48] trained on large-

scale datasets [39]. In this paper, we will utilize the open-

source StableDiffusion [35] architecture and build on its

pre-trained checkpoints by fine-tuning.

Method

Fidelity

(Single-concept)

Efficient
Merging

Fidelity

(Multi-concept)

TI [10] : 6 :

DB-LoRA1 [36] 6 6 :

Custom Diffusion [24] : 6 :

Mix-of-Show [12] 6 : 6

Ours 6 6 6

Table 1. Comparison of Solutions to Modular Customization.

Our customization approach excels in three key areas: (1) preserv-

ing the identity of individual concepts with high fidelity, (2) effi-

ciently merging independently customized models, and (3) main-

taining high concept fidelity for multi-concept image synthesis us-

ing the merged model.

Customization. The task of customization aims at captur-

ing a user-defined concept, to be used for generation under

various contexts. Seminal works such as Textual Inversion

(TI) [10] and DreamBooth [36] tackle the problem of cus-

tomization by taking a handful of images of the same con-

cept to produce a representation of the subject to be used

for controlled generation. TI captures new concepts by opti-

mizing a text embedding to reconstruct target images using

the conventional diffusion loss. Follow-up works, such as

P+ [14], extend Texture Inversion with a more expressive

token representation, improving generation subject align-

ment/fidelity. DreamBooth [36], on the other hand, picks an

uncommon word token and fine-tunes the network weights

to reconstruct the target concept using diffusion loss [17].

Custom Diffusion [24] works in a similar way but only

fine-tunes a subset of the diffusion model layers, namely

the cross-attention layers. LoRA [18] is a low-rank ma-

trix decomposition method that enables better parameter ef-

ficiency for fine-tuning methods, and was recently adapted

to customization of text-to-image diffusion models [1] (DB-

LoRA). Recent works [20, 37, 40, 41, 43, 45, 47] try to im-

prove speed by training feed-forward networks to predict

adaptation parameters from data, successfully amortize the

time taken to create customize concepts.

1assuming DB-LoRA fine-tuned models are merged with FedAvg [25]
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Multi-concept Customization. Certain existing works

have taken the task of customization one step further, aim-

ing to inject multiple novel concepts into a model at the

same time. Custom Diffusion [24] achieves this through

a joint optimization loss for all concepts, while Break-

a-scene [3] and SVDiff [13] introduces a masked cross-

attention loss to learn individual concepts in images con-

taining multiple concepts. However, such methods require

access to ground truth data of all concepts training. In this

work, we are interested in the task of modular customiza-

tion, where concepts are learned independently, and users

can then mix and match individual concepts during infer-

ence for multi-concept image synthesis (Sec. 3.1).

Prior works have provided implicit solutions to the prob-

lem of modular customization, but each existing method

comes with its own set of trade-offs. TI [10, 27, 44] im-

plicitly addresses the task by representing each concept

through a unique token embedding, enabling multi-concept

customization by simply querying each token. However,

TI tends to suffer from low subject fidelity, as token embed-

dings alone provide limited expressivity. Federated Averag-

ing (FedAvg) [25] merges fine-tuned models by simply tak-

ing a weighted average between the weights of each model,

although fast and expressive, naive combination tends to

lead to loss of concept identity. Custom Diffusion [24] sup-

ports merging of individually fine-tuned networks through

solving a constrained customization problem. This method

also struggles with expressivity, as only a small subset of

the diffusion model weights are being updated. Concurrent

work, Mix-of-Show (MoS) [12] expands on this method

by introducing gradient fusion, enabling merging of mul-

tiple separately fine-tuned models without placing restric-

tions on parameter expressivity. Though expressive, gra-

dient fusion is computationally demanding, taking ∼15-20

minutes just to combine three custom concepts into a sin-

gle model, which becomes intractably expensive when de-

ployed at scale. Table 1 summarizes the key areas in which

our approach differs from previous and concurrent works.

3. Method

In this section, we first introduce the problem setting of

modular customization (Sec. 3.1). We then take a look at

the simple solution of FedAvg [25], and explore where and

why this naive method fails to preserve identity (Sec. 3.2).

Motivated by the limitations of FedAvg, we discuss the con-

ditions to ensure concept identity preservation (Sec. 3.3),

and finally introduce our solution to modular customization

– orthogonal adaption (Sec. 3.4 and Sec. 3.5).

3.1. Modular Customization

In this paper, we are interested in customizing text-to-

image diffusion models to generate multiple personal con-

cepts in an efficient, scalable, and decentralized manner.

(a) Independent Customization

(b) Modular Combination

(c) Joint Synthesis
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Figure 3. The three stages of Modular Customization: (a) Inde-

pendent Customization, (b) Modular Combination, and (c) Joint

Synthesis. Note that during individual fine-tuning, all processes

are private, meaning each user does not have access to ground truth

data for other concepts.

In addition to single-concept text-to-image customization,

users are usually interested in seeing multiple concepts in-

teracting together. This calls for a text-to-image model that

is customized to a set of concepts. Being able to generate

multiple personalized concepts in a single model, however,

is challenging. First, the number of sets containing all possi-

ble combinations of concepts is growing exponentially with

respect to the number of concepts – an intractable number

even for a relatively small number of concepts. As a result,

it’s important for personalized concepts to be merged with

interactive speed. Furthermore, users usually have limited

compute at their end, which means any computation done

on the users end should ideally be trivial.

These requirements motivate an efficient and scalable

fine-tuning setting we call modular customization, where

individual fine-tuned models should act like independent

modules, which can be combined with others in a plug-

and-play manner without additional training. The setting

of modular customization involves three stages: indepen-

dent customization, modular combination and joint synthe-

sis. Fig. 3 provides an illustration of this three stage process.

With modular customization in mind, our goal is to de-

sign a fine-tuning scheme, such that individually fine-tuned

models can be trivially combined (e.g. summation) with any

other fine-tuned model to enable multi-concept generation.

7966



(a) Conventional LoRA structure

Pretrained

Weight Matrix
Frozen

Trainable

(b) Ours 3 orthogonal adaptation 

Pretrained

Weight Matrix

Frozen

C
o
n
c
e
p
t
 
j

C
o
n
c
e
p
t
 
i

C
o
n
c
e
p
t
 
i

(c) Orthogonality constraint

(d) Basis sampling method

Shared orthogonal basis

(e) Visualization of concept disentanglement

without orthogonality with orthogonality

correlated concepts lead to 

<crosstalk= when merged
orthogonal concepts preserve 

identity when merged

,

Figure 4. Overview of Orthogonal Adaptation. (a) LoRA [18] enables training of both low-rank decomposed matrices. (b) Orthogonal

adaption constrains training only to A, leaving B fixed. (c) For two separate concepts, i and j, an orthogonality constraint is imposed

between Bi and Bj . (d) When concepts i and j are trained independently, approximate orthogonality between Bi and Bj can be achieved

by sampling random columns from a shared orthogonal matrix. (e) Without the orthogonality constraint, correlated concepts suffer from

“crosstalk” when merged; with the orthogonality constraint, orthogonal concepts preserve their identities after merging.

3.2. Federated Averaging

Perhaps the most straight-forward technique for achiev-

ing modular customization is to take a weighted average of

each individually fine-tuned model. This technique is often

referred to as FedAvg [25]. Given a set of learned weight

residuals ∆θi optimized on concept i, the resulting merged

model is simply given by

θmerged = θ +
∑

i

λi∆θi, (1)

where θ represents the pre-trained parameters of the model

used for fine-tuning, and λi is a scalar representing the rel-

ative strength of each concept. While FedAvg is fast and

places no constraints on the expressivity of each individu-

ally fine-tuned model, naively averaging these weights can

lead to loss of subject fidelity due to interference between

the learned weight residuals. This effect is especially se-

vere when training multiple semantically similar concepts

(e.g., human identities), as learned weight residuals tend

to be very similar. We coin this undesirable phenomenon

“crosstalk”. Fig. 7 and Fig. 8(a) provide visualizations of

the effect of crosstalk, as FedAvg causes multi-concept gen-

erations to exhibit loss of identity. Our approach is in-

spired by FedAvg. We adopt its computational efficiency

but modify the fine-tuning process to ensure minimal inter-

ference between learned weight residuals between different

concepts. We want to enable instant, multi-concept cus-

tomization from individually trained models without sacri-

ficing subject fidelity.

3.3. Preserving Concept Identity

With the goal of addressing the limitations of FedAvg,

we first examine where this method fails. For simplicity,

consider the case of merging two concepts i and j. Af-

ter fine-tuning on each individual task, we receive a set of

learned weight residuals ∆θi and ∆θj . The output of a par-

ticular linear layer in the fine-tuned network is

Oi(Xi) = (θ +∆θi)Xi, (2)

where Xi represents a particular input to the layer corre-

sponding to the training data of concept i. When merging

the two concepts using FedAvg with λ = 1, the resulting

merged model produces

Ôi(Xi) = (θ +∆θi +∆θj)Xi. (3)

The goal of concept preservation is to have Ôi(Xi) =
Oi(Xi). Note that, without enforcing specific constraints,

it is likely that ∆θjXi ̸= 0 and, subsequently, Ôi ̸= Oi.

It follows that the mapping of data for concept i is pre-

served when ∆θjXi = 0 for j ̸= i. By symmetry, the map-

ping of data for concept j is preserved given ∆θiXj = 0
for i ̸= j. Intuitively, ||∆θjXi|| measures the amount of

crosstalk between the customized weights of concepts i and

j. We would like to keep this value low to ensure subject

identity is preserved even after merging. However, note that

given enough data for training a certain concept i, Xi is

likely to have full column rank. This makes the orthog-

onality condition impossible to satisfy. Instead, we pro-

pose a relaxation to this condition, choosing to minimize

the crosstalk term for some projection of Xi onto a sub-

space Si. This projection yields SiS
T
i Xi, and our relaxed

objective hopes to achieve Ôi(SiS
T
i Xi) = Oi(SiS

T
i Xi).

3.4. Orthogonal Adaptation

Motivated by the relaxed objective above, we propose

orthogonal adaptation. Similar to low-rank adaptation

(LoRA), we represent learned weight residuals through a

low-rank decomposition of the form

∆θi = AiB
T
i , θi ∈ R

n×mAi ∈ R
n×r, Bi ∈ R

m×r, (4)
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Input Images
LoRA (image alignment: 0.745)

Orthogonal adaptation (image alignment: 0.748)

Figure 5. Over-parameterization of text-to-image models. De-

spite the added constraint on the trained weight residuals, due to

the over-paramterized nature of large text-to-image diffusion mod-

els, our method is able to achieve single-concept customization re-

sults with comparable fidelity to the unconstrained setting.

where the rank r << min(n,m). However, contrary to con-

ventionally fine-tuning with LoRA, we keep Bi constant,

and only optimize Ai.

Consider a matrix B̄j , where its columns span the or-

thogonal complement of the column space of Bj . We show

that by selecting Si = B̄j , we achieve the conditions for

achieving the projected preservation objective. This can be

seen from the fact that,

Ôi(SiS
T
i Xi) = Oi(SiS

T
i Xi) + ∆θjSiS

T
i Xi (5)

= Oi(SiS
T
i Xi) +Aj�

�
�*

0
BT

j Si ST
i Xi (6)

= Oi(SiS
T
i Xi). (7)

Since r << m, the orthogonal complement of Bj covers

most of Rm. It follows that B̄jB̄
T
j Xi ≈ Xi, making B̄j a

reasonable candidate for Si.

At the same time, since we expect the learned residu-

als for a concept to have meaningful interactions with their

data, we would also like to ensure ||∆θiXi|| is non-trivial.

By approximating Xi with its projection onto B̄j , our objec-

tive changes to ensuring ||AiB
T
i B̄jB̄

T
j Xi|| is non-trivial.

Examining this term gives us the additional constraint that

BT
i B̄j ̸= 0, meaning the columns of Bi should live in the

orthogonal complement of the columns space of Bj . There-

fore, to ensure meaningful fine-tuning results, we should

also enforce orthogonality between the learned residuals,

i.e. BT
i Bj = 0.

Fig. 4 provides an overview of our orthogonal adaption

method. Intuitively, as illustrated in Fig. 4(e), our method

disentangles custom concepts into orthogonal directions,

ensuring that there is no crosstalk between concepts. As

a result, our merged model can better preserve the identity

of each concept.

Expressivity of orthogonal adaption. Expressivity of

our method arises as a natural concern as we are optimiz-

ing significantly fewer parameters by freezing Bi. For-

tunately, text-to-image diffusion models are often over-

parameterized, with millions/billion of parameters. Prior

works have shown that even fine-tuning a subspace of such

parameters can be expressive enough to capture a novel con-

cept. We also show this result empirically in Fig. 5, where

our method leads to results with similar fidelity, even with-

out the need to optimize Bi during training.

3.5. Designing Orthogonal Matrices Bi’s

A key challenge of the method described in previous sec-

tions is to generate a set of basis matrices Bi that are orthog-

onal to each other. Note that this is very difficult especially

because when choosing Bi, the user is not aware of what

basis the other users chose to optimize for the concepts to

be combined in the future. Strictly enforcing such orthogo-

nality might be infeasible without prior knowledge of other

tasks. We instead propose a relaxation to the constraint, in-

troducing a simple and effective method to achieve approx-

imate orthogonality.

Randomized orthogonal basis. One method for enforc-

ing approximate orthogonality is to determine a shared or-

thogonal basis. For some linear weight θ ∈ R
m×n, we first

generate a large orthogonal basis O ∈ R
n×n. This orthog-

onal basis is shared between all users. During training of

concept i, Bi is formed from taking a random subset of k

columns from O. Given k << n, the probability of two ran-

domly chosen Bi’s to share the same columns is kept low.

Randomized Gaussian. Another approach is to choose

random matrix elements. Specifically, we sample each en-

try of Bi from a zero-mean Gaussian with standard devia-

tion σ: Bi[k] ∼ N (0, σ2I). When the dimensionality of Bi

is high, this simple strategy creates matrices that are orthog-

onal in expectation: E
[

BT
i Bj

]

= 0 (see supplement for

discussion). Naturally, this method does not require knowl-

edge of a shared basis to sample from. In practice, how-

ever, we found randomized Gaussians lead to higher levels

of crosstalk in our setting, i.e., ||BT
i Bj || tends to be larger

than for the randomized orthogonal basis.

4. Experiments

In this section, we show the results of our method applied

to the task of modular customization. Qualitative and quan-

titative results indicate that our method outperforms rele-

vant baselines [1, 12, 24] at similar speeds, and quality on

par with state-of-the-art baselines that require significantly

higher processing times [12].

Datasets. We perform evaluations on a custom dataset of

12 concept identities, each containing 16 unique images of

the target concept in different contexts.

Implementation details. We perform fine-tuning on the

Stable Diffusion [35] model, specifically the ChilloutMix

checkpoint for its ability to handle high-fidelity human face
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<1s

<1s

<1s ~2s <1s
Orthogonal

Adaptation (Ours)

Mix-of-Show

(Gradient Fusion)

Mix-of-Show

(FedAvg)

Custom Diffusion

(Merge)
Prompt+ ~15mDreamBooth-LoRA

(FedAvg)Input Images <1s

<THANOS>                <RYAN> <MARGOT> , in the style of Cyberpunk 2077, 4K, ultra-realistic, & Generate/ /

Figure 6. Identity preservation in single-concept generations from a merged model. We demonstrate our method’s ability to maintain

identity consistency across different single-concept generations. Each column showcases images from the same merged model, represent-

ing three distinct concept identities. Our approach showcases better identity alignment with the corresponding input images, offering a

significant improvement over comparable merging methods. Additionally, our method’s performance parallels that of Mix-of-Show (Gra-

dient Fusion) but with the advantage of near-instantaneous merging, in contrast to the approximately 15-minute merging time required.

generation. For single-concept fine-tuning, we apply or-

thogonal adaptation to all linear layers in the Stable Dif-

fusion architecture. Following prior work [12, 44], we also

apply a layer-wise text embedding and represent each fine-

tuned concept as two separate text tokens. We fine-tune

the text embeddings with a learning rate of 1e − 3, the

diffusion model parameters with a learning rate of 1e − 5
and set r = 20 for all experiments. Single-concept fine-

tuning takes ∼10-15 minutes on two A6000 GPUs. For

our method, we enforce the orthogonality constraint us-

ing the randomized orthogonal basis method for all experi-

ments. Methods using FedAvg (including orthogonal adap-

tion) were merged using λ = 0.6.

Baselines. We compare our method against state-of-the-

art baselines on the task of modular customization, namely:

DreamBooth-LoRA [1], P+ [44], Custom Diffusion [24],

and Mix-of-Show [12]. Fine-tuned models are merged dif-

ferently depending on the method. DreamBooth-LoRA is

merged using FedAvg, Custom Diffusion is merged us-

ing their proposed optimization-based merging method, and

Mix-of-Show is merged using gradient fusion as outlined in

their work. Since P+ does not perform fine-tuning on the

weights of the network, merging is done simply by query-

ing each concept’s token embedding. For completeness, we

also compare against Mix-of-Show merged using FedAvg,

serving as an efficient alternative to the computationally de-

manding gradient fusion method.

Experimental setup and metrics. First, we fine-tune

each concept individually, without access to data for any

other concept. Each fine-tuned model is then combined

with two other concepts at random using their correspond-

ing method for merging. Following prior work, we eval-

uate our method on image alignment, which measures the

similarity of image features between generated images and

the input reference image by measuring their similarity in

the CLIP image feature space [10]. Similarly, we evaluate

our method using text alignment, ensuring the output gen-
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Orthogonal Adaptation (Ours) Mix-of-Show (FedAvg)

Prompt+ Mix-of-Show (Grad Fusion)

<THANOS>            & <RYAN> & <MARGOT> , playing poker, in the style of Cyberpunk 2077, & Generate

Figure 7. Multi-concept results. Examples of multi-concept generations, synthesized using sampling techniques from concurrent

work [12]. While Mix-of-Show (FedAvg) maintains high-level features, it struggles with crosstalk, manifesting overly smooth facial

features. Mix-of-Show (Gradient Fusion) exhibits good identity alignment, albeit with a computationally intensive merging process. P+

manages to preserve identity after merging, but struggles to capture identity with high-fidelity due to limited parameter expressivity. Our

method stands out by achieving high identity alignment with a significantly faster merging procedure.

Method
Merge

Time

Text Alignment ↑ Image Alignment ↑ Identity Alignment ↑

Single Merged ∆ Single Merged ∆ Single Merged ∆

P+ [44] <1 s .643 → .643 — .683 → .683 — .515 → .515 —

Custom Diffusion [24] ∼2 s .668 → .673 +.005 .648 → .623 -.025 .504 → .408 -.096

DB-LoRA (FedAvg) [1] <1 s .613 → .682 +.069 .744 → .531 -.213 .683 → .098 -.585

MoS (FedAvg) [12] <1 s .625 → .621 -.004 .745 → .735 -.010 .728 → .706 -.022

MoS (Grad Fusion) [12] ∼15 m .625 → .631 +.006 .745 → .729 -.016 .728 → .717 -.011

Ours <1 s .624 → .644 -.010 .748 → .741 -.007 .740 → .745 +.005

Table 2. Quantitative results. We provide detailed qualitative comparisons for each method, evaluated both before and after the merging

process. Prior to merging, our method demonstrates comparable performance in all identity-related metrics, highlighting its expressivity

even with the orthogonality constraint. Post-merging, our method achieves the highest scores in image and identity alignment. Our method

is also capable of maintaining text alignment scores comparable to other high-fidelity methods such as P+ and MoS.

erations still adhere to the input text-prompts by measuring

the text-image similarity also using CLIP [15]. However, to

further illustrate the identity preserving capabilities of our

method, we also evaluate our method using the ArcFace [7]

model. Using the ArcFace model, we measure the rate at

which the target human identity is detected in a set of gen-

erated images, we refer to this metric as identity alignment.

4.1. Qualitative Comparisons

Merged single-concept results. We illustrate the iden-

tity preserving effect of our method by comparing single-

concept generations of different identities from the same

merged model. As mentioned above, each concept is fine-

tuned individually and merged together during inference.

Fig 6 shows generations for three separate concept identi-

ties, each column contains images sampled from the same

model. Our method achieves better identity alignment with

the input images in the merged model compared to methods

with comparable merging times. We also achieve similar

results to Mix-of-Show (Gradient Fusion), which requires

∼15 minutes to merge three concepts, while our method

enables near instant merging.

Merged multi-concept results. We also show generated

images containing all three identities in the merged model.

Leveraging multi-concept sampling techniques from con-

current work [12], we show examples of multi-concept gen-

erations in Fig. 7. Once again, multi-concept models trained

using our method generate images with better identity align-

ment than competing baselines. Due to the poor perfor-

mance of DB-LoRA [1] and Custom Diffusion [24] for

single-concept generations, we omit results for these meth-

ods on multi-concept generation due to space constraints.
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P+ [14] suffers from low concept fidelity due to lim-

ited expressivity in their training regime. Although Mix-of-

Show [12] (FedAvg) preserves certain high-level features

through the layer-wise text-embedding, it still suffers from

crosstalk due to unconstrained training of weight residuals.

Mix-of-Show (Gradient Fusion) shows impressive identity

alignment, however, this is only enabled by a computation-

ally demanding merging procedure. Our method achieves

high identity alignment while keeping the merging process

at near instant rates.

4.2. Quantitative Results

We present quantitative comparisons in Table. 2. Specif-

ically, we show all three evaluation metrics applied to each

method before and after merging. Our method achieves

comparable results in all concept alignment metrics be-

fore merging, illustrating the expressivity of our method

despite the orthogonality constraint. After merging, our

method achieves the highest image and identity alignment

scores across all methods, while maintaining comparable

text alignment scores with other high-fidelity methods such

as Mix-of-Show and P+. This illustrates that our method

is able to achieve high identity preservation without sacri-

ficing the ability to generalize for different contexts.

Note that although Custom Diffusion [24] and DB-

LoRA [1] achieves higher text alignment, this is at the cost

of significantly lower concept alignment scores than that of

competing methods.

5. Ablations

Effect of orthogonality. In Fig. 8(a), we present gener-

ated images from a model created from merging two sepa-

rate fine-tuned models (concepts i and j). To illustrate the

effect of orthogonality on identity preservation, we manip-

ulate the degree of orthogonality between Bi and Bj . On

the left, we have the worst case scenario, where Bi = Bj .

On the right, we show results where perfect orthogonality is

achieved, i.e. BT
i Bj = 0. In between, we construct Bi and

Bj from a shared orthogonal matrix, but choose half of their

columns to be overlapping. Results in Fig. 8(a) show that

orthogonality contributes significantly to identity preserva-

tion even in the extreme case of merging 2 concepts.

Number of merged concepts Fig. 8(b) shows results gen-

erated from models with a range of concepts merged to-

gether. With orthogonality, our model is capable of merg-

ing a high number of concepts with minimal identity loss.

In contrast, without orthogonality, concept fidelity quickly

degrades, even with relatively low number of concepts be-

ing combined. Running our model without orthogonality is

equivalent to Mix-of-Show [12] merged using FedAvg [25].

Reference 

Images

(a) Degree of orthogonality

(b) # of merged concepts
3 135 7 9 11

Degree of orthogonality

Without orthogonality

With orthogonality

Figure 8. Ablation studies. (a) Images generated from a model

formed by merging two separately fine-tuned models (concepts i

and j), focusing on the role of orthogonality in preserving identity.

(b) Image generations from models that with a varying number of

merged concepts. Without orthogonality, concept identity is lost

even when merging a small number of concepts.

6. Discussion

Limitations. Despite showcasing the ability to encode

several custom concepts into the same text-to-image model,

generating images with complex compositions/interactions

between multiple custom concepts remains challenging. As

concepts, such as human identities, have the tendency to

either be entangled, or even completely ignored. Existing

works [4, 12] have developed certain strategies for remedy-

ing this effect, but such methods are still prone to the afore-

mentioned failure cases. Another limitation of orthogonal

adaption is that it directly modifies the fine-tuning process.

Therefore, existing fine-tuned networks (e.g. LoRAs [1])

can not be adapted post-hoc to ensure orthogonality.

Ethics Considerations. Generative AI could be misused

for generating edited imagery of real people with the intent

of spreading disinformation. Such misuse of image synthe-

sis techniques poses a societal threat, and we do not con-

done using our work for such purposes. We also recognize

a potential biases in the foundation model we built upon.

Conclusions. By disentangling customization concepts
into orthogonal directions, orthogonal adaptation stream-
lines the process of integrating multiple independently
fine-tuned concepts into a single model instantly and with
trivial compute, while also ensuring preservation of each
concept. Our work makes a significant step towards modu-
lar customization, where multi-concept customization can
be achieved with individual, privately fine-tuned models.
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Hampson, and Blaise Agüera y Arcas. Communication-

efficient learning of deep networks from decentralized data,

2023. 2, 3, 4, 8

[26] Ron Mokady, Omer Tov, Michal Yarom, Oran Lang, Inbar

Mosseri, Tali Dekel, Daniel Cohen-Or, and Michal Irani.

Self-distilled stylegan: Towards generation from internet

photos. In ACM SIGGRAPH 2022 Conference Proceedings,

pages 1–9, 2022. 2

[27] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and

Daniel Cohen-Or. Null-text inversion for editing real images

using guided diffusion models. In CVPR, pages 6038–6047,

2023. 3

[28] Alexander Quinn Nichol and Prafulla Dhariwal. Improved

denoising diffusion probabilistic models. In International

Conference on Machine Learning, pages 8162–8171. PMLR,

2021. 2

[29] Yotam Nitzan, Michaël Gharbi, Richard Zhang, Taesung

Park, Jun-Yan Zhu, Daniel Cohen-Or, and Eli Shechtman.

Domain expansion of image generators. 2023 IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 15933–15942, 2023. 2

7972



[30] Kushagra Pandey, Avideep Mukherjee, Piyush Rai, and Ab-

hishek Kumar. Diffusevae: Efficient, controllable and high-

fidelity generation from low-dimensional latents. Trans.

Mach. Learn. Res., 2022, 2022. 2

[31] Gaurav Parmar, Yijun Li, Jingwan Lu, Richard Zhang, Jun-

Yan Zhu, and Krishna Kumar Singh. Spatially-adaptive mul-

tilayer selection for gan inversion and editing. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 11399–11409, 2022. 2

[32] Ryan Po, Wang Yifan, and Vladislav Golyanik et al. State of

the art on diffusion models for visual computing. In arxiv,

2023. 1

[33] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,

and Mark Chen. Hierarchical text-conditional image gener-

ation with clip latents. arXiv preprint arXiv:2204.06125, 1

(2):3, 2022. 2

[34] Daniel Roich, Ron Mokady, Amit H Bermano, and Daniel

Cohen-Or. Pivotal tuning for latent-based editing of real im-

ages. ACM Transactions on graphics (TOG), 42(1):1–13,

2022. 2

[35] Robin Rombach, A. Blattmann, Dominik Lorenz, Patrick

Esser, and Björn Ommer. High-resolution image synthesis

with latent diffusion models. 2022 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), pages

10674–10685, 2021. 2, 5

[36] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,

Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine

tuning text-to-image diffusion models for subject-driven

generation. In CVPR, pages 22500–22510, 2023. 1, 2

[37] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Wei Wei,

Tingbo Hou, Yael Pritch, Neal Wadhwa, Michael Rubinstein,

and Kfir Aberman. Hyperdreambooth: Hypernetworks for

fast personalization of text-to-image models. arXiv preprint

arXiv:2307.06949, 2023. 2

[38] Chitwan Saharia, William Chan, Saurabh Saxena, Lala

Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,

Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,

et al. Photorealistic text-to-image diffusion models with deep

language understanding. Advances in Neural Information

Processing Systems, 35:36479–36494, 2022. 2

[39] Christoph Schuhmann, Romain Beaumont, Richard Vencu,

Cade Gordon, Ross Wightman, Mehdi Cherti, Theo

Coombes, Aarush Katta, Clayton Mullis, Mitchell Worts-

man, et al. Laion-5b: An open large-scale dataset for training

next generation image-text models. Advances in Neural In-

formation Processing Systems, 35:25278–25294, 2022. 2

[40] Jing Shi, Wei Xiong, Zhe Lin, and Hyun Joon Jung. Instant-

booth: Personalized text-to-image generation without test-

time finetuning. ArXiv, abs/2304.03411, 2023. 2

[41] Kihyuk Sohn, Nataniel Ruiz, Kimin Lee, Daniel Castro

Chin, Irina Blok, Huiwen Chang, Jarred Barber, Lu Jiang,

Glenn Entis, Yuanzhen Li, et al. Styledrop: Text-to-image

generation in any style. arXiv preprint arXiv:2306.00983,

2023. 2

[42] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-

ing diffusion implicit models. ArXiv, abs/2010.02502, 2020.

2

[43] Yu-Chuan Su, Kelvin C. K. Chan, Yandong Li, Yang

Zhao, Han-Ying Zhang, Boqing Gong, H. Wang, and Xuhui

Jia. Identity encoder for personalized diffusion. ArXiv,

abs/2304.07429, 2023. 2

[44] Andrey Voynov, Qinghao Chu, Daniel Cohen-Or, and Kfir

Aberman. p+: Extended textual conditioning in text-to-

image generation. arXiv preprint arXiv:2303.09522, 2023.

1, 3, 6, 7

[45] Zhouxia Wang, Xintao Wang, Liangbin Xie, Zhongang Qi,

Ying Shan, Wenping Wang, and Ping Luo. Styleadapter:

A single-pass lora-free model for stylized image generation.

ArXiv, abs/2309.01770, 2023. 2

[46] Weihao Xia, Yujiu Yang, Jing-Hao Xue, and Baoyuan Wu.

Tedigan: Text-guided diverse face image generation and ma-

nipulation. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pages 2256–2265,

2021. 2

[47] Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-

adapter: Text compatible image prompt adapter for text-to-

image diffusion models. 2023. 2

[48] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gun-

jan Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku, Yin-

fei Yang, Burcu Karagol Ayan, et al. Scaling autoregres-

sive models for content-rich text-to-image generation. arXiv

preprint arXiv:2206.10789, 2(3):5, 2022. 2

7973


