
HDQMF: Holographic Feature Decomposition Using Quantum Algorithms

Prathyush Poduval

University of California, Irvine

Irvine, CA 92617

ppoduval@uci.edu

Zhuowen Zou

University of California, Irvine

Irvine, CA 92617

zhuowez1@uci.edu

Mohsen Imani

University of California, Irvine

Irvine, CA 92617

m.imani@uci.edu

Abstract

This paper addresses the decomposition of holographic

feature vectors in Hyperdimensional Computing (HDC)

aka Vector Symbolic Architectures (VSA). HDC uses high-

dimensional vectors with brain-like properties to represent

symbolic information, and leverages efficient operators to

construct and manipulate complexly structured data in a

cognitive fashion. Existing models face challenges in de-

composing these structures, a process crucial for under-

standing and interpreting a composite hypervector. We ad-

dress this challenge by proposing the HDC Memorized-

Factorization Problem that captures the common patterns

of construction in HDC models. To solve this problem

efficiently, we introduce HDQMF, a HyperDimensional

Quantum Memorized-Factorization algorithm. HDQMF is

unique in its approach, utilizing quantum computing to of-

fer efficient solutions. It modifies crucial steps in Grover’s

algorithm to achieve hypervector decomposition, achieving

quadratic speed-up.

1. Introduction

Hyperdimensional Computing (HDC), synonymously Vec-

tor Symbolic Architecture (VSA), has gained much pop-

ularity as a framework that provides a natural implemen-

tation of cognitive data structure [17]. It represents in-

formation using hypervectors, a type of holographic and

high-dimensional vector that satisfies brain-inspired prop-

erties [14]. It leverages simple and efficient operations -

bundle, bind, and permute - that support the three patterns

of combinations that cognitive scientists deemed essential

in a cognitive data structure: variable binding, sequential

structures, and hierarchy [3, 5]. This allows HDC models to

represent and manipulate complex and hierarchically struc-

tured data interpretably, where the similarity between the

hypervectors reflects their structural similarity and compo-

nential similarity in a well-defined manner, providing a di-

rect foundation for symbolic logical reasoning.

Recent work has shown great advantages of HDC in en-

hancing the cognitive capability of neural networks. [10]

proposes a neural-vector-symbolic architecture that tackles

the binding problem in neural networks by training an en-

coder network to generate HDC-like representation for sub-

sequence symbolic logic processing, significantly outper-

forming state-of-the-art pure DNN and neuro-symbolic AI

on Raven’s progressive matrices task in both accuracy and

efficiency scaling. Pioneering the development of a neural-

vector-symbolic architecture that addresses the limitations

of both neural networks and symbolic methods in accom-

plishing cognitive tasks, [10] has pointed out many limita-

tions of the current model, one of which is the decomposi-

tion problem that recurs in the general usage of HDC.

This paper focuses on the ability of HDC to provide de-

composition over a composite data structure. Fundamen-

tal to both perception and cognition, the decomposition

problem has been argued to manifest itself in various do-

mains, including visual scene analysis and analogical rea-

soning [1, 2, 5, 18]. Under the HDC framework, this prob-

lem was first modeled as the high-dimensional vector fac-

torization problem [5, 15]: given a hypervector that is the

binding of multiple atomic hypervectors, we want to find

all its constituents with only the codebooks, i.e. the list of

elementary hypervectors. Because the product of binding

does not preserve similarity with its components, this prob-

lem traditionally requires an exhaustive search over all pos-

sible combinations of the elementary hypervectors to solve

the factorization. The combinatorial nature of this prob-

lem makes the search size prohibitively large for exhaustive

searches in practice, limiting the utilization of HDC in prac-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

10978



Object/Plotline/

Neural cluster #1
,

,

,…
Object/Plotline/

Neural cluster #2
,

,

,…

HDQMF 

Factorization

a Upstream Encoding b Our work: Holographic Feature Decomposition c Downstream Application

d Decomposition Performance

H
D

C
-l

ik
e

 r
e

p
re

se
n

ta
ti

o
n

Querying

Which object is on the left?

Who’s the protagonist? 
What’s are the active clusters?

Memorizing

Reasoning

Raven’s Progressive Matrix
Theme Analysis

Cognitive Anomaly Detection

…
Object Shapes

Characters

Neuron Types 

Sizes 

Narratives

Firing rates

Colors 

Rhetoric

Firing Patterns

Story

Image

Neural

Activity 

HDC-guided 

trained NN

Decomposed vector-symbolic representation

✓Generalized Factorization

✓Quadratic speed up

✓Qubit efficient

Figure 1. Overview of our approach. (a) The upstream network generates HDC-like holographic representation. (b) HDQMF performs

Holographic Feature Decomposition given the HDC-like representation and the salient codebooks. Our approach is inspired by Grover’s

algorithm. (c) The resulting decomposition can be used for subsequent cognitive tasks, including reasoning. (d) Our approach is specialized

for the memorized factorization problem, achieves quadratic speedup asymptotically, and is efficient in qubit usage.

tical scenarios. To the best of our knowledge, all existing

models, including [10], compromise by limiting the depth

of the data structures or using exhaustive search over all

possible combinations when necessary [15]. While effort

has been made to optimize the problem classically, given

the empirical results and the current limitation of the theo-

retical analysis tool for this problem [5, 15], we consider it

a safe assumption that all classical algorithms have asymp-

totic time complexity linear in the search space.

Besides the hardness of the problem, the high-

dimensional vector factorization problem also requires non-

trivial generalization to be applied in typical HDC models.

In practice, it is much more common that the hypervectors

in focus, like in [10], are a bundling of bound hypervec-

tors. To provide solutions more suitable for this case, we ad-

dress an extension of the high-dimensional vector factoriza-

tion problem, called the HDC Memorized-Factorization

Problem, that captures this additional complexity.

The assumption about the linear time complexity and the

added complexity of the factorization problem observed in

practice drive us to propose algorithms that can fundamen-

tally pass through the limit imposed by classical computa-

tion, which leads us to quantum computing (QC). Quan-

tum computers differ fundamentally from classical comput-

ers that use binary bits. Instead, quantum computers encode

information in quantum bits, or qubits, that can exist in a su-

perposition of states. Quantum algorithms are well-known

to asymptotically speed up certain types of problems, and

our factorization problem falls within this domain. In this

work, we propose a quantum algorithm for the extended

problem with crucial modification to Grover’s algorithm,

providing quadratic speed-up to classical solutions.

Fig. 1 shows an overview of our work and its general

context. Our contributions are as follows:

1. We propose HDQMF, the HyperDimensional Quantum

Memorized-Factorization algorithm, that addresses the

HDC Memorized-Factorization Problem. This algo-

rithm specializes in finding solutions to the extended

problem even with the presence of noise.

2. We provide analytical results, circuit-level implementa-

tion, and performance measures of our model. We intro-

duce a modified Grover’s algorithm suitable for random

and approximate search for arbitrary similarity distribu-

tions, with analytically tractable results.

3. We propose a hybrid framework for decoding the

bundling of bound hypervectors and compare our meth-

ods to state-of-the-art approaches. We show our approx-

imate Grover’s algorithm retains the quadratic speedup

and can be parallelized in a straightforward manner.

2. Background and Related work

2.1. Hyperdimensional Computing

Elementary Hypervectors. Hyperdimensional Computing

uses high-dimensional vectors, called hypervectors, to rep-

resent symbols. Each class of elementary symbols is typ-

ically represented by a codebook, consisting of a list of

high-dimensional, robust, holographic, and random hyper-

vectors [14] that preserve the desired measure of similarity,

or kernel, between different symbols within the class. In

the Multiply-Add-Permute (MAP) scheme [6] where the el-

ementary hypervectors are bipolar, we can impose the Kro-

necker kernel over a discrete set D by:

hx ← Unif {−1, 1}D x ∈ D
δ(hx, hy) = xT y/D x, y ∈ D

(1)

Where hx is the encoding of the data point x ∈ D, D is the

dimension of the hypervector, and Unif(S) is the uniform

10979



distribution over the support S . The randomizing property

of the generation and the high dimensionality ensures that

the kernel is well-approximated, such that δ(hx, hy) ∼ 1

for x = y, and ∼ N(0, 1/
√
D) otherwise.

HDC Operators. The basic HDC operators are bundling

⊕, binding ⊙, and permutation ρ, which performs “su-

perposition”, variable binding, and ordering, respectively.

Bundling creates sets such that the resulting hypervector

preserves similarity with its constituents [14], while bind-

ing functions as an association operator such that the re-

sultant contains the information of both of its constituents

but is dissimilar to any of them [4]. In MAP, they are

element-wise addition and element-wise multiplication re-

spectively; such implementations align with the functional

aspects of the operators. For bundling, the set hypervector

hS = hx⊕hy⊕hz for the set S = {x, y, z} ⊂ D computes

set membership efficiently:

δ(hS , hw) =
∑

k∈S

δ(hk, hw) ≈ (w ∈ S) (2)

For binding, the bound hypervector, between two or more

symbols, h(x,y) = hx ⊙ hy , represents associations in that

(1) the association hypervector is dissimilar to any of its

components, δ(h(x,y), hx) ≈ 0, and (2) Unbinding one of

the atoms from the hypervector reveals the other, h(x,y) ⊙
hx = hy .

HDC Schemes. Using the basic HDC operators, one may

construct composite hypervectors representing more com-

plex data structures, including trees [5], graphs [29], and

finite state automata [20]. One of the most commonly used

schemes is the “bind-then-bundle” scheme, where attributes

of each object are bound together, and then multiple objects

are bundled to represent the object combination. Fig. 1(b)

implies an instance from such scheme:

hscene = hhexagon ⊙ hlarge ⊙ · · · ⊙ hlight
⊕ hpentagon ⊙ hlarge ⊙ · · · ⊙ hdark

(3)

HDC in Action. HDC’s benefit lies in its

1. Representational robustness: each element of the hy-

pervector contributes evenly to encoding the informa-

tion (hence holographic) and high-dimensionality en-

sures that the information is encoded redundantly [14];

2. Interpretable and fast hypervector manipulation: every

transform by the HDC operator can be interpreted as a

certain type of structure manipulation [23, 30], and bind-

ing and bundling are element-wise (while circular shift

implements permutation); and

3. Fixed-width composition: the composite structures con-

structed from elementary ones with HDC operators, re-

gardless of the schemes, are of fixed dimensionality.

Collectively, HDC becomes a natural candidate for address-

ing the “binding problems” of neural networks [33] that

may provide an adequate description of real-world objects

or situations that can be represented by hierarchical and

nested compositional structures [10, 31].

To this end, [10] proposes a neural-vector-symbolic ar-

chitecture consisting of (1) a neuro-vector frontend to gen-

erate HDC-like (holographic) representation as perception

(Fig. 1(a)-(b)), and (2) a vector-symbolic backend to per-

form symbolic logic reasoning as cognition (Fig. 1(b)-(c)).

The efficient representation of object combination through

HDC connects the best of both worlds in solving cognitive

tasks. Most notably, like many other HDC models [7, 11–

13, 16, 19, 21, 22, 24–29, 34, 36], it uses the “bind-then-

bundle” scheme (Fig. 1(b)).

HDC Decompostion. Many use cases of HDC require

one to decompose a composite hypervector back to its el-

ementary components, and the decomposition process re-

quires some knowledge of the codebooks and the schemes.

If the codebooks are known, bundling and permutation

have clear arithmetic approaches for decoding, as bundling

preserves the similarity of its components, and permuta-

tion can be iteratively reversed. Since bound hypervec-

tors are dissimilar to their components, the problem be-

comes computationally harder. [5, 15], the state-of-the-art,

formalized the high-dimensional vector factorization prob-

lem to decompose bound vectors and developed a recurrent

network called the resonator network that showed practi-

cal advantages in decomposing a bound hypervector over

optimization-based approaches. Recent work has proposed

the problem of decomposing “bound-then-bundled” hyper-

vectors and applied resonator network to study its effective-

ness [9, 32]. In this work, we formulate this problem again

and design an algorithm particularly suited for the decom-

position.

2.2. Quantum Computing

Quantum Computing Basics. Quantum computing is

founded on the principle of applying various unitary oper-

ators to manipulate a set of wavefunctions, typically con-

structed using a class of two-level systems known as qubits

which enables quantum computers to represent information

as a superposition across all possible states.

A general quantum circuit is designed to implement a

unitary operator denoted as Uf within the Hilbert space.

This operator represents a binary function, f , mapping in-

puts from the set {0, 1}m to outputs in {0, 1}n. The ca-

pacity to perform computations in superposition on any set

of states empowers quantum computing to potentially of-

fer significant speedup advantages over classical comput-

ers in various problem-solving scenarios. In this work, we

rely on multi-control gates such as the multi-control XOR

(MXOR) to implement the oracle. The MXOR gate com-

putes the XOR of the components of the n-dimensional

qubit state |x⃗⟩: MXOR |x⃗⟩ |d⟩ = |x⃗⟩ |d⊕ (⊕ixi)⟩.

10980



Grover’s Algorithm. Grover’s algorithm aims to find a

specific item, often referred to as the target, within an un-

sorted database of size S. It can be summarised as follows:

1. Construct the initial superposition of states given by |A⟩
2. Apply the oracle operator to Uo, to get Uo |A⟩
3. Apply the diffusion operator UD, to get UDUo |A⟩
4. Repeat the previous two steps π

4

√
S number of times,

and perform the measurements

The state preparation algorithm builds the operator UA
which generates a uniform superposition of all the possi-

ble states A: UA

∣

∣

∣⃗
0
〉

=
∑

a∈A
1√
S
|a⟩ = |A⟩. The Oracle

is the unitary operation that searches for the marked state

(which we shall denote |m⟩). It simply inverts the phase of

the marked state with Uo |m⟩ = − |m⟩, and Uo |a⟩ = |a⟩
otherwise:

Uo

(

1√
S

∑

a∈A
|a⟩
)

=
1√
S

∑

a∈A
(−1)δm,a |a⟩ . (4)

The diffusion operator UD inverts the amplitudes of

the states in the codebook by the average. It is rep-

resented by the operator UD, UD = 2 |A⟩ ⟨A| −
I = UA

(

2
∣

∣

∣⃗
0
〉〈

0⃗
∣

∣

∣
− I
)

U†
A, with I the identity oper-

ator. The diffusion operator simply inverts the ampli-

tudes about the average amplitude as UD

∑

a∈A ψ(a) |a⟩ =
∑

a∈A (µ− ψ(a)) |a⟩, where µ = 1
S

∑

a∈A ψ(a) is the av-

erage of the amplitudes.

After ≈ π
4

√
S iterations, the probability of measuring

the marked state increases to a maximum value of about

50%, improving the likelihood of finding the marked state.

3. Memorized-Factorization Problem

The original high-dimensional vector factorization problem

problem is as follows [5].

Definition 1 (The Factorization Problem). Given F code-

books C1, · · · , CF and a hypervector c, minimize ∥c− ĉ∥
subject to c1 ∈ C1, · · · , cF ∈ CF and ĉ =

⊙F
i=1 ci.

We may assume that each codebook Ci is generated ran-

domly and independently as in the MAP scheme and that

the solution is unique. If we assume that all codebooks

haveN entries. The effective search space of the problem is

ΠF
i=1|Ci| = O(NF ). In other words, it scales exponentially

with the number of factors and polynomially with the size

of the codebook, which makes the problem computationally

challenging.

As mentioned in Sec. 2.1, applications of associative

binding operations are typically combined with the oper-

ation of bundling to enable memorizing multiple items with

various attributes, where each set contains elements associ-

ated with each other. As we will show, our quantum solution

for approximate factorization also enables a direct applica-

tion toward decoding memorized-associative hypervectors

aka “bound-then-bundled” hypervectors. We formally de-

fine the Memorized-Factorization Problem as follows:

Definition 2 (The HDC Memorized-Factorization Prob-

lem). Given F codebooks {Ci}Fi=1, an integer k > 0, and

a vector c, minimize ∥c− ĉ∥, where ĉ =
⊕k

j=1

⊙F
i=1 ci,j ,

s.t. ci,j ∈ Ci, i = 1, · · · , F, j = 1, · · · , k.

4. HyperDimensional Quantum Memorized-

Factorization Algorithm

In this section, we introduce HDQMF which leverages the

power of quantum computing to solve the factorization

problem in an efficient and approximate manner. HDQMF

uses a modified form of Grover’s algorithm [8] to search

through all possible factorizations, and extract the most ac-

curate one through amplification. Moreover, we show that

our design is easily scalable, and, due to the additive nature

of the quantum phase, we are able to extend our design to

solve the more general memorized-factorization problem in

an efficient manner with minimal modification.

From HDC to Quantum. In HDQMF, we represent each

element of our hypervector by a two-component qubit state:

|0⟩ will represent 1 and |1⟩ will represent −1. The mul-

tiplication of the components of the vector will be rep-

resented by the XOR of the labels of the corresponding

states representing the hypervectors. We represent the

D−dimensional hypervector hi by the corresponding qubit

series
∣

∣qi0q
i
1....q

i
D−1

〉

≡
∣

∣q⃗i
〉

. We can store multiple collec-

tions of hypervectors as
∣

∣q⃗1
〉 ∣

∣q⃗2
〉

· · · |q⃗n⟩, which requires a

total ofm×D qubits to represent them hypervector factors.

The binding of two HDC vectors hi ⊙ hj is represented by
∣

∣q⃗i ⊕ q⃗j
〉

≡
∣

∣

∣
(qi1 ⊕ qj1)(qi2 ⊕ qj2)....(qiD−1 ⊕ q

j
D−1)

〉

. The

Oracle will need to implement the binding operation as part

of its overall calculations. We will demonstrate a method to

perform this that requires a number of gates linear to the di-

mension. The initialization of the qubits to lie in all possible

states defined by the codebook can be done using a polyno-

mial number of circuits and qubits through the algorithm

described in [35]. We impose that the factors belong to the

codebook MF×N×D, where F is the number of factors, N
is the number of candidate vectors for each factor, and D is

the dimension of the hypervector. Defining q⃗nf to be the nth

vector at the f th factor, the goal of the state preparation al-

gorithm is to construct the following state: UM

∣

∣

∣⃗
0
〉

···
∣

∣

∣⃗
0
〉

=
1√
NF

(
∑

n |q⃗n1 ⟩) · · · (
∑

n |q⃗nF ⟩), which represent all pos-

sible factorizations. This is implemented sequentially, by

applying the algorithm of [35] to each factor individually

by defining the operator Uk
M

∣

∣

∣⃗
0
〉

= 1√
N
(
∑

n |q⃗nk ⟩), which

constructs a uniform superposition of all vectors belonging

10981



to the kth factor of the codebook. By defining the tensor

product operator UM = Πk ⊗ Uk
M, where each term acts

on a different set of qubits as

UM

∣

∣

∣⃗
0
〉

· ·
∣

∣

∣⃗
0
〉

=
(

U1
M

∣

∣

∣⃗
0
〉)(

U2
M

∣

∣

∣⃗
0
〉)

· ·
(

UF
M

∣

∣

∣⃗
0
〉)

,

(5)

we can generate a uniform superposition of all factors with

a polynomial circuit complexity and qubit requirement.

Key Modification. In our application of Grover’s algo-

rithm, the marked state will not have an exact phase of −1
applied by the oracle. Rather, the phase shift will be related

to the similarity δ ∈ [0, 1] with a “true state” which is cal-

culated by the oracle, and the phase shift is eiπδ . δ = 1
corresponds to an exact match and δ = 0 to random noise.

With such an oracle, we modify the algorithm to:

1. Construct the initial superposition of states given by |A⟩
2. Apply either Uo or U−1

o in alternate iterations, start-

ing with U−1
o

3. Apply the diffusion operator UD

4. Repeat the previous two steps π
4

√
S number of times,

and perform the measurements

In the limit of real phase with δ = 0 or 1, our algorithm

reduces to the original Grover’s algorithm. As we will see,

the application of the inverse Uo operator in alternate steps

results in iterative phase cancellation, allowing an exact an-

alytical description of the evolution of the amplitudes with

any similarity distribution. This allows us to show that

the algorithm behaves similarly to the original Grover al-

gorithm, where the efficiency of the algorithm (in terms of

the optimal iterations required) can be related to the distri-

bution of phases.

4.1. Approximate Factorization Algorithm

The key aspect of Grover’s algorithm is the oracle, which

identifies the “marked” states, and inverts their phase to−1.

The difficulty in exact quantum search is the binary decision

for the oracle, requiring a case-by-case check for whether

the output satisfies some specific pattern.

In our design, we exploit the randomness of hypervec-

tors to approximately distinguish the marked and unmarked

states. In our design, the phase inversion will not be an ex-

act −1 for the marked states. Instead, the oracle multiplies

each state by a phase factor eiπφ, where ϕ is the similar-

ity between the multiplied factors ĉ and the given vector c⃗.
For relatively large dimensions, ϕ ∼ 0 for randomly cho-

sen factorizations, while ϕ ∼ 1 for correct factorizations.

We expect this algorithm to work well because the num-

ber of hypervectors that are highly similar is exponentially

small compared to the whole space of hypervectors. Thus,

the standard deviation of ϕ is expected to be small. With

a small spread in the similarity, we expect our algorithm to

efficiently extract a factorization that is likely correct.

Restore the 

Auxilliary Qubits to 

0 by Reversing the 

Operations  of (a)

(c)

Construct the XOR of all the N factors

𝑈!(𝜙")

𝑈!(𝜙#)

𝑈!(𝜙$)

(b)

(a)

Figure 2. The design of the oracle, involving (a) constructing the

binding of the vectors, (b) performing the phase similarity opera-

tion, and (c) uncomputing the bound vector.

One key property of the quantum phase is that even if

the operation is applied to a certain subset of qubits, the

phase shift eiπφ is nonetheless applied to the whole sys-

tem. Thus, if an operation 1 (resulting in phase eiπφ1 ) is

applied to one subset of qubits, and another operation 2 (re-

sulting in phase eiπφ2 ), then the system accumulates a phase

eiπ(φ1+φ2). This additive global property of the quantum

phase is exploited to generalize our search algorithm for

the memorized-factorization problem. Suppose we have M
quantum systems running in parallel, with each system rep-

resenting one of the possible factorizations. A generic state

in this system can be written as |S1⟩ |S2⟩ · · |SM ⟩, with |Si⟩
representing a possible factorization for one of the elements

vj bundled in c =
⊕k

j=1 vj , with vj =
⊙F

i=1 ci,j . Our

oracle is designed to implement Uo |Si⟩ = eiθπδ(c,vi) |Si⟩,
where the product of factors represented by |Si⟩ is vi, and θ
is a scale factor to be fixed later. Applying the oracle to each

|Si⟩ sequentially in the whole system results in the phase,

Uo (Πi |Si⟩) = ΠiUo |Si⟩ = eiθπ
∑

φiΠi |Si⟩ . (6)

Thus, the total phase accumulated now is ϕ =
θ (ϕ1 + ϕ2 + · ·+ϕM ). If all the M states |Si⟩ represent

factorizations of some vj , then the total phase is ϕ = 1.

However, unlike the previous algorithm, there are now var-

ious cases for the phase, since it could be that only some

m < M states represent correct factorizations, and the re-

sulting phase would be ϕ = m
M

+ Noise, where Noise is

a noise term from some (approximately gaussian) distribu-

tion. We thus have a cascading levels of phase similarity ϕ,

taking values ϕ = θi for i = 0, 1, 2, ..,M .

4.2. Oracle Design

The key aspect of the approximate search algorithm is to

have an approximate oracle that can identify different states

based on their similarity. Given a state |S⟩ = |c1⟩ · · |cF ⟩,

10982



representing a specific factorization, the oracle needs to cal-

culate the product ĉ =
⊙F

i=1 ci, and then calculate the sim-

ilarity ϕ with a target vector v such that there is a phase

change of eiπφ. The first step of multiplying the factors to

construct ĉ is performed using the MXOR gate which en-

ables multiplication with a minimum number of gates. This

required D auxiliary qubits to store the output (which must

be later uncomputed). We show this design in Fig. 2(a).

Next, the oracle needs to induce a phase change using

the similarity of ĉ with a given target vector v. The similar-

ity function is given by δ(ĉ, v) = 1
D

∑D
j=1(b̂)j(v)j , where

j indexes the components of the vectors, and b̂ = 1 − 2ĉ
is the bipolar (1,−1) representation. Our design of the ora-

cle exploits this additivity of the similarity to enable an effi-

cient phase transformation, which is illustrated in Fig. 2(b).

Moreover, the components of ĉ are either 0 or 1, while

the vector v can be any generic real number. Thus, the

oracle simply applies Pauli Z-gate U(ϕj) in sequence on

each qubit representing the component of (ĉ)j , with angle

ϕj = −π (v)i
D

. The gate U(ϕ) multiplies the state |c⟩ with a

phase factor eiφ(2c−1) |c⟩, for c = 0, 1. Since (ĉ)j is either

1 or 0, with phase change e−iπ
(v)j
D or eiπ

(v)j
D respectively,

the phase shift is simply eiπ
(v)j(b̂)j

D . Thus, after applying

this phase operator to all the qubits, the total phase accumu-

lated will be ΠD
j=1e

iπ
(v)j(b̂)j

D = eiπδ(ĉ,v), as required by the

oracle.

If we had multiple, say M factorizations, that needed

to be bundled together in the end, then we simply require

the oracle to apply the phase shift operation U(ϕj) with

ϕj = −θπ (v)j
D

on all the qubits, where θ is a scale factor

which we will discuss later. The resulting overall phase ac-

cumulated will be ΠM
j=1e

iθπδ(ĉj ,v) = eiθπ
∑M

i=1 δ(ĉi,v). This

design of the oracle is scalable since it requires only the

application of local phase shifts on the individual qubits.

Moreover, there is no requirement to maintain entangle-

ment since the oracle does not do a binary check for a

marked/unmarked state. As we will show in the next sec-

tion, the optimal value of θ is θ = 1.

5. Analytical Study

In this section, we analytically investigate the expected be-

havior of our algorithm. We denote the amplitude of all the

states by the vector α⃗n, where n is the iteration of the al-

gorithm, and each component denotes the amplitude of a

basis state. We also define µn =
∑

i(α⃗n)i/N
FM to be

the average value of the components, where NFM is the

total number of states. Additionally, let ϕ⃗ be the similar-

ity associated with each state. We initialize the amplitude

to α⃗1 = 1√
NFM

1⃗, where 1⃗ is a vector with all compo-

nents 1. An iteration of the original Grover’s algorithm

evolves the amplitude as α⃗n+1 = (2µn − α⃗n) · ϕ⃗. In

(a) (b)

(c) (d)
𝑚

Figure 3. Noiseless results in the D → ∞ limit (a) the exponen-

tial decay in the degeneracy for each m (b) The probability as a

function of iteration, showing the system is effectively governed

by m = 0 and m = 1 (c) as M increases, then the peak probabil-

ity is achieved at a lower iteration (d) The optimal value of θ = 1

which requires the lowest number of iterations for the peak prob-

ability. We use N = 100, F = 3, θ = 1,K = 20,M = 5 unless

mentioned otherwise.

our modification, however, the applied phase transforma-

tion changes sign in each step, with the transformations

α⃗2n+i = (2µ2n+i−1 − α⃗2n+i−1) · ϕ⃗2i−1 for i = 0, 1. By

expanding the recurrence relation, we find

α⃗2n = 2µ2n−1ϕ⃗
∗ − 2µ2n−2 + α⃗2n−2, (7)

α⃗2n−1 = 2µ2n−2ϕ⃗− 2µ2n−3 + α⃗2n−3, (8)

where we used the fact that ϕ∗ · ϕ = 1⃗, since each compo-

nent of ϕ is a phase value. We first find the mean amplitude

by averaging over the components to find,

(

µ2n

µ2n−1

)

= G

(

µ2n−2

µ2n−1

)

, G =

(

4|λ|2 − 1 −2λ∗
2λ −1

)

,

where λ is the average component of ϕ⃗, which can be writ-

ten as λ =
√
NFMµ∗

2 (Since α⃗2 = 1√
NFM

ϕ⃗∗). Note that in

the case of the traditional Grover’s algorithm, λ = 1 − 2r,

where r is the fraction of the marked state over all the states.

The eigenvalues of G are given by γ± = −1 + 2|λ|2 ±
2|λ|i

√

1− |λ|2. Since they satisfy |γ±| = 1, the eigenval-

ues are phase values. The corresponding eigenvectors are

v⃗± = (|λ|2 ± i|λ|
√

1− |λ|2, λ) = (γ±+1
2 , λ). Solving the

recurrence equations, we find the mean value to transform:

(

µ2n

µ2n−1

)

=
1

2λ
√
NFM

∑

σ=±
γn−1
σ v⃗σ = µ⃗n. (9)

By substituting this into the recurrence relationship, we can

find a closed form for α⃗2n, α⃗2n−1. Defining γ± = e±iθ,

10983



(a) (b) (c)M=1 M=2 M=3

2 clusters 3 clusters 4 clusters

Figure 4. Distribution of similarities for various M , which show

M + 1 clusters, one for each value of similarity. The degeneracy

decays with increasing similarity.

an−1 = cos
(

n−2
2 θ
) sin(n−1

2 θ)
sin θ

2

, bn = (2an − 1)/
√
NFM ,

and cn = (an + an−1 − 1)/(λ
√
NFM ) we have

α⃗2n = ϕ⃗∗bn − cn, α⃗2n−1 = ϕ⃗cn − bn. (10)

Using these results, we can find that the approximate num-

ber of iterations required for Grover’s algorithm to reach

the optimal state as Nitr ≈ π/(2
√

2(1− |λ|)) in the limit

of |λ| <
∼

1 (which is what we will mostly deal with in our

use cases). Note that in the original Grover’s algorithm,

λ = (A−B)/(A+B), whereA is the number of unmarked

states (with phase 1) and B is the number of marked states

(with phase −1), and in the limit of B ≪ A we recover the

original result of Nitr ≈ π
4

√

A+B
B

.

In order for the algorithm to efficiently identify the

marked state with a high probability, we need to mini-

mize the value of Nitr, which is done by minimizing the

value of |λ|. In our application, we can calculate the ex-

act value of λ in the D → ∞ limit (where the similar-

ities are either 1 or 0, without noise). When M vectors

are bundled together, m of them can match with the bun-

dled set c = ⊕k
j=1vj , and the remaining M − m do not.

If they match, then they can be one of the k possible vec-

tors, and if they do not then they can be one of the remain-

ing NF − k vectors. Thus, the total number of such ar-

rangements is given by km(NF − k)M−m
(

M
m

)

. The cor-

responding phase factor is given by eiθπm. Thus, we find

λ =
∑

m(e
iθπk)

m
(NF−k)M−m(Mm)

∑
m km(NF−k)M−m(Mm)

=
((eiθπ−1)k+NF )

M

NMF .

From this expression, we can deduce that the optimal num-

ber of iterations (minimum |λ|) is achieved when θ = 1
(so that eiθπ = −1). In this limit, λ can be approximately

found to be (when NF ≫ k) λ =
(NF−2k)

M

NMF ≈ 1− 2kM
NF .

The optimal number of iterations is thus Nitr =
π
4

√

NF

kM
.

6. Results

We show simulated results of the approximate Grover’s al-

gorithm for the factorization and memorized factorization.

The primary parameters we need to vary are the number of

(a) (b)

(c) (d)

(e) (f)

Figure 5. The correlation of probability and similarity after one

iteration (left), and the evolution of the probability of marked state

(right) for D = 50, 500, 5000 (top, middle, bottom). Blue, red,

green, and yellow mark m = 0, 1, 2 and 3 respectively. As D in-

creases, the similarity values get more clustered and the maximum

probability of finding a marked state also increases drastically. We

use F = 3, N = 5, and K = 7.

(D,K) Resonator Network [5] HDQMF

Ps NI Pf NS Ps NI NS

(50, 10) 0.06 20 0.15 338 0.025 2 72

(50, 20) 0.07 26 0.12 368 0.017 2 91

(500, 10) 0.10 34 0.19 338 0.064 3 44

(500, 20) 0.18 35 0.18 195 0.041 2 47

Table 1. Comparison of quantum search with resonator network,

highlighting the optimality of quantum search. Ps is the maximum

probability of finding the correct factorization for quantum search

and the probability it converges to the correct factorization for the

resonator network. NI is number of iterations to converge/reach

Ps. NS = NI/Ps is the effective number of steps required. Pf is

the probability of non-convergence for the resonator network.

factors F , the number of terms to be bundled together K,

the number of codebook entries N , and the dimension D.

We note that the factorization problem is a specialized case

of the memorized-factorization problem with K = 1. A

comparison with the SOTA, the resonator network, is shown

in Tab. 1, highlighting the efficiency of HDQMF.

The effect of the various parameters on the efficiency

of the algorithm is primarily through the similarity and the

level of noise in similarity introduced by the oracle. We

assume that each property being bound together results in a

10984



Pink 8 top right

Correct States unidentified

Not converged

Converged

𝑐!"#$ 	 ⊗ 𝑛%⊗ℎ&'! 	⊗ 𝑤()*& 	

⊕ 𝑐+)((',⊗𝑛-⊗ℎ.'& 	⊗ 𝑤/"0 	

⊕ 𝑐.(1) 	 ⊗ 𝑛2⊗ℎ/"0 ⊗𝑤3"45&

Scene Encoding Quantum Algorithm Resonator Network

D
=
5
0

D
=
5
0
0

Always identifies state

0

2

×1e-5

0

0.2

0

1

×1e-5

0

0.03

-1 2.5

-0.5 2 0 2010

0 2010

Figure 6. Memorizing a scene with numbers, colors, and locations. The bundled vector is first generated (using alternate means, for

example a neural network), and then decomposed using both the quantum algorithm and the resonator network. With D = 50 (top), the

resonator network does not converge while the quantum algorithm correctly identifies the marked state. At D = 500 (bottom), the quantum

algorithm and resonator network correctly identify the marked state, but the resonator network requires more iterations.

unique random vector representing the object, which results

in NF different combinations possible for the search space

in each object being memorized. If there are K different

items, then the noise in the similarity will increase with K
if there are mismatches. This noise is also related to that due

to M , which is the number of bundled vector being consid-

ered in the algorithm to perform the search operation. In the

worst-case scenario where there are no matches, the noise

is proportional to
√

KM/D.

Noiseless case. We first show the noiseless case of the prob-

ability distribution evolution over the iteration. Essentially,

this involves taking the limit of D → ∞, and the simi-

larity now depends only on M . We show various cases of

M in Fig. 3. (a) shows the degeneracy of each state, de-

creasing exponentially inm, the number of matching terms.

(b) shows the iterations of the probability for each similar-

ity ϕ in a system with M = 4. As we can see, the 2, 3
and 4 matches have probabilities many orders of magni-

tude smaller than the probability of 0 or 1 match. In (c),

we show that by increasing M , the maximum probability

for the marked states is reached at smaller iterations, as

expected from our theoretical understanding. Finally, we

demonstrate the optimality of θ = 1 in (d), which shows

that the maximum probability is achieved for the smallest

Nitr at θ = 1.

Noisy case. Next, we analyze the impact of noise by gen-

erating the similarity directly from a randomly sampled

codebook. We show the similarity distribution in Fig. 4,

for M = 1, 2, 3. The distribution is a combination of

M + 1 Gaussians, centered upon each integer similarities.

The width of the Gaussian is proportional to
√

kM/D.

In Fig. 5, we show a correlation between the probabil-

ity and similarity, and the probability of finding a marked

state as a function of iterations, for various dimensions

D = 50, 500, 5000 (from top to bottom). As D increases,

there are two effects: (i) the similarity gets more clustered

together, with the probability getting larger and (ii) the peak

probability at optimal iteration increases drastically.

Use case demonstration. In Fig. 6, we show a case study

where we memorize a set of numbers in a scene. The num-

bers can be 0 to 9, with 7 possible colors, 3 possible verti-

cal locations and 3 horizontal locations. With dimensions

D = 50 and D = 500 the quantum algorithm correctly

decomposes the bundled representation within a few itera-

tions. The resonator network, however, does not converge

for D = 50, and often fails in the case of D = 500, while

requiring more iterations.

7. Discussion and Conclusion

Limitations. While the algorithm speeds up the hypervec-

tor decomposition, the practicality of HDQMF relies on the

quality of quantum computers. As quantum technology is

still developing, there are limitations to the number of qubits

available, the stability of quantum states, and the overall re-

liability of quantum computations. Our approach will likely

be used in conjunction with classical solutions.

Conclusion. We investigated the HDC Memorized-

Factorization Problem, which captures the common con-

struction patterns of hypervectors. We proposed HDQMF,

based on Grover’s algorithms, that addresses this extended

factorization problem. We analytically showed and ex-

perimentally verified that our algorithm achieves quadratic

speedup and can be parallelized straightforwardly.

10985



References

[1] Alexander G Anderson, Kavitha Ratnam, Austin Roorda,

and Bruno A Olshausen. High-acuity vision from retinal im-

age motion. Journal of vision, 20(7):34–34, 2020. 1

[2] Charles F Cadieu and Bruno A Olshausen. Learning

intermediate-level representations of form and motion from

natural movies. Neural computation, 24(4):827–866, 2012.

1

[3] Jerry A Fodor and Zenon W Pylyshyn. Connectionism and

cognitive architecture: A critical analysis. Cognition, 28(1-

2):3–71, 1988. 1

[4] E Paxon Frady, Denis Kleyko, and Friedrich T Sommer. A

theory of sequence indexing and working memory in re-

current neural networks. Neural Computation, 30(6):1449–

1513, 2018. 3

[5] E Paxon Frady, Spencer J Kent, Bruno A Olshausen, and

Friedrich T Sommer. Resonator networks, 1: an efficient so-

lution for factoring high-dimensional, distributed representa-

tions of data structures. Neural computation, 32(12):2311–

2331, 2020. 1, 2, 3, 4, 7

[6] Ross W Gayler. Multiplicative binding, representation oper-

ators & analogy (workshop poster). 1998. 2

[7] Ross W Gayler and Simon D Levy. A distributed basis for

analogical mapping. In New Frontiers in Analogy Research;

Proc. of 2nd Intern. Analogy Conf, 2009. 3

[8] Lov K Grover. A fast quantum mechanical algorithm for

database search. In Proceedings of the twenty-eighth annual

ACM symposium on Theory of computing, pages 212–219,

1996. 4

[9] Michael Hersche, Zuzanna Opala, Geethan Karunaratne,

Abu Sebastian, and Abbas Rahimi. Decoding superposi-

tions of bound symbols represented by distributed represen-

tations. In Proceedings of the 17th International Workshop

on Neural-Symbolic Learning and Reasoning (NeSy), 2023.

3

[10] Michael Hersche, Mustafa Zeqiri, Luca Benini, Abu Sebas-

tian, and Abbas Rahimi. A neuro-vector-symbolic architec-

ture for solving raven’s progressive matrices. Nature Ma-

chine Intelligence, 5(4):363–375, 2023. 1, 2, 3

[11] Mohsen Imani, Chenyu Huang, Deqian Kong, and Tajana

Rosing. Hierarchical hyperdimensional computing for en-

ergy efficient classification. In Proceedings of the 55th An-

nual Design Automation Conference, pages 1–6, 2018. 3

[12] Mohsen Imani, Samuel Bosch, Sohum Datta, Sharadhi Ra-

makrishna, Sahand Salamat, Jan M Rabaey, and Tajana Ros-

ing. Quanthd: A quantization framework for hyperdimen-

sional computing. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 39(10):2268–

2278, 2019.

[13] Mohsen Imani, Ali Zakeri, Hanning Chen, TaeHyun Kim,

Prathyush Poduval, Hyunsei Lee, Yeseong Kim, Elaheh

Sadredini, and Farhad Imani. Neural computation for ro-

bust and holographic face detection. In Proceedings of the

59th ACM/IEEE Design Automation Conference, pages 31–

36, 2022. 3

[14] Pentti Kanerva. Hyperdimensional computing: An introduc-

tion to computing in distributed representation with high-

dimensional vectors. Cognitive Computation, 2009. 1, 2,

3

[15] Spencer J Kent, E Paxon Frady, Friedrich T Sommer, and

Bruno A Olshausen. Resonator networks, 2: Factorization

performance and capacity compared to optimization-based

methods. Neural computation, 32(12):2332–2388, 2020. 1,

2, 3

[16] Yeseong Kim, Mohsen Imani, and Tajana S Rosing. Efficient

human activity recognition using hyperdimensional comput-

ing. In Proceedings of the 8th International Conference on

the Internet of Things, pages 1–6, 2018. 3

[17] Denis Kleyko, Dmitri Rachkovskij, Evgeny Osipov, and Ab-

bas Rahimi. A survey on hyperdimensional computing aka

vector symbolic architectures, part ii: Applications, cogni-

tive models, and challenges. ACM Computing Surveys, 55

(9):1–52, 2023. 1

[18] Roland Memisevic and Geoffrey E Hinton. Learning to

represent spatial transformations with factored higher-order

boltzmann machines. Neural computation, 22(6):1473–

1492, 2010. 1

[19] Igor Nunes, Mike Heddes, Tony Givargis, Alexandru Nico-

lau, and Alex Veidenbaum. Graphhd: Efficient graph clas-

sification using hyperdimensional computing. In 2022 De-

sign, Automation & Test in Europe Conference & Exhibition

(DATE), pages 1485–1490. IEEE, 2022. 3

[20] Evgeny Osipov, Denis Kleyko, and Alexander Legalov. As-

sociative synthesis of finite state automata model of a con-

trolled object with hyperdimensional computing. In IECON

2017-43rd Annual Conference of the IEEE Industrial Elec-

tronics Society, pages 3276–3281. IEEE, 2017. 3

[21] Evgeny Osipov, Sachin Kahawala, Dilantha Haputhanthri,

Thimal Kempitiya, Daswin De Silva, Damminda Alahakoon,

and Denis Kleyko. Hyperseed: Unsupervised learning with

vector symbolic architectures. IEEE Transactions on Neural

Networks and Learning Systems, 2022. 3

[22] E Paxon Frady, Denis Kleyko, Christopher J Kymn, Bruno A

Olshausen, and Friedrich T Sommer. Computing on func-

tions using randomized vector representations. arXiv e-

prints, pages arXiv–2109, 2021. 3

[23] Tony A Plate. Holographic reduced representations. IEEE

Transactions on Neural networks, 6(3):623–641, 1995. 3

[24] Prathyush Poduval, Mariam Issa, Farhad Imani, Cheng

Zhuo, Xunzhao Yin, Hassan Najafi, and Mohsen Imani. Ro-

bust in-memory computing with hyperdimensional stochas-

tic representation. In 2021 IEEE/ACM International Sympo-

sium on Nanoscale Architectures (NANOARCH), pages 1–6.

IEEE, 2021. 3

[25] Prathyush Poduval, Yang Ni, Yeseong Kim, Kai Ni, Ragha-

van Kumar, Rosario Cammarota, and Mohsen Imani. Hyper-

dimensional self-learning systems robust to technology noise

and bit-flip attacks. In IEEE/ACM International Conference

on Computer-Aided Design (ICCAD). IEEE, 2021.

[26] Prathyush Poduval, Zhuowen Zou, Hassan Najafi, Houman

Homayoun, and Mohsen Imani. Stochd: Stochastic hyperdi-

mensional system for efficient and robust learning from raw

data. In IEEE/ACM Design Automation Conference (DAC),

2021.

10986



[27] Prathyush Poduval, Zhuowen Zou, Xunzhao Yin, Elaheh

Sadredini, and Mohsen Imani. Cognitive correlative encod-

ing for genome sequence matching in hyperdimensional sys-

tem. In IEEE/ACM Design Automation Conference (DAC),

2021.

[28] Prathyush Poduval, Yang Ni, Yeseong Kim, Kai Ni, Ragha-

van Kumar, Rossario Cammarota, and Mohsen Imani. Adap-

tive neural recovery for highly robust brain-like representa-

tion. In Proceedings of the 59th ACM/IEEE Design Automa-

tion Conference, pages 367–372, 2022.

[29] Prathyush Poduval, Ali Zakeri, Farhad Imani, Haleh Alimo-

hamadi, and Mohsen Imani. Graphd: Graph-based hyper-

dimensional memorization for brain-like cognitive learning.

Frontiers in Neuroscience, page 5, 2022. 3

[30] Job Isaias Quiroz-Mercado, Ricardo Barrón-Fernández, and

Marco Antonio Ramı́rez-Salinas. Semantic similarity esti-

mation using vector symbolic architectures. IEEE Access, 8:

109120–109132, 2020. 3

[31] Dmitri A Rachkovskij and Ernst M Kussul. Binding and

normalization of binary sparse distributed representations by

context-dependent thinning. Neural Computation, 13(2):

411–452, 2001. 3

[32] Alpha Renner, Lazar Supic, Andreea Danielescu, Gia-

como Indiveri, Bruno A Olshausen, Yulia Sandamirskaya,

Friedrich T Sommer, and E Paxon Frady. Neuromorphic

visual scene understanding with resonator networks. arXiv

preprint arXiv:2208.12880, 2022. 3

[33] Frank Rosenblatt et al. Principles of neurodynamics: Per-

ceptrons and the theory of brain mechanisms. Spartan books

Washington, DC, 1962. 3

[34] Anthony Thomas, Sanjoy Dasgupta, and Tajana Rosing.

A theoretical perspective on hyperdimensional computing.

Journal of Artificial Intelligence Research, 72:215–249,

2021. 3

[35] Dan Ventura and Tony Martinez. Initializing the amplitude

distribution of a quantum state. Foundations of Physics Let-

ters, 12:547–559, 1999. 4

[36] Zhuowen Zou, Hanning Chen, Prathyush Poduval, Yeseong

Kim, Mahdi Imani, Elaheh Sadredini, Rosario Cammarota,

and Mohsen Imani. Biohd: an efficient genome sequence

search platform using hyperdimensional memorization. In

Proceedings of the 49th Annual International Symposium on

Computer Architecture, pages 656–669, 2022. 3

10987


	. Introduction
	. Background and Related work
	. Hyperdimensional Computing
	. Quantum Computing

	. Memorized-Factorization Problem
	. HyperDimensional Quantum Memorized-Factorization Algorithm
	. Approximate Factorization Algorithm
	. Oracle Design

	. Analytical Study
	. Results
	. Discussion and Conclusion

