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Abstract

For safe motion planning in real-world, autonomous vehi-
cles require behavior prediction models that are reliable and
robust to distribution shifts. The recent studies suggest that
the existing learning-based trajectory prediction models do not
posses such characteristics and are susceptible to small pertur-
bations that are not present in the training data, largely due to
overfitting to spurious correlations while learning.

In this paper, we propose a causal disentanglement rep-
resentation learning approach aiming to separate invariant
(causal) and variant (spurious) features for more robust learn-
ing. Our method benefits from a novel intervention mecha-
nism in the latent space that estimates potential distribution
shifts resulted from spurious correlations using uncertain fea-
ture statistics, hence, maintaining the realism of interventions.
To facilitate learning, we propose a novel invariance objec-
tive based on the variances of the distributions over uncertain
statistics to induce the model to focus on invariant represen-
tations during training. We conduct extensive experiments on
two large-scale autonomous driving datasets and show that be-
sides achieving state-of-the-art performance, our method can
significantly improve prediction robustness to various distribu-
tion shifts in driving scenes. We further conduct ablative stud-
ies to evaluate the design choices in our proposed framework.

1. Introduction

Vehicle trajectory prediction is one of the main building blocks
of autonomous driving systems. Prediction captures how the
future might unfold based on the road structure and the be-
havior of the road users. Accurate prediction of nearby traffic
agents, however, is a daunting task due to the complex spa-
tiotemporal interactions between the road users and the envi-
ronment. Recently, learning-based methods [12, 21, 36, 43,
59, 60, 72] have become increasingly prevalent in the trajec-
tory prediction domain, achieving state-of-the-art performance
on the existing behavior prediction benchmarks [9, 53, 63].
To be deployed in real-world, besides being accurate, pre-
diction models must be robust and reliable under different con-
ditions, i.e. they must be insensitive to spurious features. How-
ever, recent evidence [3, 6, 45, 69] suggests that the existing
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Figure 1. Illustration of a driving scenario showing two vehicles sur-
rounding the agent of interest where one represents a causal factor
causing the agent of interest to slow down and the other is non-causal,
hence poses no impact. Here, Ps < P¢ would open a backdoor (a
non-causal dashed link) creating a spurious correlation. The proposed
approach first separates causal and spurious factors through the spa-
tiotemporal environment of scene G and then cuts the backdoor path
via an uncertainty-driven causal intervention, inducing the model to
focus only on causal patterns Pc when predicting future behavior y,
and discard the spurious patterns Ps.

trajectory prediction models for autonomous driving are sus-
ceptible to distributions that are even slightly different from
their training data. Such lack of generalizability is mainly at-
tributed to the tendency of the models to overfit to spurious cor-
relations in the training data [45]. The difficulties pertaining
generalizability cannot effectively be mitigated by utilization
of large-scale models and data [47]. These issues are intrinsi-
cally rooted in statistical learning, which prioritizes the iden-
tification of correlations, exclusively for the prediction task,
without the consideration for their robustness and reusability
under distribution shifts that may occur in practice.

To this end, we frame the prediction problem through the
lens of disentangled representation learning. Specifically, we
seek to force the model to learn disentangled representations
that split the underlying sources of variation in the data. This
could pave the way for separating invariant (causal) from vari-
ant (spurious) representations (see Figure 1). In turn, the model
can rely on the invariant features when making predictions,
leading to more robust and generalizable inference.

We formulate representation learning from a causal per-
spective in a dynamic heterogeneous information network

14874



which models the spatiotemporal interaction patterns between
the agents and the agents and the environment. We argue
that invariant representations correspond to causal variables
that have cause—effect relation with the correct prediction.
Motivated by this insight, we propose a causal disentangle-
ment approach to discover invariant and variant factors via an
uncertainty-aware intervention mechanism designed to create
multiple intervened distributions. To maintain the realism of
the perturbations induced by the intervention, we estimate the
distributions based on uncertain features statistics in the latent
space. We further propose an invariance objective based on
the variances of the distributions to induce the model to focus
on invariant representations in the training time. We conduct
extensive empirical evaluations on two large-scale benchmark
datasets and show that besides achieving state-of-the-art per-
formance, our proposed method can significantly improve pre-
diction robustness to various distribution shifts.

Our contributions are as follows: (1) We propose a novel
causal disentanglement approach for trajectory prediction that
enhances model robustness and generalization by effectively
separating causal from spurious factors. (2) We simulate po-
tential distribution shifts via a novel intervention mechanism
by incorporating uncertainty modeling in the latent space to
maintain the realism. (3) We design a new invariance training
objective that focuses on leveraging causal factors for predic-
tions while mitigating the negative effects of spurious correla-
tions, thereby enhancing the model’s resilience against poten-
tial distribution shifts. (4) We conduct experiments on com-
mon benchmark datasets and show that our model achieves
state-of-the-art performance on various metrics. (5) We fur-
ther conduct comprehensive studies on the robustness of our
approach against various contextual perturbations followed by
ablative analyses highlighting the contributions of proposed
components on the overall performance.

2. Related Works
2.1. Trajectory Prediction

In autonomous driving, trajectory prediction is about forecast-
ing future behavior of road users for safe motion planning. The
literature in this domain is vast offering a variety of solutions
for the prediction task [2, 4, 7, 25, 37, 48]. Given the highly
dynamic and interactive nature of driving scenes, graph neu-
ral networks [18, 43, 46, 68] and transformer-based models
[2, 15,23, 37, 49, 72] are more prevalent. These approaches
take advantage of heterogeneous contextual information, such
as agents’ dynamics and maps to create rich representations,
which in turn are used for inferring future trajectories.

Causality in Prediction. The key consideration for the
safety-critical autonomous driving application is robustness
and generalizability of the prediction models. One way to
achieve these is to induce the models to learn the underlying
cause—effect relationships between driving scene elements
while minimizing the effect of spurious correlations. Re-
cently, in the domain of human motion prediction, a number
of approaches have surfaced that are inspired by causal the-

ory [10, 16, 33]. The method in [33] employs a dual-encoder
architecture to capture invariant (i.e.physical laws) and style
(i.e. domain-specific) representations learned via two objec-
tives optimized in a sequential fashion. The authors of [10]
perform an analysis by intervention in the feature space by
adding counterfactual features, such as uniform rectilinear mo-
tion or random trajectory. In [16] a backdoor adjustment mech-
anism is used to incorporate social environment patterns into
prediction using a social cross-attention module, hence remov-
ing the confounding effects of spurious correlations.

In this paper, we explore causality in the domain of au-
tonomous driving and propose an intervention mechanism to
disentangle invariant (causal) and variant (spurious) represen-
tations. To maintain realism, we approximate different variant
representational distributions in the latent space. Unlike the
past works, our approach relies on a more general mechanism
that approximates the distributions based on statistical uncer-
tainty of spurious patterns resulted from the data.

2.2. Domain Generalization

In recent years, there has been a growing focus on the develop-
ment of models that generalize well to related but unseen test
domains. One of the common techniques for this objective is
ensembling in which a collection of diverse models or mod-
ules are used to improve the generalization and robustness of
the predictions [71]. Although effective in trajectory predic-
tion [51, 58, 72], ensembling comes at the cost of increasing
the model’s complexity, making this approach less practical for
real-world applications.

Invariant representation learning is another technique to
achieve generalizability by enabling models to learn features
that are invariant to domain changes. For instance, domain
alignment [28, 30] is used to minimize distances between
different distributions, hence, forcing the model to learn in-
variant features. Disentangled representation learning (DLR)
[29, 42, 65] is a more general approach that decouples features
into variant and domain-invariant components in the observed
data and learns their representations simultaneously without
the need for direct knowledge of the adopted domain.
Disentangled Representation Learning. DLR is an unsu-
pervised learning method that aims to characterize latent ex-
planatory factors behind the observed data. This method
can potentially lead to more robust, explainable, and trans-
ferable knowledge, as evident in a wide range of domains
[14, 26, 35, 54, 62, 66, 67], in particular, in continual learn-
ing works where DRL is used to train a network incrementally
to mimic human perception and cognition [1, 31, 64]. In com-
puter vision, DRL is used to disentangle the identity of faces
from their views or pose information in order to improve face
recognition and anti-spoofing models [52, 56, 61], and 3D fa-
cial expression modeling [52]. DRL has also been used in the
video analysis domain, for instance, for retrieving subtle hu-
man actions from co-occurring contextual elements [57, 65].
This method of learning is also employed in domains, such as
natural language generation for separating writing style from
text content to facilitate text-style transfer [24]. Despite hav-
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Figure 2. Overview of the proposed approach. We represent the scene content as a DyHIN and then using the uncertainty-driven intervention
mechanism, disentangle the features into causal and spurious groups. Using the invariant loss, we suppress spurious feature forcing the model to

rely on causal features to make predictions.

ing many desirable properties [34], DRL remains largely un-
explored in the trajectory prediction domain.

3. Methodology
3.1. Problem Formulation

The goal of trajectory prediction is to forecast future loca-
tions of surrounding agents according to their observed be-
havior. Specifically, at time step ¢, let the past trajectory
of the ¢-th vehicle be a set of 2D coordinates in bird’s eye
view over some observation horizon O time steps X; =
{(zs,y:)7OF, - (w5,9)'}. Accordingly, the goal is to
predict future trajectory Y; = {(x;, y;), - (wg, )Y,
where H is the prediction horizon. The road information ex-
tracted from the driving scenes in the form of an HD map rep-
resented in the vector space is also provided. For simplicity, in
the rest of the paper, we refer to inputs, e.g., observations and
the map, and future predictions as x and y, respectively.

3.2. Scene Encoding.

Recent studies show that explicitly modeling heterogeneity
of driving scenes can improve models’ ability to interpret
complex interactions, for instance, between different types of
agents, and agents and lanes [13, 22, 43, 70]. Following this
approach, temporal and spatial information are modeled se-
quentially to learn heterogeneous relations. We argue that
adding the time dimension to heterogeneity can uncover inter-
actions that happened in non-uniform intervals that might be
hidden when temporal and spatial steps are separated. In this
regard, we model the driving scene as a Dynamic Heteroge-
neous Information Network (DyHIN) to model both structural
and time-related characteristics of the scene simultaneously.
Definition. Dynamic Heterogeneous Information Net-
work (DyHIN) is defined as a dynamic graph G = {G'}L |,
where T is the number of time stamps and Gt = (V¢, Et)
is the heterogeneous graph slice at timestamp ¢ where V' =
UL, VY, E = U/, E*. At each timestamp, V is the set of
nodes and E is the set of edges, each representing a binary re-
lation between two nodes in V. G consists of two mappings:
1) node type mapping function ¢ : V' — T and 2) edge type
mapping function ¢ : E — R, where T and R denote sets of

node and edge types, respectively. In DyHIN, each node has
a dynamic neighborhood N}* within a time horizon ¢ which
includes all neighbor nodes that have [-order (1 < [ < L)
interaction with the target node.

We encode the scene as a directed DyHIN with node types
T = {lane, agent} and R = {left, right, successor, prede-
cessor, lane-agent} as basic relations between adjacent lanes
and between the lanes and agents, e.g., vehicle, cyclist, and
pedestrians. To initialize node features in the DyHIN, we use
a simplified PointNet model [44] with a multi-layer perception
(MLP) to process polyline features and a 1D convolution with
a feature pyramid network [32] to process the observations
at each time step. For heterogeneous structures, we use the
relative temporal encoding technique [19] to capture the dy-
namic structural dependencies with arbitrary durations within
DyHINs. For the sake of brevity, the details and formulation
are presented in the supplementary materials. One advantage
of the proposed method is that any types of graph neural net-
work (GNN) can be used to process the DyHIN. Here, we em-
ploy Dynamic Heterogeneous Graph Transformer (DyHGT) as
a simple yet effective model [19].

3.3. Causal Disentanglement

Learning disentangled representations to split underlying
sources of variation in high dimensional data is essential for
data efficient and robust use of data-driven models. In trajec-
tory prediction, as in our case, there is a high degree of vari-
ation in the input space, hence, overfitting and sensitivity to
spurious correlations are highly probable. Therefore, disen-
tanglement can be utilized to discover invariant representations
that are more generalizable across potential distribution shifts.

In multi-agent environments, such as driving scenes,
the agents’ behaviors affect one another, hence, producing
cause—-effect relations. In the existing datasets, however, such
causal relations are not explicitly labeled, therefore, super-
vised learning methods cannot be applied. Instead, by coupling
causality with representation learning, we propose a causal dis-
entanglement framework to discover and utilize invariant rep-
resentations, e.g., causal factors, through the latent space in an
unsupervised manner, while eliminating the effect of variant
representation, e.g., spurious factors. Below, we explain how
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the representation is modeled, followed by describing the pro-
posed causal disentanglement objective and a detailed look at
the representation disentangling mechanism.

In dynamic driving environments, temporal interactions
among heterogeneous elements, such as different agent types,
agents and static context (i.e. lanes), form complex patterns.
Potential perturbations in these patterns are the source of vari-
ations in the driving scenes. Thus, exploring spatiotemporal
patterns provides fine-grained representations of the scenes’
dynamics that help learn how the interactions, governed by
physical laws, evolve through time.

However, to forecast the future behavior of an agent, not all
patterns within the scenes have causal effects. For instance, in
an overtaking scenario, patterns resulted from road constraints
and movements of the passing vehicle are causal, whereas pat-
terns created by an approaching vehicle in the opposite lane
are non-causal, i.e. spurious. Therefore, we aim to disentangle
representations obtained from spatiotemporal patterns.

To this aim, for each agent, we establish a spatiotemporal
environment which is a dynamic neighboorhood in the DyHIN.
The spatiotemporal pattern, then, is a subset of the agent’s spa-
tiotemporal environment as P! = a(GL") where « identifies
structures and features. These patterns are referred to as spa-
tiotemporal patterns in the remainder of the paper.

3.3.1 Causality-inspired Objective

From the causal perspective, we formulate the disentangled
representation learning in the DyHIN with a structural causal
model (SCM) [8]. Let P and Pg denote the invariant and
variant representations formed by causal and spurious patterns.
As such, we define the causal links as Pg — G <+ P¢o — y
and Ps < P¢. In the former, Ps — G < P denotes that
causal and spurious patterns together construct the agent’s spa-
tiotemporal environment within the DyHIN and P — y im-
plies that causal patterns determine the expected, i.e. ground
truth (GT), behavior y, no matter how the spurious patterns
change due to potential perturbations. Recalling the overtak-
ing scenario example, road constraints and the movements of
the passing vehicle should induce a slow-down behavior in the
agent of interest, whereas changes in the behavior of the ap-
proaching vehicles in the opposite direction should not.

At times, the associations between spurious patterns and
the GT may occur forming a backdoor path [40] (i.e., non-
causal path) as Pg < P¢ — y, leading to a statistical rela-
tion termed spurious correlation. Models that highly rely on
such backdoor links may fail under potential perturbations on
non-causal factors. From this insight, backed by causal theory
[40, 41], we assume that if the driving scene representations
are disentangled, there exists a causal subset that is sufficient
to predict the correct behavior (i.e., GT).

Theory. Causal Invariance. Let assume that for a given
task there is a predictor f(-) for input samples (Gl*,y?) de-
rived from a distribution. There exists causal patterns P (u)
and non-causal, e.g., spurious, patterns P’?S(u) such that y* =
F(PL(u)) + € and PL (u) = G H\PL(u), ie., y' L P(u) |

P. (u). In the presence of spurious patterns, therefore, the
model should rely on causal patterns to achieve better general-
izability. Hence, we define our objective as below:

min Byt g1 £(fo, (P& (w),y")

st ®g,(G,) = Pi(u), vy LP(u) | Ph(u).

where y* indicate the GT. ®g,(-) seeks to find spurious pat-
terns and fy, (1) makes predictions based on causal patterns.
This objective is used as the means of eliminating spurious cor-
relations and is minimized by reducing the effect of spurious
patterns on the GT. From the causal perspective, this objective
corresponds to block the backdoor path in the causal graph
Pg+— Pec—y.

For optimization, we use a do-calculus do (Pg) to inter-
vene spurious patterns and therefore cutting the causal links
from causal patterns to spurious patterns [40]. In this way, the
model can learn the direct causal effects from causal patterns
to the GT in the intervened distributions p (y, G | do (Pg)).
Since the risks should be the same across the distributions, we
can minimize the variance of empirical risks under different in-
tervened distributions to help the model focus on the relations
between the causal patterns and GT [40, 55]. The objective in
Eq. 1, therefore, can be transformed into,

g{llg; E(yr,g10)L(fo, (®0,(G0")), y")+

Varjer AE(yt,g}):f’|do(PfS:I))‘C(f91 (Do, (g’llL:t))? yt)

where A is a balancing hyperparameter. As such, minimizing
the variance term in Eq. 2 helps the model satisfy the constraint
y' L PL(u) | PL(u) in Eq. 1, which corresponds to,

p(y" | Po(w), Ps(u) = ply" | Po(w). 3)

Here, if we have the optimal predictor f; and pattern finder
5, according to Eq. 1, then the variance term in Eq. 2 is min-
imized because variant patterns will not affect the predictions
of f; o ®p, across different intervened distributions. We will
discuss the proposed intervention mechanism in Sec. 3.4.

)

2

3.3.2 Disentangled Attention Block

From the viewpoint of causality, we aim to decouple the en-
coded representation as two disjoint spurious and causal sets.
To do so, we propose a disentangled attention block as an addi-
tion to the transformer-based GNN (DyHGT). Thus, for node u
at timestamp ¢ and its dynamic neighbors w € N (u), V¢’ < t,
we calculate the Query-Key-Value vectors as:

q, = Wo(Z, | R(t)).

Kl = Wi(Zy||R(), vl = W (Z | R(1)).
where Z! denotes the representation of node u at timestamp
t, and q, k and v represent the query, key and value vectors,
respectively. Here, we omit the bias term for simplicity. R(t)
denotes the relative temporal technique for encoding the time
when interactions happen. Next, we calculate the attention

scores among the nodes in the dynamic neighborhood of each
node to obtain the disentanglement masks as below:
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ac = Softmax(q - k' /Vd),
g = Softmax(—q - kT /Vd),

where d denotes the feature dimension, and a¢ and ag rep-
resent the disentangled masks of causal and spurious patterns,
respectively. In this way, dynamic neighbors with higher atten-
tion scores in causal patterns will have lower attention scores
in spurious ones, meaning that the causal and spurious pat-
terns have a negative correlation. We also selectively re-weight
the causal representations through a learnable representational
mask «, = Softmax(w,). Hence, the dynamic neighbor-
hoods’ messages in the GNN can be summarized with the ob-
tained disentangled masks as follows:

ZL(u) = Z ac,i(r; © o),
Z4(u) = Z ag,iTi, ©)

ZtC/s(U) = ¢(Zt0/s(u) +Z(u)"),

where 7 stands for representation and ¢(-) is a transformation
layer. Lastly, the disentangled representations are aggregated
to be fed into subsequent layers,

Z(u)'  Zg(u) + Z5(u). (7

(&)

Note that, similar to classic message-passing in GNNs, the
disentanglement mechanism enables each node to indirectly
access high-order dynamic neighborhoods, where Z% (u) and
Z%;(u) at [-th layer in our method is a summarization of causal
and spurious patterns in /-order dynamic neighborhood.

3.4. Uncertainty-driven Causal Intervention

To identify causal connections in the graph, one way is to di-
rectly intervene by generating or altering the connections in
the DyHIN. This approach, however, is infeasible since the
alterations can potentially make the driving scene representa-
tion unrealistic. Here, we propose an alternative intervention
mechanism that creates multiple distributions by intervening in
variant representations formed by spurious patterns. To main-
tain the realism, we approximate the distributions in the latent
space using the embedding statistics of the data.

In general, embedding statistics, including mean and stan-
dard deviation, contain informative domain characteristics of
the data [20, 27, 29]. This means that small perturbations in
data points may cause uncertain statistics shifts with varying
directions and magnitudes [20, 29]. In trajectory prediction,
there is a wide range of variations in the context due to the
dynamic nature of the driving scenes, therefore, such perturba-
tions are highly probable. As a result, prediction models that
are trained unaware of the potential shifts in uncertain statistics
tend to be more sensitive to perturbations in spurious patterns.

We estimate the potential uncertain statistics shifts as a way
of approximating intervened distributions. Here, the feature
statistics are hypothesized to follow a multivariate Gaussian
distribution after considering potential uncertainties. Specifi-
cally, having each representation’s original statistics values in

the center, the distribution scope determines the level of inter-
vention considering potential distribution shifts.

In our method, we estimate the distribution of feature statis-
tics based on the variances of the mini-batch statistics in a
non-parametric manner [29]. Here, by referring to a batch of
encoded embeddings of patterns Z € R"*?, we denote the fea-
ture statistics mean and standard deviation as x(Z) and 02(Z),
respectively, and define the non-parametric model for uncer-
tainty estimation as follows:

b
S2(2) = 3 D (0lZ) B, [u(2)?
1 o )
S2(2) = 3 3.(0(2) - Byl (2)]),

where b denotes batch size and d the feature dimension. Here,
feature statistics variants are randomly sampled from the esti-
mated Gaussian distribution and then are used to construct the
intervention set Z in Eq. 2. In this way, the magnitudes of
uncertainty estimation can reveal the possibility that the cor-
responding latent space may potentially change by perturb-
ing spurious patterns. Although the underlying distribution of
changes in the latent space is unpredictable, the uncertainty
estimation captured from the mini-batch can provide an appro-
priate and meaningful variation range for the latent space.

3.5. Training Objective

Based on the multiple-intervened data distributions, we can op-
timize the model to focus on causal patterns for the prediction.
We present an invariance training objective to instantiate Eq.
2. Let Z¢ and Z g be the summarized causal and spurious pat-
terns’ representations resulting from the disentanglement step.
We first calculate the prediction loss £ by using only Z¢, al-
lowing the model to utilize causal patterns for predictions. We
follow the commonly used regression-head plus classification-
head combination [22, 38, 43] for trajectory prediction.

Next, we calculate a holistic loss L, to measure the
model’s prediction ability when spurious patterns are exposed
to it. At the end, the invariance training objective is given by,

£d0 = Var]iez(ﬁhm | dO(PtS = Il)) (9)

Here, the objective measures the variance of the model’s pre-
diction ability under multiple intervened distributions. The fi-
nal training objective is therefore as follows:

£0verall =L+ )\Ld07 (10)

where the task loss £ is minimized to exploit causal patterns
while the invariance loss L4, helps the model to discover
causal and variant patterns. Here, A is a hyperparameter to
balance the two objectives. In the inference stage, we only use
causal patterns to make predictions.

4. Experiments

We compare the proposed method against state-of-the-art tra-
jectory prediction approaches on autonomous driving bench-
marks. We specifically seek to examine the robustness of our
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Table 1. Quantitative results on the AGV2 motion forecasting leaderboard. The

result is in bold and the second best result is underlined.

» 1 indicates an ensemble version. For each metric, the best

Method Reference b-minFDEgs minADEs; minFDE; MRg minADE; minFDE; MR,
THOMAS [17] ICLR 2022 2.16 0.88 1.51 0.20 1.95 4.71 0.64
MTR [50] NeurIPS 2022 1.98 0.73 1.44 0.15 1.74 4.39 0.58
GANet [59] ICRA 2023 1.96 0.72 1.35 0.17 1.77 4.47 0.59
GoRela [13] ICRA 2023 2.01 0.76 1.48 0.22 1.82 4.62 0.66
FRM [39] ICLR 2023 2.47 0.89 1.81 0.29 2.37 5.93 0.71
QCNet [72] CVPR2023 1.91 0.65 1.29 0.16 1.69 4.30 0.59
ProphNet [60] CVPR 2023 1.88 0.68 1.33 0.18 1.80 4.74 -

Forecast-MAE [11] ICCV 2023 2.02 0.70 1.39 0.17 1.74 4.35 0.60
HPTR [70] NeurIPS 2023 2.03 0.73 1.43 0.19 1.84 4.61 0.61
Forecast-MAET[11] ICCV 2023 1.91 0.69 1.33 0.17 1.65 4.14 0.59
QCNett[72] CVPR 2023 1.78 0.62 1.19 0.14 1.56 3.95 0.55
CaDeT (Ours) ‘ - 1.86 0.67 1.24 0.15 1.74 4.33 0.58

L

_J;

Figure 3. Qualitative results of CaDeT on AGV2. The Agent of interest is shown in red color and color intensity on other vehicles indicate
causality score (darker is higher). The observation, ground truth, and prediction are shown as orange, green, and purple, respectively.

method against various contextual perturbations in order to
highlight the benefits of the proposed causal disentanglement
mechanism. We refer to our model as Causal Disentanglement
for Trajectory prediction or short for CaDeT.

4.1. Experimental Setup

Datasets. We evaluate our method on two large-scale mo-
tion forecasting datasets including Argoverse-2 (AGV2) [9]
and Waymo Open Motion Dataset (WOMD) [53]. AGV2 con-
tains 250K scenarios split into 200K, 25K, and 25K samples
for training, validation, and testing, respectively. The task is to
make 6s predictions based on 5s observations. WOMD con-
sists of 487K training scenes and validation and testing set each
with 44K scenes. Here, the objective is to predict 8s into the
future based on 1s observation.

Metrics. We use official benchmark metrics, minimum
average displacement error (minADE ), minimum final dis-
placement error (minFDEf ), b-minFDE i, miss rate (MR ),
and mean average precision (mAP). Here, K refers to the num-
ber of predicted trajectories in the multimodal setting.

For robustness evaluation, we adopt the perturbation resis-
tance score (PRS) metric computed as follows: Given a tra-
jectory prediction error metric m, we first measure the per-
sample absolute change in the metric as abs(A) = L 371 |
mperturbed(i) - moriginal(i) | where Mperturbed and Moriginal refer
to the errors on perturbed and original data respectively. PRS
is then calculated as [1 — (abs(A)/Mriginai)] * 100 showing

how robust the model is against specific perturbations.

Implementation Details. For data representation, we
use all agent types and lanes whose distance from the
agent is smaller than 100 meters. For the architecture, our
model has six layers of DyHGT with 128 hidden dimen-
sion. For the transformation layer in the attention block, we
use layer normalization, an MLP and a skip connection as
a - MLP(LayerNorm(x)) 4+ (1 — @) - x where « is a learnable
parameter. For training, we set the size of intervention set 7y
to 1000 and X to 1 and 0.1 for AGV2 and WOMD datasets,
respectively (See Fig. 4). We train using batch size of 32, the
AdamW optimizer with an initial learning rate of 5e — 4, and
weight decay 1e—4. For the objective, we use the crossentropy
loss for the classification-head and negative log likelihood loss
for the regression-head.

4.2. Comparison to State-of-the-art

We begin by evaluating the proposed model, CaDeT on the
AGV2 dataset. As shown in Table 1, our approach achieves
state-of-the-art performance on the majority of metrics and
stands second best on the rest with small margins. Perfor-
mance of our model is also comparable to significantly more
complex model ensembles and in some cases surpasses them.
For instance, on k = 6 metrics, our model performs better on
all metrics compared to ensemble Forecast-MAE by up to 7%
(see Figure 3 for qualitative examples).
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Table 2. Analyzing robustness against adversarial perturbations on AGV2 validation. (}) and (1) indicate lower and higher values are better.

Training- Targeted Non-Targeted

size (%) | Method Original / Perturbed  abs(A)(}) PRS (%)(1) | Original / Perturbed abs(A)(l) PRS (%)(1)

d—100 Forecast-MAE [11] 0.712/0.879 0.153+0.06 78.51 0.712/0.755 0.1324+0.09 81.46
CaDeT (Ours) 0.701/0.841 0.087+0.04 87.59 0.701/0.737 0.061+0.02 91.30

d=80 Forecast-MAE [11] 0.733/0.924 0.198+0.03 72.99 0.733/0.863 0.17440.07 76.26
CaDeT (Ours) 0.721/0.859 0.094+0.02 86.96 0.721/0.822 0.082+0.04 88.62

d=50 Forecast-MAE [11] 0.761/1.177 0.259+0.04 65.96 0.761/1.167 0.257+0.06 66.23
CaDeT (Ours) 0.759/0.918 0.117+£0.05 84.58 0.759/0.886 0.095+0.08 87.48

Table 3. Analyzing generalizability to an unseen domain.

Test Domain | Method minADEs; minFDEs MRg
Unseen Forecast-MAE [11] 0.897 1.613 0.216
CaDeT (Ours) 0.638 1.182 0.157
Seen Forecast-MAE [11] 0.837 1.489 0.173
CaDeT (Ours) 0.713 1.186 0.168

4.3. Robustness and Generalization

Adversarial Perturbations. DRL involves learning to repre-
sent input data in such a way that various sources of variation
in the data are separated, or disentangled, into distinct, non-
overlapping features. As a result, DRL can potentially enhance
data efficiency in data-driven models.

To investigate the practical impact of our method, we con-
duct an experiment on the AGV2 validation set for which we
train the models using d% of the data. To evaluate the ro-
bustness, we apply adversarial perturbations to the observed
dynamics of the agents using the method in [69]. Following
the recommended setting, we use a white box approach and
train the models using the Adam optimizer with learning rate
of 0.01. For a fair comparison, we set the maximum iteration
to 100 with maximum deviation of 1 to optimize perturbations.

We compare our model against Forecast-MAE [11] which
is state-of-the-art model trained using a self-supervised learn-
ing technique for robust and generalizabile contextual feature
learning. The results are reported in Table 2 and divided into
targeted and non-targeted perturbations depending on whether
the adversarial objectives were optimized according to the re-
ported metric, in this case minADE. The findings suggest that
the proposed model is significantly more robust as the perfor-
mance degradation is drastically lower. Comparing original
and perturbed results, the degradation for our model is as low
as 20% at d = 100% and as high as 21% at d = 50% whereas
for Forecast-MAE the values are 30% and 55%, respectively.
These values not only show the robustness of our model but
also its lack of sensitivity to the amount of data used for train-
ing. In fact, as also shown in the changes in PRS metric,
our model maintains a similar level of robustness even when
trained on only 50% of the data but this is not the case for
Forecast-MAE as its PSR value dropped by more than 12%.
In non-targeted perturbations, as one would expect, both mod-
els perform better, however, our model gains more at the two
extreme cases of training with 100% and 50% of data.

Generalizability. One way to evaluate generalizability of
trajectory prediction models for autonomous driving is to train
the models on data collected in one environment, e.g. a city,
and test them in another one with different road types and traf-
fic styles. To this end, we conduct an experiment in which

we split the train and validation data of AGV2 into two non-
overlapping sets based on the six cities that the data was col-
lected from as in [5]. Then we train the model on the data from
the first set of the cities, namely Miami, Pittsburgh and Austin,
and evaluate on unseen cities. We also evaluate the models us-
ing the original train and validation set that are sampled from
all the cities and refer to these experiments as seen.

The results are summarized in Table 3 and show that our
method significantly outperforms Forecast-MAE in both set-
tings on all metrics. Of particular interest is the performance
gap in the unseen experiment, where our model performs up
to 27% better. This suggests that even when the test domain
is not seen during training, the proposed model can effectively
learn causal factors and predict the correct trajectories.

Causal Perturbations. Not all agents in traffic scenarios
play equally pivotal roles in influencing the future behavior.
Some agents, termed non-causal, do not significantly impact
predictions directly. Hence, if misinterpreted as causal, these
agents can lead to spurious correlations. One way to evaluate
their negative impact is by removing non-causal agents from
the scenes to determine how the models resist the perturbation.

In this regard, we conduct an experiment using the newly re-
leased causal annotations on the validation subset of WOMD'
[45]. These labels are provided for social agents surround-
ing the autonomous vehicle (AV) indicating whether the agents
have causal impacts on the future behavior of the AV. We fol-
low the evaluation protocol in [45] and report the prediction er-
ror by minADE and robustness by PSR. In addition, we train
the models under two conditions, trained-All where all agents
are used and trained-AV where only the AV is used.

As shown in Table 4, the proposed model, besides being
comparable or better on the test set, demonstrates a notably
higher level of robustness by achieving 12% higher PRS com-
pared to the best model, MTR. It is worth noting that the degra-
dation of our model’s robustness is minimal, by only 3%, even
when reducing the training data by 50%, maintaining its top
position compared to other models. This observation further
confirms the data efficiency of our method as well as its ro-
bustness against removal of non-causal agents.

Comparing the results across Trained-All and -AV, overall
the accuracy of all models improve as expected, since the mod-
els are optimized with respect to the AV. However, at the same
time their robustness has also dropped when perturbations are
applied. Despite such a change, our model still performs best
maintaining its performance gap with MTR.

IThe dataset is available at https :
research/causal-agents

//github.com/google -
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Table 4. Robustness of prediction methods against causal perturbations in WOMD. (].) and (1) indicate lower and higher values are better.

Validation set without non-causals Test Set
Trained-All Trained-AV
Method / Metrics Original / Perturbed abs(A)(}) PRS(%)(1) | Original / Perturbed abs(A)(]) PRS(%)(1) | mAP minADE; minFDE;
MTR [50] 0.384/0.407 0.075+0.18 80 (%) 0.339/0.360 0.07240.06 78 (%) 0.412 0.605 1.221
HDGT [22] 0.567/0.582 0.125+0.26 78 (%) 0.407/0.425 0.098+0.16 76 (%) 0.357 0.768 1.108
Multipath++ [58] 0.900/0.945 0.2264+0.32 75 (%) 0.376/0.395 0.14140.21 62 (%) 0.409 0.556 1.158
SceneTransformer [38] 0.305/70.328 0.08140.14 73 (%) 0.250/0.265 0.067+0.12 73 (%) 0.279 0.612 1.212
CaDeT (d= 50%) 0.346/0.358 0.037£0.18 89 (%) 0.298 /0.336 0.04240.17 86 (%) 0.373 0.570 1.169
CaDeT (d= 100%) 0.312/0.327 0.026+0.12 92 (%) 0.253/0.254 0.026+0.09 90 (%) 0.390 0.545 1.136

Table 5. Ablation studies and related design choices of the proposed
method on the validation set of AGV2. D stands for the causal dis-
entanglement framework and Z for intervention. x in Z, represents
s : spatial, t : temporal, and u : uncertainty-driven, respectively.

Model D Z, I, I, | b-FDE; minADE; minFDE; MRg
Baseline 2.07 0.93 1.57 0.21
Ml v 2.03 0.88 1.48 0.20
M2 v v v 1.92 0.77 1.33 0.17
M3 v v v 1.89 0.75 1.29 0.17
M4 v v 1.95 0.80 1.37 0.18
CaDeT [ v Vv Vv V[ 187 0.71 1.22 0.16
4.4. Ablation Study

We conduct an ablation study on the proposed model using
DyHIN as baseline and the AGV2 validation set.

Representation Disentanglement. The proposed repre-
sentation disentanglement D paves the way for separating
causal and spurious factors. Particularly, the disentanglement
step is the prerequisite to accomplishing robust learning in pre-
diction. We show this by adding the disentanglement attention
block to the baseline and refer to it as M1 in Table 5. Here, we
can observe a performance boost of up to 6% across all metrics
verifying the benefit of disentangling representations.

Spatial vs. Temporal Intervention. The dynamic nature
of traffic in driving scenes is the primary source of variations.
We model these variations as spatiotemporal patterns in or-
der to capture both structural and temporal relations. Here,
we conduct experiments using two versions of our baseline,
namely M2 and M3. In M2, we impose a constraint that
the variable patterns utilized for intervention must originate
from the same timestamp (Z;), thereby prohibiting interven-
tions across different time steps. In M3, we set a constraint
that requires the variable patterns for the intervention to be
sourced exclusively from the same node, i.e., the agent, across
temporal dimension (Z;). As the findings in Table 5 suggest,
adding either form of intervention, the performance improves
on all metrics, indicating the benefit of the proposed interven-
tion mechanism. Here, higher improvement gain using M3 in-
dicates that temporal patterns have a higher potential to create
spurious correlations in traffic scenes.

Effect of Uncertainty-driven Intervention. Lastly, we
validate the impact of the proposed uncertainty-driven inter-
vention mechanism (Z,,) and create a variation of our model,
M4, in which we approximate the intervention process by sam-
pling and replacing the variant pattern summarizations at ran-
dom. We achieve this by gathering different patterns from all
agents at every timestamp, and then, choosing one and use it to

0.9
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0.4
107 107 10° 10" 10°
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Figure 4. Sensitivity of A in WOMD (top) and AGV2 (bottom).

substitute the patterns found in other nodes throughout time.

As shown in Table 5, using the alternative intervention
mechanism, there is a drop across all metrics compared to stan-
dalone interventions using our uncertainty mechanism in M2
and M3. This suggests that using uncertainty sampling is nec-
essary to maintain the realism of the interventions in order to
simulate potential distribution shifts effectively.

Controlling Intervention Impact. As noted in Eq. 10, we
use hyperparameter, A, to control the intervention objective,
i.e. its influence on the overall prediction task objective. To
determine the sensitivity of this parameter, we conduct a study
on AGV2 and WOMD using the minADE metric. As shown
in Figure 4, there is a drop in the performance when the A
parameter is either too small or too large. If ) is set too small,
the model does not suppress spurious features effectively, and
if set too large, the model fails to learn the causal features.

5. Conclusion

We proposed a novel causal disentanglement approach in
which we formulated both the spatial and temporal relations in
the scenes through spatiotemporal patterns and used a causal
disentanglement approach to separate causal and spurious fac-
tors. We proposed an intervention mechanism to simulate
the potential distribution shifts at inference time by generat-
ing multiple intervened distributions based on spurious factors
in the latent space using feature statistics, hence, maintaining
the realism of interventions. Lastly, we proposed an invariance
training objective to leverage causal factors and intervened dis-
tributions to induce the model to focus on causal relations. As
a result, the influence of spurious correlations are mitigated
making the model more robust against distribution shifts dur-
ing inference time. We conducted extensive empirical studies
on two large-scale autonomous driving datasets and demon-
strated that our approach not only achieves state-of-the-art per-
formance but also significantly improves upon prediction ro-
bustness against various distribution shifts.
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