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Abstract
The ability of large language models (LLMs) to process

visual inputs has given rise to general-purpose vision sys-
tems, unifying various vision-language (VL) tasks by in-
struction tuning. However, due to the enormous diversity in
input-output formats in the vision domain, existing general-
purpose models fail to successfully integrate segmentation
and multi-image inputs with coarse-level tasks into a single
framework. In this work, we introduce VistaLLM, a power-
ful visual system that addresses coarse- and fine-grained VL
tasks over single and multiple input images using a unified
framework. VistaLLM utilizes an instruction-guided image
tokenizer that filters global embeddings using task descrip-
tions to extract compressed and refined features from nu-
merous images. Moreover, VistaLLM employs a gradient-
aware adaptive sampling technique to represent binary seg-
mentation masks as sequences, significantly improving over
previously used uniform sampling. To bolster the desired
capability of VistaLLM, we curate CoinIt, a comprehensive
coarse-to-fine instruction tuning dataset with 6.8M sam-
ples. We also address the lack of multi-image grounding
datasets by introducing a novel task, AttCoSeg (Attribute-
level Co-Segmentation), which boosts the model’s reason-
ing and grounding capability over multiple input images.
Extensive experiments on a wide range of V- and VL tasks
demonstrate the effectiveness of VistaLLM by achieving
consistent state-of-the-art performance over strong base-
lines across many downstream tasks. Our project page can
be found at https://shramanpramanick.github.io/VistaLLM/.

1. Introduction
Large language models (LLM) have proven to be the de-
facto solution to address novel natural language processing
(NLP) tasks, thanks to their ability to comprehend user-
tailored prompts, instructions, and detailed task descrip-
tions [13, 24, 71, 72, 89, 90]. However, the problem is more
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Figure 1. VistaLLM achieves the state-of-the-art performance
across a broad range of single and multi-image coarse-to-fine
grained reasoning and grounding tasks (see Table 1 for details)
among general-purpose baselines. Notably, no existing baseline
have unified segmentation and multi-image tasks in a single sys-
tem. We show officially reported numbers for every baseline.

challenging the vision domain due to an inherent disparity
of input and output formats across different tasks. Though
pre-training followed by a fine-tuning strategy is effective
for various vision problems [15, 16, 45, 47, 52, 53, 75, 76,
78, 94, 105], with the continuously increasing model pa-
rameters, the marginal cost for task-specific tuning comes
with significant computational overhead. Hence, it becomes
crucial to design general-purpose vision models that can
perceive natural-language instructions to solve various vi-
sion problems in a zero-shot manner.

The development of general-purpose vision models faces
two significant challenges: first, the unification of diverse
input-output formats, and second, an effective representa-
tion of visual features for a variety of tasks. Image-level vi-
sion tasks such as classification, captioning, and question-
answering involve textual outputs and primarily require a
broader, coarse-grained image representation, making them
relatively straightforward to integrate into a unified frame-
work [14, 21, 57, 121]. In contrast, region-level prediction
tasks like object detection and semantic segmentation ne-
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cessitate fine-grained, pixel-scale visual features and pro-
duce dense outputs such as bounding boxes and masks.
Converting bounding boxes to natural language sequences
is feasible by serializing the coordinates of two corners.
However, representing a binary mask as a text sequence
poses a more complex challenge, especially when dealing
with multiple input images each associated with numer-
ous segmentation masks. Although some recent general-
purpose systems have succeeded in unifying coarse-level
tasks with object detection [7, 8, 33, 73, 111, 118], they do
not incorporate segmentation within the same framework.
Furthermore, the capabilities of these existing systems are
often limited to processing single-image input, thereby con-
straining their applicability in broader, more complex sce-
narios, such as reasoning over multiple images and recog-
nizing and segmenting common objects.

In this work, we present VistaLLM, the first general-
purpose vision model that addresses coarse- and fine-
grained vision-language reasoning and grounding tasks
over single and multiple input images. We unify these tasks
by converting them into an instruction-following sequence-
to-sequence format. We efficiently transform binary masks
into a sequence of points by proposing a gradient-aware
adaptive contour sampling scheme, which significantly im-
proves over the naive uniform sampling technique previ-
ously used for sequence-to-sequence segmentation tasks
[9, 10, 58, 120]. Moreover, to preserve global and region-
level information from multiple input images, we propose
utilizing a QFormer [45] based instruction-guided image
tokenizer. Leveraging LLMs’ language reasoning ability,
we feed our visual features with carefully designed task-
specific instructions to LLMs, which generate responses
following the instructions. Integrating various tasks with
different granularity into such a unified, cohesive, and end-
to-end system helps improve the performance of each task
by sharing coarse- and fine-grained feature representation.

To train VistaLLM on a versatile form of vision and lan-
guage tasks, we collect CoinIt (Coarse-to-fine Instruction-
tuning Dataset) with 6.8M samples, ranging over four broad
categories of tasks - single-image coarse-level, single-
image region-level, multi-image coarse-level, and multi-
image region-level. We address the lack of publicly-
available multi-image region-level datasets by proposing a
novel task, AttCoSeg (Attribute-level Co-Segmentation),
which aims to recognize input images which have objects
with common attributes (shape, color, size, position), and
segment those objects. AttCoSeg contains 804k training
samples, and help VistaLLM to gain significant general-
izable reasoning and grounding capability over multiple
input images. Other tasks of CoinIt are constructed by
converting publicly available benchmarks into instruction-
following format, such as COCO [54], Flickr [74], VCR
[113], LLaVA [57], VG [37], PASCAL [19] etc. Extensive

evaluation on 15 different benchmarks proves the efficacy of
VistaLLM, which even surpasses specialist (or fine-tuned)
systems in most tasks, including 10.9% CIDEr points gain
over Shikra [8] on image captioning, 13.1%, 6.7% preci-
sion and gIoU improvements over MDETR [35] on GREC
and GRES, 3% J -index gains over CycleSegNet [115] on
iCoSeg.

In summary, our contributions are threefold: (i)We pro-
pose VistaLLM, equipped with a instruction-guided image
tokenizer, to seamlessly integrate coarse- and fine-grained
vision-language reasoning and grounding tasks over single
and multiple input images into a unified general-purpose
model. (ii) To efficiently convert segmentation masks into
a sequence, we propose a gradient-aware adaptive contour
sampling scheme, which improves over previously used
uniform sampling by 3 − 4 mIoU scores on different seg-
mentation benchmarks. (iii) We construct CoinIt, a large-
scale coarse-to-fine instruction-tuning dataset, for model
training. Moreover, we introduce a novel task, AttCoSeg,
which addresses the lack of publicly available multi-image
grounding datasets. We evaluate VistaLLM on a wide-range
of vision-language tasks across 15 benchmarks, achieving
state-of-the-art performance in all of them, even surpassing
specialist systems. We summarize these results in Figure 1.

2. Related Works
General-purpose vision models, also known as multimodal
large language models (MLLM), have recently been proven
to be an effective way to unify a versatile array of vision
and language tasks. These models, which use potent LLMs
[4, 13, 17, 24, 29, 71, 72, 88–90, 92, 100, 102, 114, 117] to
reason textual instructions, can broadly be categorized into
two groups based on their input and output formats:
Coarse-level MLLMs: Early attempts of designing
MLLMs focused on image-level vision tasks with textual
outputs, such as visual question answering [2, 28, 65, 83]
and image captioning [23, 25]. Frozen [91], Flamingo [1],
FrozenBiLM [104], MAGMA [18], ClipCap [69], VidIL
[98], PICa [106] are among the first few to show the in-
context capability of LLMs for few-shot vision tasks. More
recent works have focused on using LLMs for visual in-
struction tuning. To name a few, LLaVA [57], MiniGPT-
4 [121], MM-REACT [109], BLIP2 [45], mPLUS-OWL
[110], LLaMA-Adapter v2 [21], Otter [41], Instruct-BLIP
[14], LLaVA-Med [42] have been proven to be effective.
However, these models lack region-specific capabilities and
can not perform visual grounding tasks.
Region-level MLLMs: More recently, MLLMs have
moved forward to unify region-based referring and ground-
ing tasks into general-purpose vision systems. KOSMOS-
2 [73], VisionLLM [95], Shikra [8], GPT4RoI [118], All-
Seeing Model [97], CogVLM [96], COMM [32], MiniGPT-
v2 [7] and Ferret [111] has shown the capability of MLLMs
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Figure 2. Overview of the proposed system - VistaLLM, which integrates single- and multi-image coarse- and fine-grained vision-
language tasks into a unified general-purpose framework. VistaLLM contains three key design modules - (i) image encoder to extract
the global image embedding, (ii) instruction-guided image tokenizer, which refines and compresses the global image embeddings using
task instruction, enabling the model to filter the necessary visual information required for the current task, and (iii) LLM (Vicuna)-
based decoder to jointly process image and language features, and generate the desired output. VistaLLM uses a gradient-aware adaptive
sampling technique to efficiently represent segmentation masks as a point sequence, described in Section 3.2. All parameters except the
image encoder are trained in stage 1, while only the image tokenizer is fine-tuned in stage 2 (See Section 3.1, 5.2 for details).

of fine-grained image comprehension and region-focused
conversation. While KOSMOS-2, Shikra, and VisionLLM
feed the image coordinates directly into the LLM, GPT4RoI
and Ferret use additional feature extractor modules to rep-
resent image regions. On a related regime, InternGPT [59],
BuboGPT [119], and LISA [38] utilize external vision mod-
ules to perform grounding tasks. However, these works
are only capable of processing single-input images. In this
work, we propose VistaLLM to address all possible rea-
soning and grounding tasks over single and multiple im-
ages. Moreover, we efficiently convert binary masks into se-
quence by a novel adaptive sampling, which helps to unify
segmentation into a general-purpose framework.

3. Method
We start by presenting the model architecture of VistaLLM.
Next, we detail the proposed sequence generation approach
for segmentation masks and illustrate its efficacy compared
to uniform sampling.

3.1. Model Architecture
The overall architecture of VistaLLM, shown in Figure 2,
consists of three key design modules - (i) image encoder
to extract the global image embedding, (ii) instruction-
guided image tokenizer, which refines and compresses the
global image embeddings using task instruction, enabling
the model to filter the necessary visual information required
for the current task, and (iii) LLM-based decoder to jointly
process image and language features, and generate the de-
sired output.
Image Encoder. Given a set of k input images X = {xi}k1 ;
xi ∈ RHi×Wi×3, where Hi and Wi denote the height and
width of the ith image, we first feed them into a pre-trained
image encoder, EVA-CLIP [87], to extract k image embed-
dings Z = {zi}k1 ; zi ∈ RNi×D, Ni is number of spatial to-
kens in the ith image and D is the hidden dimension. Note

that, for larger k, the image feature dimension increases,
making it difficult for the LLM decoder to process it as in-
put, which is taken care of in the tokenizer module.

Instruction-guided Image Tokenizer. Unlike many previ-
ous general-purpose vision systems [7, 8, 57, 73], which di-
rectly feed the global image features into the decoder, we in-
troduce an instruction-guided image tokenizer, which plays
three crucial roles: (i) refines the image embeddings in
alignment with task description, i.e. for coarse-level tasks,
global features are important, whereas for fine-level tasks,
only the region features need to be processed. (ii) com-
presses the image embeddings, which is important when
there are many input images, and (iii) flexibly projects mul-
tiple input images with different heights and widths into the
same feature dimension.

The image tokenizer module takes image embeddings
and the language instruction and outputs the refined and
compressed visual features. If referring regions (points,
boxes, masks) are present in the instruction, they are con-
verted to text-interleaved sequence as described in Section
3.2. Afterwards, we propose to adopt a QFormer [45] net-
work with L (L < Ni,∀i) randomly-initialized queries,
which learns high-level task-specific information using the
language instruction. The output from the tokenizer, F =
{fi}k1 ; fi ∈ RL×D, are then flattened to produce the final
visual features, Fv ∈ RkL×D which are fed into the LLM.

LLM. We use Vicuna [12] as our language model, which is
a decoder-only LLM [5] with a context length of 2048 build
by instruction-tuning LLaMa [89]. The LLM takes the vi-
sion features Fv and the language instruction as input, and
generates task-specific output. We train the LLM end-to-
end by traditional next-token prediction objective calculated
over the ground-truth. Since Vicuna only has the digits 0-9
in its vocabulary, we introduce additional tokens 10-999 to
represent quantized coordinates. During evaluation, we de-
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(a) Illustration of uniform and adaptive sampling on a line curve.

Uniform SamplingUniform Sampling Adaptive SamplingGround Truth

Original
Uniform Adaptive

Adaptive Sampling

(b) Illustration of uniform and adaptive sampling on a object mask.
Figure 3. Visualization of uniform and adaptive sampling strategies. (a) illustration of sampled points and comparison of reassembled
curves, (b) illustration of sampled points and comparison of reassembled masks.

quantize the generated number tokens into the image space
for metric calculation.

3.2. Sequence Generation for Grounding Tasks
The outputs from grounding tasks typically manifest in one
of three formats: points, boxes, and masks. Points and
boxes are straightforward to quantify and serialize, as ev-
idenced in [7, 8, 73]. For instance, a point is represented by
its coordinates [x, y], while a box is denoted by its diago-
nal corner points [xmin, ymin, xmax, ymax], signifying the
top-left and bottom-right corners. Conversely, the outline
of a mask can assume any free-form shape comprising po-
tentially infinite points. In scenarios where such free-form
polygons are referenced in the input instructions, they can
be encoded as region features [111, 118]. However, trans-
lating segmentation masks into a sequence for output by a
general-purpose framework is particularly challenging, and
the process necessitates conversion of segmentation masks
into a small number of discrete points.

Previously, encoder-decoder-based segmentation ap-
proaches [9, 10, 58, 120] uniformly sample N points clock-
wise from the contour of the mask, and then quantize and
serialize them as [x1, y1, x2, y2, . . . , xN, yN],

xi = round
(
x̃i

w
∗ nbins

)
, yi = round

(
ỹi
h

∗ nbins

)
(1)

where (x̃i,ỹi) are the original floating point image coor-
dinates, w, h are the width and height of the image, nbins is
the number of quantization bins, and (xi,yi) are the quan-
tized coordinates. However, as shown in the top-left of
Figure 3a, the uniform sampling approach is unaware of
the contour curvature and cannot properly represent sharp
edges. To alleviate this limitation, we argue that the sam-
pling should preserve more points where the contour has
a sharp bend and less where it is almost straight. Based
on this observation, we propose a gradient-aware adaptive
sampling technique, which we describe in three steps:

• Contour Discretization. First, we discretize the contin-
uous contour by uniformly sampling a high number (M )
of dense points. Note that these dense points represent
the curve well, but such a long sequence is infeasible for
training a decoder.

• Gradient Calculation. Next, for every point pi∈{1,...,M}
on the curve, we draw two lines - l1 by joining pi with its
previous point pi−1, and l2 by joining pi−1 with the next
point pi+1. l1 and l2 create an angle θi (0◦ ≤ θi < 180◦)
at pi−1. If θi ≃ 0, the contour is almost linear at pi, and
we can safely discard pi (e.g., points B and D in the right
column of Figure 3a). As θi increases, the curvature at pi
becomes sharper, and the importance of keeping pi in the
final sampling list increases (e.g., points A and C).

• Sorting & Quantization: Finally, we sort θi∈{1,...,M} in
descending order, and keep the N points (N ≪ M ) cor-
responding to the N highest θi. These N points, which
are then quantized (we use 1000 quantization bins, by
default) and serialized as in Equation 1, denote the final
sampled list.
The right column of Figure 3a depicts the adaptive sam-

pling technique, which produces a better representation of
sharp bends of the curve than uniform sampling, shown in
the bottom-left of the same figure. We further illustrate the
reconstruction from two techniques with a mask from the
COCO dataset in Figure 3b, where the uniform sampling
loses fine details of the zebra’s legs, back, and ears. In con-
trast, adaptive sampling preserves the mask more precisely.

Both uniform and adaptive sampling techniques in-
evitably result in a certain amount of information loss from
the original ground-truth masks, thereby imposing a con-
straint on the maximal performance achievable in segmen-
tation tasks. Nonetheless, the extent of this loss is consid-
erably reduced when employing the adaptive sampling ap-
proach. For instance, in the RefCOCO validation set for Re-
ferring Expression Segmentation (RES), uniform sampling
of 32 points from the ground-truth masks yields an mIoU
upper bound of 94.70, whereas adaptive sampling achieves
97.26. The superiority of adaptive sampling becomes even
more pronounced in the case of complex geometric struc-
tures containing numerous sharp bends and intricate details.
We delve deeper into the comparative efficacy of these two
methods through ablation experiments in Section 5.4.
4. Coarse-to-fine Instruction-tuning Dataset
To train VistaLLM on a versatile form of vision and lan-
guage tasks, we collect CoinIt (Coarse-to-fine Instruction-
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Dataset Task Corpus Multi
img?

Reg.
level?

Input
format

Output
format Metrics (%)

COCO [54]

Caption Train, Eval ✗ ✗ I T SPICE, CIDEr
VQAv2 Train, Eval ✗ ✗ I + Q T Accuracy

REC Train, Eval ✗ ✓ I + R B Pr@0.5
GREC Train, Eval ✗ ✓ I + R M Pr@0.5, N-acc
RES Train, Eval ✗ ✓ I + R B mIoU

GRES Train, Eval ✗ ✓ I + R M gIoU, N-acc, T-acc
REG Train ✗ ✓ I + B T −

AttCoSeg Train ✓ ✓ I M −

Flickr [74] Spot Caption Train ✗ ✓ I T + B −
VG [37] REG Train ✗ ✓ I + B T −
VCR [113] Reasoning Train, Eval ✗ ✓ I + Q + B T Accuracy
LLaVa [57] VQA Train ✗ ✗ I + Q T −
LT-QA [68] BQA Train, Eval ✗ ✓ I + Q + B B Accuracy

V7W [122]
PQA Train, Eval ✗ ✓ I + Q + P T Accuracy
BQA Train, Eval ✗ ✓ I + Q + B T Accuracy

TextVQA [83] Reading comp. Eval ✗ ✓ I + Q T Accuracy
IconQA [65] Reasoning Eval ✓ ✓ I + Q T Accuracy
HM [36] Classification Eval ✗ ✗ I T Accuracy
POPE [51] Hallucination Eval ✗ ✗ I + Q Y/N Prec., Recall, F1
NLVR [85, 86] Reasoning Train, Eval ✓ ✗ I + Q Y/N Accuracy

PASCAL [19]
CoSeg Train, Eval ✓ ✓ I M

Precision (P),
Jaccard Index

(J )
iCoSeg [3]
MSRC [101]

Table 1. Training and evaluation datasets, input-output for-
mats, and metrics. To train VistaLLM on versatile form of vision
and language tasks, we collect CoinIt, which is a unified set of
14 benchmarks. We quantitatively evaluate the trained model on
15 tasks without additional fine-tuning, among which TextVQA,
IconQA, POPE, and HM contain unseen tasks during training, as-
sessing the system’s generalization capability. I: Image, T: General
Text, Q: Question, R: Referring Expression, P: Point coordinate,
B: Bounding Box, M: Segmentation Mask, Y/N: Yes or No.

tuning Dataset), which is a unified set of 14 benchmarks
containing 6.8M samples, among which (i) 13 are pub-
licly available which we convert to instruction-tuning for-
mat, and (ii) we construct a new benchmark, AttCoSeg
(Attribute-level Co-Segmentation), to alleviate the lack of
multi-image region-level datasets. We quantitatively evalu-
ate the trained model on 15 benchmarks without additional
fine-tuning. Notably, 4 of these 15 downstream contain
entirely unseen tasks during training, helpful for assessing
the system’s generalization capability. To ensure data in-
tegrity, we confirm that no images from the validation or test
sets appear during training, thus eliminating the risk of data
leakage. We have grouped these diverse tasks into four main
categories based on their input and output formats, summa-
rized in Table 1:
• Single-image coarse-level tasks, such as visual question

answering (VQA) and image captioning on COCO [54]
and LLaVa [57] require global understanding of a single
input image.

• Single-image region-level tasks, like generalized refer-
ring expression comprehension (GREC) [22] and seg-
mentation (GRES) [56], spot captioning [8], visual com-
monsense reasoning (VCR) [113], box question answer-
ing (BQA) and point question answering (PQA) [68, 122]
require fine-grained dense predictions over one input im-
age. These tasks contain points, bounding boxes and seg-
mentation masks in inputs and outputs.

• Multi-image coarse-level tasks, like natural language for
visual reasoning (NLVR) [85, 86] and icon question an-

Method General-
purpose?

VQAv2 COCO Cap.
Val Dev Std SPICE CIDEr

METER [16] ✗ − 76.4 76.4 23.0 128.2
FIBER [15] ✗ − 78.6 78.4 23.1 128.4
Unified-IO [64] ✓ − 77.9 − − 122.3
Flamingo-80B [1] ✓ − 56.3 − − 84.3
Shikra-13B [8] ✓ 75.3 77.4 77.5 − 117.5
VistaLLM-13B ✓ 76.9 79.1 79.0 23.3 128.4

∆Ours - Shikra-13B − 1.6 ↑ 1.7 ↑ 1.5 ↑ − 10.9 ↑

Table 2. Performance on VQAv2 and COCO captioning.
VistaLLM yields significant gains over existing general-purpose
and fine-tuned baselines. Reported captioning results of METER
and FIBER are without CIDEr optimization [79].

swering (IconQA) [65] involve comprehending global
perception across multiple input images.

• Multi-image region-level tasks, such as object-level co-
segmentation (CoSeg) [40, 80] demands fine-grained rea-
soning and grounding on various input images.

AttCoSeg, newly proposed benchmark: Existing multi-
image region-level object co-segmentation datasets [3, 19,
101] are small-scale and simple to solve. Hence, we argue
that these datasets are insufficient to train VistaLLM to have
generalized grounding ability over many input images, and
we construct a more challenging larger-scale multi-image
region-level dataset. We use Group-wise RES [103] an-
notations to sample high-quality images containing objects
with similar fine-grained attributes (shape, color, size, po-
sition). We refer to such images as positives. While train-
ing VistaLLM, we input these positive image pairs, ask the
model to segment the object with common traits in both of
them. We name this task attribute-level co-segmentation
(AttCoSeg), which contains over 804k training samples,
and help VistaLLM to gain significant generalized reason-
ing and grounding ability over multiple input images. No-
tably, we do not collect new images or perform new an-
notations ourselves when constructing AttCoSeg. Detailed
statistics of every dataset are given in the supplementary.

5. Experiments
5.1. Instruction Prompts
Carefully designed language instructions are crucial for
general-purpose vision models on diverse tasks with differ-
ent input-output formats [8, 95]. Since we address closely
related tasks like REC, RES, GREC, GRES, we use detailed
instructions. Figure 2 illustrates an example instruction for
CoSeg. More example instructions are shown in supple-
mentary. We use a special token <image>, which we later
replace with the instruction-guided image features to gener-
ate interleaved image-text input to the LLM.

Moreover, the instruction must vary for different sam-
ples to support flexible user inputs. To generate high-quality
instructions with minimal cost, we manually write one ex-
ample description of each task and resort to GPT-3.5 [5] to
create hundreds of variations. Next, we refine and ensure
the quality of every instruction with GPT-4 [70]. During
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Method General-
purpose?

Ref Ref+ Refg
val testA testB val testA testB val test

UniTAB [105] ✗ 86.3 88.8 80.6 78.7 83.2 69.5 80.0 80.0
MDETR [35] ✗ 86.8 89.6 81.4 79.5 84.1 70.6 81.6 80.9
SeqTR [120] ✗ 83.7 86.5 81.2 71.5 76.3 64.9 74.9 74.2
OFA-L [93] ✓ 80.0 83.7 76.4 68.3 76.0 61.8 67.6 67.6
VisionLLM-H [95] ✓ − 86.7 − − − − − −
Shikra-13B [8] ✓ 87.8 91.1 81.8 82.9 87.8 74.4 82.6 83.2
MiniGPT-v2 [7] ✓ 88.7 91.7 85.3 80.0 85.1 74.5 84.4 84.7
Ferret-13B [111] ✓ 89.5 92.4 84.4 82.8 88.1 75.2 85.8 86.3
VistaLLM-7B ✓ 88.1 91.5 83.0 82.9 89.8 74.8 83.6 84.4
VistaLLM-13B ✓ 89.9 92.5 85.0 84.1 90.3 75.8 86.0 86.4

∆Ours - Ferret-13B − 0.4 ↑ 0.1 ↑ 0.6 ↑ 1.3 ↑ 2.2 ↑ 0.6 ↑ 0.2 ↑ 0.1 ↑

(a) Performance on referring expression comprehension (REC).
VistaLLM yields better results than existing baselines across all splits.

Method General-
purpose?

Ref Ref+ Refg
val testA testB val testA testB val test

CGAN [66] ✗ 64.9 68.0 62.1 51.0 55.5 44.1 51.0 51.7
VLT [55] ✗ 65.7 68.3 62.7 55.5 59.2 49.4 53.0 56.7
LTS [34] ✗ 65.4 67.8 63.1 54.2 58.3 48.0 54.4 54.3
CRIS [99] ✗ 70.5 73.2 66.1 62.3 68.1 53.7 59.9 60.4
SeqTR [120] ✗ 71.7 73.3 69.8 63.0 66.7 59.0 64.7 65.7
RefTr [48] ✗ 74.3 76.8 70.9 66.8 70.6 59.4 66.6 67.4
LAVT [107] ✗ 74.5 76.9 70.9 65.8 71.0 59.2 63.3 63.6
PolyFormer [58] ✗ 76.0 77.1 73.2 70.7 74.5 64.6 69.4 69.9
VistaLLM-7B ✓ 74.5 76.0 72.7 69.1 73.7 64.0 69.0 70.9
VistaLLM-13B ✓ 77.2 78.7 73.9 71.8 74.4 65.6 69.8 71.9

∆Ours - PolyFormer − 1.2 ↑ 1.6 ↑ 0.7 ↑ 1.1 ↑ 0.1 ↓ 1.0 ↑ 0.4 ↑ 2.0 ↑

(b) Performance on referring expression segmentation (RES).
VistaLLM is the first general-purpose model to unify RES.

Table 3. Performance on (a) REC, and (b) RES. While none other general-purpose systems can solve RES, VistaLLM sets a new state-
of-the-art for both tasks across all splits.

Method General-
purpose?

GREC Method General-
purpose?

GRES
Pr N-acc. gIoU N-acc. T-acc.

MCN [67] ✗ 28.0 30.6 MattNet [112] ✗ 48.2 41.2 96.1
VLT [55] ✗ 36.6 35.2 VLT [55] ✗ 52.0 47.2 95.7
MDETR [35] ✗ 41.5 36.1 LAVT [107] ✗ 58.4 49.3 96.2
VistaLLM-7B ✓ 52.7 69.4 VistaLLM-7B ✓ 64.4 68.8 96.6
VistaLLM-13B ✓ 54.6 70.8 VistaLLM-13B ✓ 65.1 70.0 96.8

∆Ours - MDETR − 13.1 ↑ 34.7 ↑ ∆Ours - LAVT − 6.7 ↑ 20.7 ↑ 0.6 ↑

Table 4. Performance on generalized referring expression com-
prehension (GREC) and generalized referring expression seg-
mentation (GRES). VistaLLM is the first general-purpose system
to address both tasks, and gains huge improvements over existing
specialist models.

training, we randomly pick one instruction for each sample.

5.2. Implementation Details
We use EVA-CLIP [87] pre-trained on LAION-400M [82]
and QFormer [45] pre-trained by InstructBLIP [14] as our
visual encoder and instruction-guided image tokenizer. We
feed the input images into EVA, which produces 256×1408
dimensional features for 224 × 224 images. The number
of spatial tokens quadratically increases with the input im-
age dimension. The Qformer has 12 encoder layers with
12 heads and outputs 32 queries per image with a hidden
size of 768, thus working as an efficient feature compressor.
For a fair comparison with existing general-purpose base-
lines [7, 8, 95, 111, 118], we use Vicuna7B and Vicuna13B
[12] as the LLM. All other dense layers are initialized from
scratch. For serializing the segmentation masks, we sample
32 points using the proposed adaptive sampling technique.

VistaLLM is trained in two stages. In the first stage, we
only use the single-image datasets and do not introduce the
instruction-guided image tokenizer. We freeze EVA and
train the rest of the model end-to-end for 2 epochs. In
the second stage, we only tune the image tokenizer on the
multi-image datasets for 5 epochs. VistaLLM is trained us-
ing AdamW optimizer [61] and cosine scheduler [60] with
linear warmup for the first 3% steps. We use a peak learn-
ing rate of 2e−5 and a global batch size of 256. The model
from the first stage is used to evaluate single-image datasets,
whereas the model from the second stage is used to evalu-
ate multi-image datasets. Training takes 2/3 days for the

Task Method LookTwice-QA Task Method V7W
Any Super cls. Object

PQA

Mani et al. [68] 56.5 59.1 62.8

BQA

V7W [122] 56.1
Shikra-13B [8] 70.0 70.2 71.9 CMNs [26] 72.5
VistaLLM-13B 71.1 71.2 72.5 ViLBERT [63] 82.8
∆Ours - Shikra-13B 1.1 ↑ 1.0 ↑ 0.6 ↑ ViLBERTFT [63] 83.4

BQA
Mani et al. [68] 60.2 59.8 61.4 GPT4RoI-13B [118] 84.8
Shikra-13B [8] 70.3 71.4 72.3 Shikra-13B [8] 85.3
VistaLLM-13B 71.4 72.5 73.0 VistaLLM-13B 85.5

∆Ours - Shikra-13B 1.1 ↑ 1.1 ↑ 0.7 ↑ ∆Ours - Shikra-13B 0.2 ↑

Table 5. Performance of point question answering (PQA) and
box question answering (BQA) on LookTwice-QA and Visual-
7W. LookTwice-QA questions based on input point/box on three
different level of referential clarity in the question, e.g. “How
many of these [items/vehicles/cars] are there?” Visual-7W ques-
tions in ’which box’ setting, i.e. choose one of the four bounding
box options based on given query.

first stage and 22/30 hours for the second stage with 7/13B
models on 32 A100 GPUs, each having 80G memory.

5.3. Main Results
We use boldface and underline for the best and second-best
performing methods in every table and indicate the perfor-
mance improvements over the state-of-the-art with ∆.

VQAv2 & COCO Captioning: Table 2 presents the perfor-
mance on traditional single-image coarse-level visual ques-
tion answering and image captioning tasks, which do not
necessitate coordinates in the input or output. The in-
put instructions for these tasks are straightforward, such
as, “Please generate a simple description of the image
<image>.” or “Given the image <image>, can you please
answer the question <question>”, where <question> de-
notes the input query. On VQAv2, VistaLLM achieves
76.9%, 79.1%, and 79.0% accuracy on the val, dev, and
std splits, improving the general-purpose state-of-the-art by
over 1.5 points. On image captioning, VistaLLM yields a
substantial gain of 10.9 CIDEr points over the best general-
purpose baseline [8]. Our model performs on a par with
fine-tuned specialist models, signifying the power of LLMs
to comprehend and generate strong language descriptions.

REC, RES, GREC & GRES: Next, we evaluate VistaLLM
on four single-image grounding tasks. Table 3 shows the
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Method Validation Acc.
Q → A QA → R Q → AR

ViLBERT [62] 72.4 74.5 54.0
Unicoder-VL [43] 72.6 74.5 54.5
VLBERT [84] 75.5 77.9 58.9
VILLA [20] 78.5 82.6 65.2
GPT4RoI-7B [118] 87.4 89.6 78.6
VistaLLM-13B 87.8 89.9 79.1

∆Ours - GPT4RoI-7B 0.4 ↑ 0.3 ↑ 0.5 ↑

(a) Performance on visual com-
monsense reasoning (VCR).

Method Acc.
TextVQA IconQA HM

BLIP-2 [45] 42.5 40.6 53.7
InstructBLIP [14] 50.7 44.8 57.5
MiniGPT-4 [121] 19.9 37.6 −
LLaVA [57] 38.9 43.0 −
MiniGPT-v2 [7] 51.9 47.7 58.2
VistaLLM-13B 53.0 47.9 59.1

∆Ours - MiniGPTv2 1.1 ↑ 0.2 ↑ 0.9 ↑

(b) Performance on novel tasks -
TextVQA, IconQA, and HM.

Table 6. Results on (a) VCR, and (b) three novel tasks -
TextVQA, IconQA, hateful memes (HM). VistaLLM achieves
consistent gains over existing baselines.

Method PASCAL Method MSRC Method iCoSeg
Av. P Av. J Av. P Av. J Av. J

Quan et al. [77] 89.0 52.0 Rubinstein et al. [81] 92.2 74.7 Rubinstein et al. [81] 70.2
Jerripothula et al. [31] 80.1 40.0 Faktor et al. [19] 92.0 77.0 Faktor et al. [19] 73.8
Li et al. [39] 94.1 63.0 Chen et al. [6] − 73.9 Jerripothula et al. [30] 70.4
Zhang et al. [116] 94.9 71.0 Li et al. [49] 95.4 82.9 Zhang et al. [116] 89.2
CycleSegNet [115] 96.8 73.6 CycleSegNet [115] 97.9 87.2 CycleSegNet [115] 92.1
VistaLLM-13B 97.9 77.2 VistaLLM-13B 98.5 90.1 VistaLLM-13B 95.1

∆Ours - CycleSegNet 1.1 ↑ 3.6 ↑ ∆Ours - CycleSegNet 0.6 ↑ 2.9 ↑ ∆Ours - CycleSegNet 3.0 ↑

Table 7. Performance on object co-segmentation (CoSeg) on
three datasets - PASCAL, MSRC, and iCoSeg. VistaLLM is the
first general-purpose system to address CoSeg and sets a new set-
of-the-art across all datasets, beating previous specialist models.

results of referring expression comprehension (REC) and
referring expression segmentation (RES), which aims to
ground (detect and segment, respectively) one object in the
image described by an input expression. Our model shows
promising performance on REC, improving over existing
baselines across all evaluation splits. VistaLLM is the first
general-purpose system to report results on RES, where
we perform as good as fine-tuned specialist models. Such
strong results on grounding tasks can be attributed to refined
image features, effective sampling techniques, and detailed
input instructions. We also evaluate VistaLLM on GREC &
GRES, where the output can contain zero, one, or multiple
boxes and masks. As shown in Table 4, besides generating
high-quality boxes and masks, our model yields an impres-
sive gain of 34.7% and 20.7% N-acc scores over MDETR
[35], reflecting the ability of VistaLLM to detect samples
without any matching objects in the image.

PQA & BQA: Table 5 shows our performance on point
question answering (PQA) and box question answering
(BQA), which can have coordinate points and bounding
boxes as input and output. LookTwice-QA asks the model
to answer a question about a specified region, either men-
tioning a point or a box. The system needs to comprehend
the area in the context of the whole image, e.g., “How many
of these [cars] are there in the image?” Visual-7W contains
MCQs where the model needs to choose a box from four
options. VistaLLM sets new state-of-the-art on both tasks,
proving its mighty region-referring ability.

VCR & Novel (Unseen) Tasks: Table 6a shows results
on visual commonsense reasoning (VCR) - a single-image
fine-grained reasoning task containing questions with re-
ferring bounding boxes. VistaLLM produces 0.5% im-

Method General-
purpose?

NLVR
dev test-P

VisualBERT [46] ✗ 67.4 67.0
SOHO [27] ✗ 76.3 77.3
Oscar [50] ✗ 78.1 78.4
Uniter [11] ✗ 77.2 77.9
VILLA [20] ✗ 78.4 79.3
ALBEF [44] ✗ 80.2 80.5
VistaLLM-13B ✓ 80.8 81.3

∆Ours - ALBEF − 0.6 ↑ 0.8 ↑

(a) Results on NLVR.

Method R P A
F1 F1 F1

mPLUG-Owl 68.4 66.9 66.8
LLaVA [57] 66.6 66.4 66.3
MiniGPT4 [121] 80.2 73.0 70.4
InstructBLIP [14] 89.3 84.7 77.3
Shikra-7B [8] 86.2 83.2 82.5
Ferret-13B [111] 89.8 84.2 82.0
VistaLLM-13B 90.5 84.8 82.9

∆Ours - Ferret-13B 0.7 ↑ 0.6 ↑ 0.9 ↑

(b) Results on POPE.

Table 8. Performance on (a) NLVR, and (b) object hallucina-
tion benchmark using POPE evaluation pipeline. VistaLLM is
the first general-purpose model to address NLVR, and beats strong
fine-tuned models. VistaLLM demonstrates an intriguing property
of alleviating object hallucinations across all three splits. R: Ran-
dom, P: Popular, A: Adversarial.
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(b) mIoU by VistaLLM on Ref,
Ref+ with varying number of points.

Figure 4. Ablative experiments on RES task. (a) Comparison
of the highest possible mIoU by adaptive and uniform sampling,
indicating lesser information loss in adaptive sampling, (b) Effect
of number of sampled points on the performance of VistaLLM.

provement over GPT4RoI [118] in the most challenging
Q → AR setting. We also access our model’s generaliza-
tion ability by evaluating it on three novel tasks in Table 6b
- TextVQA, IconQA, and hateful memes (HM). VistaLLM
achieves strong results on all three benchmarks, proving its
ability to comprehend novel tasks given well-designed in-
structions.

CoSeg & NLVR: Table 7 and Table 8a shows the per-
formance on two multi-image tasks, CoSeg and NLVR.
VistaLLM is the first general-purpose model to evaluate
both tasks. Given a group of images with a common ob-
ject, CoSeg aims to recognize and segment the object in ev-
ery photo. VistaLLM outperforms existing specialist base-
lines across three different datasets on CoSeg, showing its
strong perception and grounding ability. VistaLLM also
beats powerful fine-tuned models [20, 44] on NLVR, which
aim to reason two input images and answer a query. These
results prove the versatility of VistaLLM with more than
one input image, which is crucial for real-world use cases.

POPE: We evaluate VistaLLM on POPE object hallucina-
tion benchmark in Table 8b, where we perform comparably
to strong general-purpose models like Shikra [8], and Fer-
ret [111] across all metrics and splits, and vastly outperform
many previous baselines. These results exhibit our model’s
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Figure 5. Examples demonstrating VistaLLM’s capability for single and multi-image reasoning and grounding tasks. More visual-
izations are shown in supplementary. Best viewed when zoomed in and in color.

Method iCoSeg NLVR
Av. J dev

VistaLLM-13B 95.1 80.8
w/o Tokenizer 89.7 77.3
w/o Tokenizer PT 94.8 79.5

Table 9. Ablation on
instruction-guided image
tokenizer, which refines
global image embeddings.

ability to power against the hallucination problem, essential
for its generalized applicability.

5.4. Ablation Study
Adaptive vs. Uniform Sampling: We ablate the quan-
titative effectiveness of our proposed adaptive sampling
method compared to uniform sampling for referring expres-
sion segmentation (RES) in Figure 4. With 32 sampled
points, the maximum achievable mIoU score on Ref val
set by adaptive technique is 97.26, while for uniform sam-
pling, 94.70. However, with fewer sampling points, both
methods perform significantly worse. Figure 4b shows that
the performance of VistaLLM also improves using adaptive
sampling on both Ref and Ref+ val splits, which shows the
usefulness of the proposed sampling scheme.
Number of Sampled Points: Figure 4b shows that with
a higher number of sampled points, the performance of
VistaLLM significantly improves for both Ref and Ref+.
When increasing the number of points from 16 to 32,
VistaLLM gains 3.6 on Ref and 4.5 on Ref+.
Instruction-guided Image Tokenizer: We ablate the im-
portance of the proposed instruction-guided tokenizer in Ta-
ble 9. The performance of iCoSeg significantly drops by 5.4
J -index without the tokenizer module. We also see similar
effects in captioning, RES, VCR, and NLVR. When using
QFormer without pre-trained weights, we observe a sub-
stantial drop in all tasks except iCoSeg.
LLM Size: Table 2, 3, 4 shows that larger LLM backbone
generally helps improve the performance. We show ablation

on the training dataset and image encoder in supplementary.

5.5. Qualitative Results and Error Analysis
Figure 5 visualizes sample results from VistaLLM for single
and multi-image reasoning and grounding tasks. As shown
in the NLVR and AttCoSeg examples, VistaLLM can suc-
cessfully parse all input images and comprehend the rela-
tion among them. It can also successfully ground all re-
ferred objects in foreground and background, as shown in
GRES. However, compared to the recently released GPT-
4V [108], we perform worse in general and knowledge-
based question answering, which can be attributed to the
billion scale pre-training of GPT. Nevertheless, VistaLLM’s
ability to reason over several images and perform precise
detection and segmentation makes it unique.

6. Conclusion
We introduce VistaLLM, a powerful general-purpose vi-
sion system that integrates coarse- and fine-grained vision-
language reasoning and grounding tasks over single and
multiple input images into a unified framework. To fil-
ter embeddings from various images, VistaLLM uses a
language-guided image tokenizer, which provides com-
pressed and refined features following the task description.
We also employ a gradient-aware adaptive sampling tech-
nique to efficiently represent binary segmentation masks as
sequences, significantly improving previously used uniform
sampling. We conduct extensive experiments to show the
effectiveness of VistaLLM on a wide range of downstream
tasks, consistently achieving state-of-the-art performance.
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