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Abstract

Generalized category discovery (GCD) aims at grouping

unlabeled samples from known and unknown classes, given

labeled data of known classes. To meet the recent decen-

tralization trend in the community, we introduce a practical

yet challenging task, Federated GCD (Fed-GCD), where

the training data are distributed among local clients and

cannot be shared among clients. Fed-GCD aims to train

a generic GCD model by client collaboration under the

privacy-protected constraint. The Fed-GCD leads to two

challenges: 1) representation degradation caused by train-

ing each client model with fewer data than centralized GCD

learning, and 2) highly heterogeneous label spaces across

different clients. To this end, we propose a novel Asso-

ciated Gaussian Contrastive Learning (AGCL) framework

based on learnable GMMs, which consists of a Client Se-

mantics Association (CSA) and a global-local GMM Con-

trastive Learning (GCL). On the server, CSA aggregates the

heterogeneous categories of local-client GMMs to generate

a global GMM containing more comprehensive category

knowledge. On each client, GCL builds class-level con-

trastive learning with both local and global GMMs. The

local GCL learns robust representation with limited local

data. The global GCL encourages the model to produce

more discriminative representation with the comprehensive

category relationships that may not exist in local data. We

build a benchmark based on six visual datasets to facilitate

the study of Fed-GCD. Extensive experiments show that our

AGCL outperforms multiple baselines on all datasets. Code

is available at https://github.com/TPCD/FedGCD.

1. Introduction
Generalized category discovery (GCD) seeks to categorize
unlabeled samples from known and unknown classes by
leveraging labeled data of known classes. As a more prac-
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Figure 1. Illustration of the proposed Fed-GCD with the global
bird species discovery case. In Fed-GCD, the data are distribu-
tively collected from the different local stations (clients) over the
world, which are partially annotated. Each client includes client-
specific categories and may share some common categories with
the other clients. Moreover, due to data privacy, the raw data stored
in local clients are not allowed to share with the central server or
other clients. The goal of Fed-GCD is to collaboratively train a
generic GCD model under the privacy constraint, and then utilize
it to discover novel categories in the unlabeled data on the server.

tical extension of novel category discovery (NCD) [4, 10–
12, 19, 36, 42, 45, 47, 48], GCD has attracted increasing
attention. While existing GCD methods [9, 34, 38, 39, 41]
have achieved promising performance, they always require
centralized training, where the training data need to be ac-
cessed at once. However, this strategy violates many prac-
tical application scenarios: the GCD data are distributively
collected by different local clients and the data in each client
cannot be shared with others due to the privacy concerns.
For instance, as shown in Fig. 1, a global species research
center plans to discover the new species of global birds
through the collaboration of local stations located around
the world. Each local station is responsible for capturing
and partially annotating bird images. Due to the difference
in local policies and laws, it is hard to make an agreement to
share the local data between stations. Thus, a decentralized
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system is required to handle this pragmatic GCD scenario.
To meet this requirement, we propose a practical yet

challenging task, namely Federated GCD (Fed-GCD), in
which the GCD data are individually collected and par-
tially annotated by local clients as well as cannot be shared
with other clients. The objective of Fed-GCD is to train
a generic GCD model via the collaboration across local
clients without sharing local samples, which can recognize
both known and unknown categories in the unlabeled data.
Compared with the conventional federated learning (FL)
setups [31, 32, 43], in Fed-GCD, local data are partially-
labeled and unlabeled data may belong to unknown cate-
gories that disappear in labeled data. In addition, clients
may share some common categories since some species of
birds could live in different continents as shown in Fig. 1,
and the different clients may have distinct client-specific
categories. Attributed to such a complicated yet real situa-
tion, Fed-GCD suffers from 1) additional difficulties caused
by open-set learning on limited local data, and 2) more se-
vere data heterogeneity problems due to the inconsistent la-
bel space between clients.

To tackle the challenges, we propose an Associated
Gaussian Contrastive Learning (AGCL) framework, which
unifies the discriminative representation learning on the
limited local data and the heterogeneous category aggrega-
tion on the central server, benefiting from learnable GMMs
with a maximum likelihood regularization. Specifically, we
propose to represent the potential classes by a learnable
Gaussian mixture model (GMM), which brings two advan-
tages. First, the learnable mechanism enables us to perform
class-aware contrastive learning with dynamic Mahalanobis
distance, which can reduce the side effects of inaccurate
clustering. Second, modeling the classes as GMMs is fa-
vorable for generating informative feature-level samples of
each category on server, without assessing the raw data.

To this end, we propose a client semantics association
(CSA) on the central server and a global-local GMM Con-
trastive Learning (GCL) on local clients. CSA builds a new
feature set by sampling from each category of the uploaded
local GMMs generated by clustering local data. Then,
CSA aggregates the category knowledge by clustering on
the feature set, which yields a global GMM. This process
not only implicitly aligns the shared classes across local
clients, but also aggregates client-specific category informa-
tion. As a result, the global GMM can enrich both the intra-
and inter-class relationships for local training. GCL targets
at performing robust contrastive representation learning by
jointly using global and local GMMs. On the one hand, the
GMM-based contrastive learning is insensitive to wrongly
pseudo-labeled samples, which can help the model to learn
robust representation. On the other hand, the association of
global-local GMMs enforces the model to learn more gen-
eralized representation in a complementary way.

Table 1. Comparison between different federated learning (FL)
setups. “FS”, “SS” and “SE” denote fully-supervised, self-
supervised and semi-supervised, respectively.

FL Setup Out of Categories Annotation on Client
FS [32] 7 Fully Labeled
SS [43] 7 Unlabeled
SE [31] 7 Partially Labeled
Fed-GCD 3 Partially Labeled

We summarize the contributions of this work as follows:
• Task contribution. We explore a new yet practical GCD

task, namely Fed-GCD, which investigates GCD prob-
lems under a federated learning scenario.

• Technical contribution. We propose a new AGCL
framework for Fed-GCD. AGCL fully takes the advan-
tage of the local and the global GMMs to learn general-
ized representation in a comprehensive manner.

• Empirical contribution. We build a Fed-GCD bench-
mark with two heterogeneity degrees based on six
datasets to simulate possible conditions in real-world
GCD applications. Experiments demonstrate that our
AGCL can improve performance across all settings.

2. Related Work
Generalized Category Discovery (GCD) aims to catego-
rize all images in an unlabelled set by using the knowl-
edge learned from a set of labeled categories. Unlike ear-
lier related tasks such as Novel Category Discovery [10, 11]
(NCD) and generalized transfer learning [15, 16], GCD
assumes that the unlabeled data comes from both known
and unknown categories. Therefore, GCD is a practical
and challenging task that has attracted increasing atten-
tion [4, 9, 12, 19, 19, 36, 38, 39, 41, 42, 45, 47]. For
example, GCD [39] has indicated that the combination of
self-supervised and supervised representation learning is
helpful for improving clustering discovery. XCon [9] has
proposed learning with multiple experts for fine-grained
category discovery. OpenCon [38] and DCCL [34] have
demonstrated the significant superiority of jointly consid-
ering prototypical contrastive learning and pseudo-label as-
signment. Recently, GPC [46] has introduced GMM to ad-
dress GCD tasks. However, the semi-supervised GMMs
proposed in GPC [46] are only used for estimating the num-
ber of unknown categories instead of end-to-end represen-
tation learning, which is different from ours. Although these

methods show promising performance under GCD assump-

tions, they neglect the increasingly important issue of data

privacy. To investigate this overlooked issue and address

additional technical bottlenecks, we design a Fed-GCD task

and introduce a new AGCL framework accordingly.

Federated Learning (FL) is a promising solution for
privacy-preserving decentralized training. In the typical
FL algorithm, FedAvg [32], the goal is to learn a global
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model by averaging weight parameters across local mod-
els trained on private client datasets. Most existing FL
works [1, 6, 20, 27, 29, 30] focus on supervised learning
settings, where the local private data are fully labeled. How-
ever, the assumption that all of the data examples are fully
annotated is not realistic for real-world applications like
GCD. Thus, one early work [43] has attempted to intro-
duce self-supervised learning into the FL framework. Later,
since there is often partially-labeled data in real-world sce-
narios, some semi-supervised FL approaches [22, 31] are
proposed to exploit the partial supervision and learn better
representations with few annotation costs. As summarized
in Tab. 1, these works assume local clients share a com-
mon label space that is infeasible for GCD tasks. In con-

trast, our Fed-GCD is challenged by more severe issues of

data heterogeneity, because the label spaces are even non-

overlapping among clients.

Contrastive learning (CL) has been demonstrated to
be highly effective for representation learning in a self-
supervised setting [3]. Inspired by the powerful CL ap-
proaches [8, 13, 17, 21], GCD [39] has introduced a combi-
nation of the self-supervised and the semi-supervised learn-
ing to enhance GCD representation. Moreover, prototypical
contrastive learning [28] (PCL) further considers class-level
supervision by contrasting instance features with a set of
prototypes. However, PCL needs an instance-level mem-
ory buffer to produce the prototype set, which is compu-
tationally and memory-intensive. In contrast to the PCL

that focuses on the learning of prototypes, our GCL con-

siders additional class-aware variances to comprehensively

model data distributions without instance buffer, by incor-

porating the classical GMM and contrastive learning in a

unified framework. This allows models to be insensitive to

outliers, especially for unreliable clusters.

3. Federated Generalized Category Discovery
3.1. Problem Definition and Formulation

Given the practical requirements of generalized category
discovery (GCD) applications (e.g., species distribution and
data privacy), it is necessary to build a generic GCD model
via collaborative decentralized training across clients with-
out sharing their local data. To meet these requirements, we
propose a federated generalized category discovery (Fed-
GCD) task. In Fed-GCD task, the local training data col-
lected by each client are partially labeled, where the la-
beled data belong to known categories, and the unlabeled
data may come from known or unknown novel categories.
Additionally, each client learns on its distinct label set,
which contains client-specific categories and may include
some shared common categories. Compared to the semi-
supervised federated learning [18] (semi-FL) setting that
assumes both labeled and unlabeled data belong to known

categories and share a common label space, Fed-GCD is
more challenging due to highly-heterogeneous data issues
attributed to inconsistent label spaces between clients and
additional difficulties caused by open-set learning on local
data. In light of this, Fed-GCD aims to 1) improve the local
GCD model’s representation learning ability on limited lo-
cal data in open-set learning scenarios, and 2) associate the
heterogeneous local label spaces to provide comprehensive
category knowledge for local training. To the best of our
knowledge, we are the first to explore the FL setup in GCD.

Formally, in the Fed-GCD task, there are NL local client
models {⇥L

n}NL

n=1 and one central server with the GCD
model ⇥G. In the beginning, the global model ⇥G

0 is ini-
tialized with the weights pre-trained on a publicly avail-
able large dataset (e.g., ImageNet [5]) and distributed to
each client. Given the local dataset on n-th client DL

n =

{(xi, yi)}
NL

n
i=1 2 X L

n ⇥ YL
n with the corresponding im-

age set X L
n and label set YL

n , the n-th client is required
to train its local model ⇥L

n based on the distributed global
model ⇥G

0 by leveraging its local dataset DL
n . In our Fed-

GCD setup, we assume that for i-th and j-th client, i 6= j,
YL

i and YL
j might be partially overlapping or completely

non-overlapping, but their label space cannot be same (i.e.,
YL

i

S
YL

j 6= YL
i orYL

j ). To simulate such data distribution
that often exists in real-world GCD applications, we adopt
the parametric Dirichlet distribution [14] to control the de-
gree of data heterogeneity.

3.2. Baseline

We employ the commonly-used FedAvg [32] algorithm, as
our basic framework. Due to the inconsistent label spaces
between local clients, we follow the previous FL work [26]
that only sends the feature extractor to the server. Given a
feature extractor f parameterized by ⇥, the extracted repre-
sentation is defined as v = f(x). As illustrated in Fig. 2 (a),
(d) and (e), the steps of the baseline for the collaborative
training are as follows.
Step I. In the t-th communication round, the server first ag-
gregates the client models ⇥L

i uploaded from the last com-
munication round, by taking a weighted average of them:

⇥G
t+1 =

NLX

n=1

NL
n

N
· ⇥L

n , N =
NLX

i=1

NL
i . (1)

Then, the averaged model is distributed to each client.
Step II. Based on the received global model, the i-th client
trains its model by using local data DL

i with the instance
contrastive learning loss LI proposed in [39] (in Fig. 2
(d)). Specifically, we define that xi and x̂i are two views
of random augmentations for the same image in a mini-
batch B = BL [ BU , consisting of the labeled subset BL

and unlabeled subset BU . The extracted representation vi
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Figure 2. Diagram of our Associated Gaussian contrastive learning (AGCL) framework. We first apply FedAvg [32] to aggregate the
uploaded local models, resulting in a global model that will be distributed to all clients. Then, after leveraging the distributed models to
extract image features, local clients are required to cluster these features and initialize local GMMs. Next, the local GMMs are uploaded to
the central server, and aggregated by the proposed CSA, to generate a global GMM before local training. Later, the server distributes the
global GMM to each client. Based on the global-local GMMs, client models are collaboratively optimized by the proposed GCL. Finally,
a generic model is trained for global category discovery.

is further projected by a MLP projection head h to high-
dimensional embedding space for instance-level contrastive
learning. The loss function is formulated as:

Ln
ins = (� � 1)

X

i2B
log

Sins(vi, v̂i, ⌧S)P
j2B,j 6=i Sins(vi,vj , ⌧S)

+
X

i2BL

��

|P(i)|
X

p2P(i)

log
Sins(vi,vp, ⌧L)P

j2N (i) Sins(vi,vj , ⌧L)
,

(2)

Sins(v, v̂, ⌧) = exp (h (v) · h (v̂) /⌧) , (3)

where P(i) and N (i) are the positive and the negative index
set for the anchor image i 2 BL. � is a trade-off factor to
balance self-supervised and supervised learning.
Step III. The updated global model will be transmitted to
each client. Step I and II are repeated until convergence.
Ultimately, we use the final global model to discover new
categories in the unlabeled data on server (in Fig. 2 (e)).

3.3. Limitations and Motivations
Although the baseline approach works on our Fed-GCD
benchmark, it shows unsatisfactory performance compared
with centralized training, especially on fine-grained GCD
datasets (see Tab. 3). We argue that the main reasons are
attributed to two aspects: 1) the GCD [39] applied in local
client training mainly focuses on instance-level contrastive
learning while it neglects class-level contrastive learning,
especially on unlabeled data. Since class-level or prototyp-
ical supervision plays an important role in open-set learn-
ing [38], the Fed-GCD fails to collaboratively train a robust

global GCD model without discriminative local models; 2)
sharing only the backbone network is inefficient to lever-
age the comprehensive category relationship that may not
be observed in local clients. Moreover, although the label
space of each client in Fed-GCD might potentially share
some common semantic information (e.g., a specie of bird
distributed on different continents), the server has no ex-
plicit knowledge to align or leverage such class-level rela-
tionships under privacy protection constraints.

To overcome these limitations, we consider represent-
ing the class-level knowledge by a learnable Gaussian mix-
ture model (GMM), which is initialized by a parameter-free
clustering approach. Each component of the GMM mod-
els a potential class/cluster with class-specific mean and
variance, which naturally results in a concentration-based
distance metric for robust contrastive learning. This idea
enables models to 1) mitigate the negative effects caused
by inaccurate clustering and enforce class-level supervision
into local training, and 2) generate informative feature-level
samples of each category for knowledge aggregation on the
server without leaking original data.

4. Federated Gaussian Contrastive Learning

Based on the above analyses, we propose a novel Associ-
ated Gaussian contrastive learning (AGCL) framework to
accomplish efficient Fed-GCD. AGCL consists of a global-
local GMM Contrastive Learning (GCL) on local clients
and a client semantics association (CSA) on the central
server. The former enforces a class-level contrastive learn-
ing in local training by jointly using a global GMM and a
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local one, where the local GMM is created by clustering
on local data and the global GMM is distributed from the
central server. The latter serves to aggregate heterogeneous
category knowledge contained in the local GMMs following
a client-agnostic manner, and generates the global GMM to
provide comprehensive category relationship for local train-
ing. The goal of AGCL is to improve representation learn-
ing by enforcing class-aware GCL and associating related
semantic knowledge scattered across clients.

4.1. Gaussian Contrastive Learning

As empirically demonstrated in [9, 28, 44], class-level or
prototypical contrastive learning is efficient for learning a
clustering-friendly representation. Recently, open-set con-
trastive learning [38] further indicates that such represen-
tation learning can significantly improve the GCD model’s
abilities to discover both known and unknown categories.
However, these methods represent a class by using only the
center or the mean of the class, which is insufficient and
vulnerable to wrong pseudo-labeling caused by inaccurate
clustering. To address this issue, we propose to employ a
classical Gaussian mixture model (GMM) to model poten-
tial cluster distributions, and then perform class-level con-
trastive learning across the components of the GMM.
Formulating learnable GMMs in Fed-GCD setup. We
assume that the n-th client generates a GMM GL

n =

{N (µi,�i)}
ML

n
i=1 with ML

n components, where the µi and
�i are the mean and variance of the i-th component. We use
a component to model a potential class/category. For sim-
plicity, we assume that the covariance matrix � is diagonal
and each cluster has the equal prior probability. By maxi-
mizing the posterior of vi belonging to the yi-th cluster, the
margin-based GMM loss on the n-th client is derived as:

Lgmm(GL
n ,vi, yi) = � log

|�i|�
1
2 Sgcl(vi, yi)

PML
n

j=1,j 6=yi
|�j |�

1
2 Sgcl(vj , yj)

,

(4)

Sgcl(vi, yi) = exp

 
�1

2

����
vi � µyi

�yi

����
2

· (1 + m)

!
, (5)

where Sgcl is the similarity metric based on squared Maha-
lanobis distance and the m is a non-negative margin factor
to increase the inter-class dispersion.
Discussion. Prototypical contrastive learning (PCL) [28]
is a pioneering method to introduce class-level supervision
into unsupervised contrastive learning. PCL estimates a
scalar concentration as the temperature parameter to scale
the similarity between a feature and its prototype. Although
it is efficient for learning discriminative representation, it
fails to model a precise representation distribution that is

supposed to generate reliable representations for the down-
stream clustering. Here, we discuss the differences between
PCL and GCL. The similarly metric of the PCL is:

Spcl(vi, yi) = exp (vi · µyi/�yi) , (6)

where �i is the estimated temperature parameter for the i-th
cluster. Comparing Eqs. (5) and (6), different from PCL, we
model the clusters via the GMM with additional covariance
matrices, and naturally derive the squared Mahalanobis dis-
tance as distance metric for contrastive learning. This al-

lows models to dynamically control the temperatures in a

dimension-wise way and to learn more reliable distributions

of representations for the subsequent sampling.

Furthermore, we introduce a maximum likelihood regu-
larization term to explicitly compact clusters and constrain
covariance, to avoid trivial solutions. For example, GMM
generates a high classification accuracy, but the sample em-
bedding is far away from the center of the cluster due to the
large class-specific variance. Using the regularization loss
can constrain the distance between the sample embedding
and its corresponding cluster center as well as reduce the
overlarge variances. The regularization loss is:

Lreg(GL
n ,vi, yi) = � log(Sgcl(vi, yi)) +

1

2
log |�yi | . (7)

Taking Eqs. (4), (5) and (7), the overall GCL loss is:

Ln
gcl(GL

n ) =

NL
nX

i=1

Lgmm(GL
n ,vi, yi) + ↵Lreg(GL

n ,vi, yi),

(8)
where ↵ is a weighting factor. Optimized by this objective,
the cluster-specific mean and variance can be learned.
Remark. Different from the GMMs employed in [46],
which are frozen during the whole training process, our
GMMs are dynamically learning in an end-to-end fashion.
Semi-FINCH for Local GMM Initialization. While the
number of GMM components can be generally pre-defined
by the ground-truth category number, the number of cate-
gories to be discovered is unknown in GCD assumptions.
In order to stabilize the GMM training and determine the
number of its components (i.e., the number of potential cat-
egories), we propose to initialize the learnable GMMs based
on improved parameter-free clustering assignment.

To leverage the category knowledge contained in labeled
data, we first propose to improve an hierarchical cluster-
ing approach, FINCH [37], to a semi-supervised extension.
Then, we use it to estimate the class number and assign lo-
cal pseudo labels for client data. Specifically, we 1) extract
features and calculate pair-wise similarities, 2) search the
1st-neighbor of each sample based on the similarities, 3)
force one random labeled sample that belongs to the same
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category as its 1st-neighbor and then apply FINCH algo-
rithm (detailed in supplementary materials) to yield multi-
level clustering results, and 4) leverage the clustering accu-
racy of labeled samples as the index to select the cluster-
ing level. Finally, we choose the level that achieve high-
est clustering accuracy as the estimated results to calcu-
late the cluster-specific mean and covariance to initialize the
learnable GMM, as shown in Fig. 2 (b). In short, the pro-
posed semi-FINCH can automatically capture the potential
semantic relationships among both labeled and unlabeled
samples with the guidance of labeled data, providing a rea-
sonable initialization for local GMMs.

4.2. Client Semantic Association

In Fed-GCD task, the central server is unreasonable to get
prior knowledge to align or identify local categories, due
to privacy constraints. To overcome these bottlenecks, we
propose a sample yet efficient client semantic association
(CSA) by category-agnostic sampling and re-clustering,
which aims to associate common semantic knowledge con-
tained in local GMMs, and aggregate diverse local category
information for enriching global category knowledge.
Category-Agnostic Knowledge Association. Let a set
of the uploaded local GMMs as GL = {GL

n }NL

n=1, where
GL

n = {N (µi,�i)}
ML

n
i=1 . We sample NS instances from

each component and attach its mean, which results in a new
feature set F with size of (

P
i M

L
i ) ⇥ (NS + 1) ⇥ NL.

Similarly, by applying parameter-free FINCH clustering on
F , the central server generates a new global GMM, as illus-
trated in Fig. 2 (c). The global GMM will be sent to each
client for the subsequent local training.
Discussion. Intuitively, the samples in F with similar se-
mantics will be re-clustered into a super-cluster that con-
tains more information with a large variance. This process
implicitly associates common classes scattered in clients,
thereby further enriching intra-class information. Mean-
while, the clusters with relatively independent semantics
will be preserved. In this way, CSA incorporates diverse
knowledge from different clients into the global GMM,
which establishes a bridge across clients. This allows
the isolated knowledge to mutually transfer among clients,
which provides complementary supervision (e.g., more neg-
ative classes and rich positive samples) for local GCL.

4.3. Associated Gaussian Contrastive Learning

As illustrated in Fig. 2 (d), taking the n-th client as an ex-
ample, AGCL first uses nearest neighbor search to assign
global pseudo labels for DL

n based on the distance induced
by the global GMM. Then, we consider both the global and
the local GMM to guide the optimization of the local model.
AGCL uses a convex combination of them to achieve an op-
timal balance between the local and the global knowledge

learning. The objective of AGCL on the n-th client is:

Ln
agcl = Ln

ins + (1 � �)Ln
gcl(GG) + �Ln

gcl(GL
n ), (9)

where the � is a trade-off factor to control the strength of
learning on global-local GMMs. When � is equal to 1,
AGCL leverages only the local class-level supervision for
representation learning. On the contrary, AGCL relies on
only the aggregated global category information.

5. Experiment
5.1. Experimental Setup
Dataset. To facilitate the study of Fed-GCD task, we
reorganize three commonly-used generic image classifi-
cation datasets (i.e., CIFAR-10 [24], CIFAR-100 [24]
and ImageNet-100 [39]) and three more challenging fine-
grained image classification datasets (i.e., CUB-200 [40],
Stanford Cars [23], and Oxford-IIIT Pet [33]) to construct
a new Fed-GCD benchmark. For each dataset, first, we
sample a subset of half the classes as “Old” categories in
the original training set, and 50% of instances of each la-
beled class are drawn to form the labeled set, and all the
remaining data form the unlabeled set. With the same rate
of labeled-unlabeled splitting, we split the original testing
set into labeled and unlabeled subsets for class number esti-
mation and GCD testing on server. Then, we further lever-
age the �-Dirichlet distribution [14] to split the training set
into NL subsets, where the NL subsets are regarded as lo-
cal datasets individually stored in each client. We set NL=5
in all experiments. The statistics are summarized in Tab. 6
(see Appendix).
Evaluation Protocols. Due to the varying data distribution
in different Fed-GCD applications, we present two evalu-
ation protocols to separately simulate the normally hetero-
geneous (NH) and extremely heterogeneous (EH) scenarios
by adjusting � in Dirichlet distribution [14]. Specifically,
we set � = 0.2 and � = 0.05 for NH and EH, respectively.
The NH setting exists few common classes while there is no
labeled categories shared across all clients in the EH setting
(Tab. 6 in Appendix). For each dataset, we learn a global
model in a decentralized training fashion. Following [39],
during testing, we first estimate the number of the potential
categories (i.e., k) in the non-overlapping test set by using
the labeled data stored on server. Then we calculate the
maximum of clustering accuracy between the ground truth
labels and the label assignment with the estimated k over
the set of permutations via Hungarian algorithm [25]. Last,
we measure the clustering accuracy for “All”, “Old” and
“New” categories.

5.2. Implementation Details
On each client, we adopt the same backbone network, a
ViT [7] pre-trained by DINO [2], and use its [CLS] to-
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Table 2. Results on generic datasets with two different degrees of data heterogeneity.

Methods
NH setting (� = 0.2) EH setting (� = 0.05)

CIFAR10 CIFAR100 ImageNet-100 CIFAR10 CIFAR100 ImageNet-100
All Old New All Old New All Old New All Old New All Old New All Old New

Centralized-GCD 83.6 85.8 82.0 54.9 56.1 53.7 72.1 80.7 67.5 83.6 85.8 82.0 54.9 56.1 53.7 72.1 80.7 67.5
Centralized-PCL 87.1 87.5 86.9 57.9 57.0 58.0 74.9 81.5 67.9 87.1 87.5 86.9 57.9 57.0 58.0 74.9 81.5 67.9
Centralized-GCL 86.7 86.7 86.7 58.5 57.2 58.1 76.1 83.7 68.4 86.7 86.7 86.7 58.5 57.2 58.1 76.1 83.7 68.4
FedAvg + GCD 80.7 82.3 80.3 49.6 52.1 49.3 69.8 77.1 65.7 78.7 80.1 78.3 47.3 49.2 45.9 66.4 74.8 62.1
FedAvg + PCL 81.6 82.7 80.9 53.2 54.1 51.7 72.4 79.5 66.0 80.0 80.7 79.4 50.4 51.6 49.0 70.1 77.0 63.3
FedAvg + GPC 81.3 81.7 80.5 52.8 53.5 51.4 72.1 78.2 65.7 80.1 80.4 78.4 50.0 51.3 48.9 69.8 76.8 63.1
FedAvg + GCL 83.2 84.9 82.8 54.1 55.7 54.0 74.1 81.8 67.3 82.2 82.4 81.9 52.1 53.2 51.9 72.5 79.8 65.3
FedAvg + AGCL 84.7 85.5 84.6 56.1 56.8 55.3 74.8 80.2 69.8 82.5 83.4 82.2 54.2 54.6 54.0 73.1 78.1 67.0
FedProx + AGCL 84.8 85.8 84.7 55.9 56.5 54.9 74.7 80.3 69.5 83.0 84.1 82.8 54.7 55.1 54.2 74.2 78.8 67.7

Table 3. Results on fine-grained datasets with two different degrees of data heterogeneity.

Methods
NH setting (� = 0.2) EH setting (� = 0.05)

CUB-200 Stanford-Cars Oxford-Pet CUB-200 Stanford-Cars Oxford-Pet
All Old New All Old New All Old New All Old New All Old New All Old New

Centralized-GCD 51.3 57.3 45.4 39.7 58.0 31.2 80.2 85.1 77.6 51.3 57.3 45.4 39.7 58.0 31.2 80.2 85.1 77.6
Centralized-PCL 58.0 55.7 60.0 41.4 55.3 38.0 86.2 85.7 86.4 58.0 55.7 60.0 41.4 55.3 38.0 86.2 85.7 86.4
Centralized-GCL 58.1 55.9 60.3 41.7 55.5 38.1 85.5 85.8 85.2 58.1 55.9 60.3 41.7 55.5 38.1 85.5 85.8 85.2
FedAvg + GCD 46.3 54.7 40.1 32.4 49.8 28.3 76.2 77.8 75.2 43.3 52.8 38.9 30.4 45.1 26.5 72.1 76.4 71.5
FedAvg + PCL 51.3 53.5 50.8 35.3 47.7 33.4 79.4 80.3 79.1 47.5 53.0 46.3 32.6 45.5 29.2 76.6 77.9 74.7
FedAvg + GPC 49.1 51.3 46.8 34.1 45.5 32.6 78.8 78.5 79.1 45.3 51.2 44.7 30.9 45.3 27.8 73.1 77.3 73.5
FedAvg + GCL 53.7 54.9 53.2 36.0 48.1 33.7 80.7 81.3 80.2 52.2 53.3 51.9 35.3 45.7 31.5 79.5 81.5 78.6
FedAvg + AGCL 55.2 52.5 56.7 38.2 50.8 36.0 82.7 83.9 82.3 53.1 52.9 54.2 36.4 44.9 32.8 81.4 82.0 80.7
FedProx + AGCL 55.4 52.7 56.8 38.5 50.7 36.4 82.5 83.6 82.2 53.6 53.2 54.5 36.9 45.2 33.0 81.5 82.1 80.8

ken for GCL learning and new category discovery. Follow-
ing GCD [39], the instance contrastive learning is imple-
mented by a projection head with 65,536 dimensions and
two randomly-augmented views of an image, and �, ⌧S and
⌧L are 0.35, 0.07 and 0.05, respectively. We fine-tune only
the last block of the ViT [7] with an initial learning rate of
0.1 and upload it to the central server in each communica-
tion. The parameters in global GMMs are frozen during
AGCL since the local data that include insufficient category
information are not able to optimize the global GMM. The
local GMMs and projection head are trained with an ini-
tial learning rate of 0.001 and 0.01, respectively. All the
fine-tuned parameters are optimized by SGD [35] for 200
epochs with a cosine annealing schedule. The size of the
mini-batch is set to 128. The hyper-parameters ↵, �, m and
NS are set to 0.01, 0.9, 0.3 and 1 in all experiments.

5.3. Performance Evaluation
Since this work is the first to explore GCD tasks under a
federated learning challenge, there is no Fed-GCD-specific
method used for comparison. Thus, we first adapt the cur-
rent GCD methods without parametric classifier (GCD [39],
PCL [28], GPC [46]) into Fed-GCD as the strong base-
line (“FedAvg + GCD”, “FedAvg + PCL” and “FedAvg +
GPC”). Note that we use our pseudo-label generation for
“FedAvg + PCL”, while keeping GPC’s original approach
in [46] for “FedAvg + GPC”. Then, we implement the
AGCL without global GCL (“FedAvg + GCL”) and the full
AGCL (“FedAvg + AGCL”) to investigate the effects of our
global-local GCL. Moreover, to provide a reference perfor-
mance, we evaluate the centralized training performance of

Table 4. The ablation study on the EH setting (�=0.05).

Setup Component CUB-200 Oxford-Pet

Lins LL
gmm Lreg LG

gmm All Old New All Old New

a) 3 43.3 52.8 38.9 72.1 76.4 71.5
b) 3 48.9 50.5 48.5 76.8 78.5 75.1
c) 3 3 50.6 51.8 49.8 78.0 80.7 77.4
d) 3 3 3 52.2 53.1 52.0 79.5 81.5 78.6
e) 3 3 3 3 53.1 52.9 54.2 81.4 82.0 80.7

GCD (“Centralized-GCD”), PCL (“Centralized-GCD”) and
GCL (“Centralized-GCL”). Finally, we adapt AGCL in the
advanced heterogeneous federated learning framework [29]
(“FedProx + AGCL”), for a comprehensive comparison.
Summary. The experimental results demonstrate that 1)
the proposed Fed-GCD task is challenging due to the severe
data heterogeneity, which results in a large accuracy degra-
dation between the centralized and decentralized training;
2) AGCL achieves consistent improvement in all settings.
Benefiting from aggregating different categories scattered
on clients, AGCL achieves better performance, especially
on fine-grained tasks in the EH setting. 3) we verify the
superiority of the end-to-end GMM design, which is more
suitable than GPC for heterogeneous data. The GMM in
GPC [46] are fixed, which might lead to inconsistent proto-
type updates, thereby degrading performance.

5.4. Effectiveness of Each Component of AGCL
We conduct five group ablation studies on the CUB-200 and
the Pet datasets. The results are shown in Tab. 4. The setup
(a) is the baseline method, i.e., “FedAvg + GCD”.
Effectiveness of local GCL. The setup a) and c) indi-
cate that GCL outperforms the baseline by a large margin,
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Table 5. Experiments with 10 Clients (i.e., NL = 10).

Setup
NH setting (� = 0.05)

CIFAR10 CIFAR100 ImageNet-100
All Old New All Old New All Old New

Centralized-GCD 83.6 85.8 82.0 54.9 56.1 53.7 72.1 80.7 67.5
Centralized-GCL 86.7 86.7 86.7 58.5 57.2 58.1 76.1 83.7 68.4
FedAvg + GCD 63.4 60.0 66.7 47.3 48.3 45.6 62.3 70.8 60.1
FedAvg + GCL 68.2 64.2 70.1 52.5 53.9 51.0 67.3 74.5 60.8
FedAvg + AGCL 68.1 63.8 70.3 52.2 53.6 52.4 67.5 74.8 61.1

Figure 3. Illustration of impacts of hyper-parameters.

demonstrating the importance of class-level supervision in
GCD. Especially for the accuracy of new classes, GCL out-
performs the baseline by 10.9% on the CUB-200 dataset.
Effectiveness of regularization in Eq. (7). From the setup
b) and c), we find that enforcing the regularizing loss can
achieve consistent improvement, as the regularization loss
encourages models to avoid trivial sub-optimal solutions.
Effectiveness of AGCL. The d) and e) demonstrate that
CSA can associate heterogeneous category knowledge even
without commonly-shared categories in EH setting. The
associated knowledge contained in the global GMM com-
plements representation learning based on local GMMs,
thereby enhancing global new category discovery. Through
analyzing the visualization results in Fig. 4 , we find that 1)
most global cluster centers are located at the ground-truth
centers without access to raw data, which demonstrates the
effectiveness of category knowledge aggregation; 2) as for
the blue-green cluster in the purple dashed line, the global
cluster may serve as a super-class to provide distinct seman-
tics for improving representation discriminability.

5.5. Hyper-Parameter Analyses
Impact of regularization weight in Eq. (8) is illustrated
in Fig. 3 (a), which indicates that ↵ is not sensitive from
0.001 to 0.05. ↵ achieves optimal performance at 0.01.
Impact of trade-off factor in Eq. (9) is illustrated
in Fig. 3 (b). We find that local GMMs dominate the AGCL
while global GMM plays an assistant role in providing a
few complementary information. This is because some ag-
gregated category knowledge does not exist in the current

Local GMMs on Client 1 Local GMMs on Client 2 Local GMMs on Client 3

Local GMMs on Client 5Local GMMs on Client 4 Global GMMs 

Figure 4. Visualization of learned GMMs on CIFAR10.

client. Thus, the global GMM cannot provide efficient su-
pervision compared to the local GMM. Thus, when AGCL
mainly relies on the global GMM, the performance of local
training will be largely degraded (e.g.,� = 0.6).
Impact of margin parameter in Eq. (5) is illustrated
in Fig. 3 (c). We find that the margin parameter is not sen-
sitive. We choose the optimal m=0.3 in all experiments.
Impact of sampling parameter in CSA is illustrated
in Fig. 3 (d). We find that 1) clustering only means of all
components (i.e., NS = 0) can improve the performance as
well, and 2) sampling more than 2 samples leads to worse
performance. Thus, NS is set to 1 in all experiments.
Impact of number of clients. From Tab. 5, when NL =
10, GCD suffers from a larger performance drop than our
GCL, compared with the centralized training and FedAvg
baseline. GCL achieves a relatively robust performance.

6. Conclusion
In this work, we propose a new Fed-GCD task, based on
the practical requirement of decentralized training trends.
To handle this task, we propose a novel Associated Gaus-
sian Contrastive Learning (AGCL) framework specifically
designed to overcome the unique challenges posed by Fed-
GCD. Moreover, we build a benchmark based on six visual
datasets to facilitate the study of Fed-GCD. Extensive ex-
periments show that AGCL outperforms the FedAvg-based
baseline on all datasets. In future, we attempt to relieve the
requirement of storing labeled data in the central server to
meet more realistic scenarios for Fed-GCD.
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