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Abstract

The anatomical structure detection of fetal cardiac views
is crucial for diagnosing fetal congenital heart disease. In
practice, there is a large domain gap between different hos-
pitals’ data, such as the variable data quality due to differ-
ences in acquisition equipment. In addition, accurate an-
notation information provided by obstetrician experts is al-
ways very costly or even unavailable. This study explores
the unsupervised domain adaptive fetal cardiac structure
detection issue. Existing unsupervised domain adaptive ob-
ject detection (UDAOD) approaches mainly focus on de-
tecting objects in natural scenes, such as Foggy Cityscapes,
where the structural relationships of natural scenes are un-
certain. Unlike all previous UDAOD scenarios, we first
collected a Fetal Cardiac Structure dataset from two hos-
pital centers, called FCS, and proposed a multi-matching
UDA approach (M3-UDA), including Histogram Matching
(HM), Sub-structure Matching (SM), and Global-structure
Matching (GM), to better transfer the topological knowl-
edge of anatomical structure for UDA detection in medi-
cal scenarios. HM mitigates the domain gap between the
source and target caused by pixel transformation. SM fuses
the different angle information of the sub-structure to ob-
tain the local topological knowledge for bridging the do-
main gap of the internal sub-structure. GM is designed to
align the global topological knowledge of the whole organ
from the source and target domain. Extensive experiments
on our collected FCS and CardiacUDA, and experimental
results show that M3-UDA outperforms existing UDAOD
studies significantly. Datasets and source code are avail-
able at https://github.com/xmed-lab/M3-UDA

*Equal Contribution.
†Corresponding authors.

Figure 1. Differences between our FCS detection and the previous
typical UDAOD task.

1. Introduction

In practical clinical prenatal screening, the detection of car-
diac anatomical structures in fetal ultrasound images is es-
sential for standard view localization [37], quality control
[30], and the diagnosis of congenital heart disease (CHD)
[2]. For example, ventricular septal defect, as a typical
CHD, is due to the absence of ventricular septum structure
[6]. In real-world applications, there are always some do-
main gaps in fetal ultrasound cardiac datasets from different
hospital centers, e.g., data collected by different medical de-
vices and scanned by obstetricians in various centers, result-
ing in a wide variation in the quality. This leads to perfor-
mance degradation in the detection of anatomical structures
testing in different hospitals. For example, several related
studies [1, 3, 32] have also explored the structure detec-
tion issue but have not addressed the domain gap. Mean-
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Figure 2. Visual domain shift in medical scenario.

Table 1. The comparison of FCS, CardiacUDA [47], CA-
MUS [24], and EchoNet [34].

Dataset Our FCS dataset CardiacUDA CAMUS EchoNet
Annotated Images 2,879 4,960 1,000 20,060
Multiple Centers ✓ ✓ × ×
Cardiac Views 2 4 1 1

Resolution 640-1920p 720p 480p 120p

Annotated Regions
LV, RV, LA, RA, DAO,

VS, SP, CR, RIB,
PTDA, SVC, T, AOA

LV, RV, LA, RA LV, LA LV

while, accurate annotation information provided by obste-
trician experts is costly or even unavailable in practice, es-
pecially in low-resource settings with a severe shortage of
well-trained obstetricians.

Unsupervised domain adaptation (UDA) techniques aim
to maximize the performance of the target domain/hospitals
while minimizing expert supervision through invariant fea-
ture learning [44], self-training [22, 49], image translation
[9, 20], domain randomization [23, 38], etc. Most of the
previous UDAOD methods focus on detecting objects, e.g.,
Cityscapes [11] and Foggy Cityscapes [39], where the re-
lationship between these objects, e.g., boat and bus, is un-
certain. In fetal anatomy, there’s topological understand-
ing aiding UDA task, while in natural scenes, the rela-
tionships between objects are often chaotic and unclear, as
shown in Figure 1. For instance, the fetal ventricular septum
(VS) is always midway between the left ventricle (LV) and
right ventricle (RV). This means that most existing UDAOD
methods may not be available in our new medical scenario.
To address the challenges for the new UDAOD task, we pro-
pose a novel multi-matching method called M3-UDA by
histogram Matching, sub-structure Matching, and global-
structure Matching for better aligning and transferring topo-
logical knowledge of medical scenarios in the source and
target domain. First, there are domain shifts caused by
variations in device specifications and calibration, lighting
conditions, and screening conditions, an example of which
is shown in Figure 2 (a) and (e). We can notice that the
gap between different hospital domains is the existence of
different brightness and gain-like conditions of ultrasound
images. Moreover, color Doppler images are acquired in
the screening of cardiac views, which mainly observe the
prevalence of cardiac blood flow, as shown in Figure 2 (c)
and (g). These situations in the source and target domains
are mainly pixel-wise transformations. To this end, we pro-
pose a simple, direct, and efficient histogram matching to

transform the fetal ultrasound images in the source domain
to be more like the target domain by non-linear pixel-wise
transformations, which is more suitable for different hospi-
tal scenarios.

Second, the relative positions of the sub-anatomical
structures are generally fixed, which is reflected in the an-
gles of the sub-structures, e.g., the angular ranges of the
four ventricular atria of the cardiac are fixed. To align this
detailed substructure topology information, we embed mul-
tiple substructure angle information into the matrix repre-
sentation to match the abundant angle information of the
source and target hospital.

Third, fetal cardiac views of anatomical structures that
have well-defined global topological information. For ex-
ample, the standard four-chamber cardiac view has nine
anatomical structures and the relative positions are fixed,
e.g., the ribs are always on either side of the four-chamber.
In other words, the global semantic topological information
of the anatomical structures for different domains can be
shared. We can utilize this disciplined global semantic in-
formation to perform alignment between different domains.
To this end, unlike the prototype approach to model the con-
ditional distribution of categories, a global graph based on
the relationships of all key structures is proposed to repre-
sent the category distribution, which is more conducive to
aligning and extracting global topological knowledge in the
different domains. To conclude, our contributions include:

• We collected the first Fetal Cardiac Structure dataset,
called FCS, for UDAOD in the medical application,
containing two views (four-chamber cardiac view
(4CC) and three vessels and trachea view (3VT)) of
the fetal cardiac with 13 anatomical structures/objects
(Tables 1 and 2) from two hospital centers, totaling
2879 fetal images. These fetal cardiac views will be
released, facilitating the exploration of UDA tasks,
object-based detection methods, and diagnosis.

• We proposed M3-UDA method to address the chal-
lenges for the new release datasets, which served as a
new benchmark for better detecting fetal cardiac struc-
tures in different hospital centers. For special med-
ical scenarios, we introduce histogram Matching to
deal with the contrast, tone, and gain matching is-
sues of ultrasound images. Further, we design sub-
structure Matching and global-structure Matching for
extracting the strong fixed topological knowledge of
the source and target domain.

• Extensive experiments show that the proposed
new benchmark outperforms existing state-of-the-art
methods. For example, the performance of adapting
hospital 2→1 on 4CC is improved by 7.08% mAP
compared to the SOTA method, i.e., SIGMA++ [27].
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Table 2. Key structure and its abbreviation (Abb) in two fetal car-
diac views in our FCS dataset.

4CC View 3VT View
Structure Abb Structure Abb

Left ventricle LV Superior vena cava SVC
Left atrium LA Arch of Aorta AOA

Left ventricle LV Trachea T
Descending aorta DAO Spine SP

Right atrium RA
Pulmonary trunk &

ductus arteriosus PTDA

Ventricular septum VS Ascending Aorta DAO
Spine SP / /
Rib RIB / /

Cross CR / /

2. Related Work

2.1. Unsupervised Domain Adaptive Object Detec-
tion

To solve the domain offset issue in object detection tasks,
many UDAOD methods have been proposed, which can
be roughly categorized into invariant feature learning [40,
44, 45, 50], pseudo-label based self-training [22, 49], im-
age translation [9, 10, 20, 21, 48], domain randomization
[23, 38] and mean-teacher training [8, 13, 14, 28]. Do-
main invariant feature learning methods [4, 16] can gen-
erate domain invariant features by adversarial training of
object detector models with the assistance of a domain
discriminator. Pseudo-label-based self-training approaches
[49] utilize high-confidence predictions from source-trained
detector models to train the target. These popular meth-
ods are always combined with semi-supervised DA studies
[15]. Then, some researchers proposed to use the unpaired
image-to-image translation-based method, like Cycle-GAN
[51], to map the target domain to the source domain and
vice versa. Another interesting approach is the domain ran-
domization strategy [23], which creates multiple stylized
versions of the source domain data to train the detection
model, thus allowing the model to minimize source-style
bias and generalize better to the target domain. In addition,
mean-teacher [13, 41] is an effective approach to improve
model generalization by progressively training the detector
model within a student-teacher framework using unlabeled
data. However, all of these methods ignore the graph topol-
ogy knowledge, which causes degradation performance, es-
pecially in UDAOD of a medical scene.

2.2. Graph Knowledge Reasoning for UDA

Recently, utilizing graph knowledge reasoning to enhance
the performance of UDAOD has become a hot topic. Ear-
lier studies [7, 46] utilized inter-object and intra-object re-
lationships present in the detection dataset, and these object
relations are modeled through knowledge graphs that can
assist detectors in the target domain to perform the same
object relations through training. SCAN [25] uses category-

specific semantics of different images in the source domain
as input by graph-based aggregation and learns the unbi-
ased semantic paradigm for better adaptability. The key
idea of SIGMA [26] and SIGMA++ [27] is to solve the
problem of the graph matching adaptation between dense
feature points. CIGAR [31] mainly addresses better fusion
and interaction of semantic-based and vision-based graph
information. However, previously designed graph-based
methods are suitable for natural scenarios and do not neces-
sarily extend well to UDA detection of medical anatomical
structures. In addition, most of the previous graph knowl-
edge is disorganized and uncertain, and the matching is rela-
tively coarse. Unlike previous methods, we propose a multi-
matching approach that captures most of the fixed topologi-
cal knowledge in medical scenarios from both sub-structure
and global-structure.

3. Method

Figure 3 shows the overview of our method. Beginning with
an annotated source image and an unlabeled target image,
our approach involves several key modules. Initially, a his-
togram matching (HM) module is employed to minimize
the domain gap within the spatial domain, specifically tai-
lored for ultrasound images (Section 3.1). Subsequently, a
shared feature extractor is utilized to derive features denoted
as F s and F t, followed by the integration of the FCOS
head. Then, we incorporate both a sub-structure matching
(SM) module and a global-structure matching (GM) mod-
ule. These modules play pivotal roles in augmenting the
training process of the core object detection network and
function as regularization terms, elucidated in Sections 3.2
and 3.3, respectively.

3.1. Histogram Matching

Ultrasound images collected from different health centers
reveal differences in brightness and contrast due to di-
verse medical equipment and practices. To address this
domain shift, we leverage histogram matching for image-
level feature alignment. Specifically, given images Xs/t ∈
RH×W×3 from source and target domains, respectively,
where H and W is the height and width of the image. We
first normalize all pixels of images to ensure their inten-
sity values are within the same range k = [0, 255]. Then,
we calculated the numerical density distribution P s/t =

{ps/ti }ki=0 for Xs and Xt in both domains. Finally, we con-
duct the histogram matching via optimal mapping σ(·) with
the following:

Xt′ = σ(Xt), σ := argmin
∑k

i=1
d(M(P s), P t), (1)

where d(·) is a distance metric between two histograms for
each k value, and we measure its corresponding value in-
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Figure 3. Overview of M3-UDA. First, the source/target images are randomly selected to be fed into the Histogram Matching Module to
obtain the matched source image for the first matching. Second, the target image and the matched image are sent to the shared backbone to
generate the feature maps and produce the detection results from FCOS [42] detection head. Third, in Sub-structure Matching Module,
the pseudo-label of the target image and the ground truth of the matched source image are utilized to generate an adjacency matrix
incorporating the detailed angle information of sub-structures. Fourth, we employed the Wasserstein distance method to compute the loss
of the sub-structure matching module for the second matching. Then, in Global-structure Matching Module, feature nodes are produced
from the feature maps, and a methodology involving node sampling, visual graph projection, global graphical representation construction,
and organ morphology Knowledge transfer is used to compute the loss on the global structure for the third matching. Finally, the trained
detection head predicts the final result.

Angle between spine 
and upper rib

Angle between spine 
and lower rib

Figure 4. The orientation-based sub-structure remains consistent
for the same view.

tensity and use the σ(·) to represent the histogram matching
across source and target domains.

3.2. Sub-structure Matching

In real scenarios, obstetricians usually scan organs from
fixed orientation to acquire fetal ultrasound images clin-

ically. Inspired by this, we consider this principle able
to be presented with a consistent representation of sub-
structures within the same ultrasound plane across differ-
ent medical centers. As illustrated in Figure 4, the angles
between the spine and two ribs of the interventricular sep-
tum intersection remain consistent across domains. To uti-
lize this knowledge for narrowing the domain gap across
source and target domains, we present the Sub-structure
Matching (SM) module that innovatively introduces the an-
gular information for constructing the domain relationship.
Essentially, the SM module consists of two components:
Sub-structure Relation Construction and Structure Match-
ing. We detail them below.
Sub-structure Relation Construction. During sub-
structure construction in the training phase, the main goal of
this module is to compute the angular information between
different organs from both domains. Given the ground
truth bounding boxes Y s ∈ Rns×4 for the source domain
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and pseudo bounding boxes Ŷ t ∈ Rnt×4 from the target
domain, where ns/t indicate the total number of organs.
We first compute the centroid location cs ∈ Rns×2 and
ct ∈ Rnt×2 of each organ according to Y s

i and Ŷ t
i from

both domains. In order to ensure that the number of detected
organs and types of all organs remain the same for the target
domain, we will complete the missing class by using the an-
notation of the corresponding class from the source domain
and remove the extra class that has not been detected in the
source domain. After we complete the missing class and
ensure the number of detected targets remains the same, the
centroid location of each target thus can be reformulated
as cs/t ∈ Rn×2, where n is the total classes in the source
domain. Subsequently, angular information is obtained by
calculating the angles among the centroid location of each
organ in cs/t. Adjacency matrices can represent the angu-
lar relationship of organs within a domain as the following
definition:

As/t =

 θ(c0, c0) · · · θ(c0, cj)
...

...
...

θ(ci, c0) · · · θ(ci, cj)


s/t

, (2)

where θ(·, ·) calculates the angle between organs, referred
by the centroid location provided from Y s and Ŷ t, i and j
are the i-th and j-th element of the cs and ct, where i, j ≤ n.
Sub-structure Matching. In the matching stage, we max-
imize the similarity of the adjacency matrices. Each ele-
ment in matrices As/t from source and target domains is a
one-to-one correspondence. Hence, we use the L2 norm to
compute the distance of matrices As and At, and the opti-
mization objective function is formulated as:

LSM =
∑n

i=0

∑n

i=0
||As

i,j −At
i,j ||2. (3)

3.3. Global-structure Matching

In the previous subsection, we solely focus on the orien-
tation information of the organ, which is a unique prior
knowledge of anatomical structures in ultrasound images
of fetuses. In this section, we further observe the consis-
tent characteristics of each organ in images. For example,
as shown in Figure 4, the morphology information of each
specific organ within the same scanned plane, such as shape
and size, should remain consistent across different hospi-
tals. This is due to the same organs of different fetuses hav-
ing consistent biological anatomy information. Inspired by
the above knowledge, we construct a graph to represent the
morphology information of an organ. Since graphs are a
more flexible approach to modelling irregular shapes com-
pared with other methods. Also, we propose the Global-
structure Matching (GM) module to ensure that the graphi-
cal representation of all organs across different domains re-
mains the same.

Organ Feature Extraction and Visual Node Sampling.
For the input Xs and Xt′ from the source and target do-
mains, the share-parameter equipped with Feature Pyramid
Networks [29] encodes their feature as F s/t, where F s/t

consists of feature maps from all layers of the encoder. In
the first step, we uniformly sample total M visual nodes
from F s/t as Vs/t ∈ RM×d, according to the correspond-
ing position of each organ from the Y s and Ŷ t, where d is
the channel number of the feature nodes. Similar to the sub-
structure matching module, we are not able to ensure that
the total number of visual nodes from the source and target
domains remain the same. Hence, we apply the node com-
pletion approach that refers to SIGMA [26], which builds
memory banks for each class to acquire and store the aver-
age representation for both domains.
Global Graphical Representation Construction. To fa-
cilitate semantic graphs and conduct the graph completion,
we first compute the edge Es/t ∈ RM×M that represents the
connectivity between each node of organs in Vs/t by using
spectral clustering. Hence, the visual graph can be written
as {V, E}s/t. In order to acquire the complete graphical
representation, we introduce the graph convolutional neu-
ral network as GNN(·) to transform the visual graph as the
following formulation:

Gs/t = GNN({V, E}s/t) ∈ RM×d. (4)

Organ Morphology Knowledge Transfer. Since the mor-
phology of the same organs across domains should remain
consistent, we can build the connection across Gs and Gt to
exchange the information and acquire a more robust graph-
ical representation. Motivated by the above discussion, we
introduce the attention mechanism to conduct the inter- and
intra-interaction of graphs. For the inter-interaction, the
graphs from each domain will compute the attentive graph
feature via self-attention. For the intra-interaction between
the graphs across domains, we formulate the cross-attention
to build the connections between graphs. The formulation
can be written as:

Ġs/t = λ ·
(
WqGs/t(WkG)T

)
WvG ∈ RM×d,

G = Gs ⊕ Gt ∈ R2M×d,
(5)

where Wq , Wk and Wv ∈ Rd×d is the learnable weight of
three independent projection layers that project the graph to
different latent space as query, key and value vector, λ is the
scaling factor set as 1/

√
d, and ⊕ denotes the concatenation

operation.
Graph Matching and Node Classification. After knowl-
edge transfer, we also maximum the similarly between Ġs

and Ġt. Due to the graphical representation being disor-
dered, the conventional element-wise distance computation
is not able to measure their discrepancy. To tackle this prob-
lem, we introduce the Wasserstein distance that measures
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the discrepancy of feature distribution between Ġs and Ġt.
With the Sinkhorn [12] iteration to acquire the approximate
numerical solution. The formulation of our measurement
can be written as follows:

LGM =
∑d

i=0

∑M

j=0

∥∥Ġs
i,j , Ġt

i,π(j)

∥∥2
2
, (6)

where Ġi,j denote the i-th channel in j-th node of Ġ, and
π(·) denotes the mapping across overall nodes. In this opti-
mization, we apply the Sinkhorn that uses the affine matri-
ces as the mapping function for optimizing Eq. (6).

Since we sample node according to the Y s and Ŷ t, each
node thus has the corresponding class as the annotation. We
also introduce the cross-entropy (denotes as CE(·, ·)) for the
classification loss of each node across domains.

Lcls = CE(Ġs, Y s) + CE(Ġt, Ŷ t) (7)

Overall Loss of Our Framework. The overall loss
(Eq. (8)) can be separated into supervised loss and domain
adaptation loss. The supervised loss Lsup is the objection
detection loss in the source domain, while the domain adap-
tation loss is the combination of LSM from SM module,
LGM and Lcls from GM module.

Lall = λ1Lsup + λ2LSM + λ3LGM + λ4Lcls, (8)

where λ1,2,3,4 is the weight of different loss terms, which
are set as 1.0, 0.5, 0.5 and 1.0 in our experiment setting.

4. Experiments
4.1. Datasets and Evaluation

FCS Dataset. We collected two cardiac views, including
4CC and 3VT, from two hospital centers, and these views
are used to regularly screen for CHDs. All dataset collec-
tion and experiments were approved by the local hospital
ethics committee. Each fetal view contains anatomic struc-
ture information, as shown in Table 2. These datasets come
from different equipment, such as Samsung, Sonoscape,
and Philips. The gestational week of the fetus also varies for
all datasets, ranging from 20-34 weeks. All datasets were
annotated by ultrasonographers with more than seven years
of clinical experience, and each fetal image has view cate-
gory labels and category and location labeling information
for the anatomical structures. A standard 4CC image should
contain 9 categories of anatomical structures, but not every
view obtained by sonographers of our dataset is standard-
ized, so some views have fewer than 9 structures.
CardiacUDA Dataset [47]. CardiacUDA was used as a
video-based cardiac structure segmentation task from two
different hospitals (site G and site R), as shown in Table 1.
We convert the segmentation mask of LA, LV, RA, and RV
to box-level annotation and use it to conduct the UDAOD

task for comparison. Since there are so many overlapping
frames in the video, we sample one frame per video.

We conducted experiments on adaptation tasks mainly
on hospital1 and hospital2. Taking as an example, the hos-
pital1 (source) adapts to the hospital2 (target), denoted as
hospital 1→2. During UDA procedure, we use training
splits of the source and target domain and use test splits
of the target domain for performance evaluation. For com-
parison, we used the mean average precision (mAP) metric
with a threshold of 0.5 for Intersection over Union. The
training, testing, and validation datasets for each view are
7:2:1, respectively.

4.2. Implementation Details

We use ResNet-101 [19] as the feature extractor and FCOS
[42] as the detector, which is implemented in PyTorch [35].
We trained the M3-UDA using the stochastic gradient de-
scent (SGD) optimizer [5] with an initial learning rate of
0.01, a fixed epoch of 300, a batch size of 4, and a weight
decay of 5×10−4. Due to the variation of acquisition de-
vices in different hospital centers, the image size is uncer-
tain; we uniformly resize it to 600×1000. Because the pre-
diction pseudo label of the model is not trustworthy at the
early stage of training, which leads to fewer correct match-
ing at the early stage, the SM module starts to work only
after 30 epochs have been reached.

4.3. Comparison with State-of-the-arts

In this experiment, we evaluate M3-UDA on the collected
new benchmark and publicly commonly used CardiacUDA,
where the object detector needs to adapt from a hospital
center to another hospital.
Hospital 1→2 on 4CC. As shown in Table 3, our M3-UDA
method significantly outperforms all state-of-the-art stud-
ies, including semi-supervised UDA object detection meth-
ods, by an absolute margin of 8.26% mAP over CMT [8].
This indicates that the previous methods for the UDA ob-
ject detection task in natural scenarios cannot be well suited
to our medical scenarios. Specifically, we have achieved
the best detection performance in the detection of eight
anatomical structures, e.g., small structure DAO and larger
structure RIB. These compelling results clearly demonstrate
that M3-UDA can be adapted to the task of cross-hospital
anatomical structure detection through the alignment of
multiple topological knowledge.
Hospital 2→1 on 4CC. Similarly, if hospital2 is the source
domain and hospital1 is the target domain, we also conduct
adaptive detection on hospital 2→1. As listed in Table 3,
we can observe that our method obtained a 74.55% mAP,
outperforming all existing benchmark methods by a notable
margin of 7.08% mAP higher than the previous state-of-
the-art SIGMA++ [27]. This demonstrates the robustness
of M3-UDA in different cross-domain scenarios.
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Table 3. Quantitative adaptation results on 4CC.
Hospital 1→2 Hospital 2→1

Method RA RV LV VS SP LA CR DAO RIB mAP RA RV LV VS SP LA CR DAO RIB mAP
Without DA 59.59 45.88 53.04 52.30 64.54 57.89 62.84 57.57 61.43 57.20 70.56 49.82 54.26 61.88 73.04 64.48 74.25 77.32 53.28 64.32

Few-shot Domain Adaptation Object Detection Methods
AcroFOD [17] ECCV’22 25.52 21.04 24.64 25.86 26.32 24.64 26.75 25.74 27.24 25.30 37.31 39.86 38.84 40.47 35.13 39.54 39.88 37.64 27.13 37.02
AsyFOD [18] CVPR’23 48.31 48.66 48.66 49.93 48.36 50.00 49.54 47.51 47.43 48.71 71.94 69.09 70.52 71.61 71.05 70.61 71.71 69.28 55.97 69.08

Unsupervised Domain Adaptation Object Detection Methods
ConfMix [33] WACV’23 62.40 65.30 65.20 61.80 59.70 63.20 69.50 67.80 62.70 64.20 58.90 64.00 63.40 61.50 63.40 55.40 64.90 60.00 46.30 59.80
SIGMA [26] CVPR’22 70.64 56.57 64.16 64.58 66.91 61.31 74.2 68.64 69.97 66.33 70.64 56.57 64.16 64.58 66.91 61.31 74.2 68.64 69.97 66.33
LRA [36] TNNLS’23 63.23 53.25 58.24 59.56 64.30 84.32 66.97 55.98 59.18 62.78 75.43 37.08 49.24 51.84 54.88 48.92 52.38 58.70 58.58 54.11
CMT [8] CVPR’23 79.18 64.87 66.31 64.34 74.84 66.23 71.61 60.93 68.66 68.55 81.53 63.30 66.35 68.98 77.30 76.31 76.70 67.67 58.42 70.40

SIGMA++ [27] TPAMI’23 56.10 47.01 52.72 51.38 63.65 52.11 60.28 62.99 67.30 57.06 70.29 54.26 55.10 63.12 70.15 62.36 75.23 74.23 55.47 67.47
Ours 79.94 69.77 72.84 71.73 81.02 77.99 81.70 77.99 78.28 76.81 81.35 62.41 68.94 74.06 81.78 73.87 82.57 83.65 62.30 74.55

Upper Bound 82.30 74.37 78.29 79.25 88.26 83.02 86.82 87.22 85.16 82.74 86.61 82.75 83.48 85.93 90.16 82.92 89.09 89.61 72.51 84.78

Table 4. Quantitative adaptation results on 3VT.
Hospital 1→2 Hospital 2→1

Method DAO SP PTDA T SVC AOA mAP DAO SP PTDA T SVC AOA mAP
Without DA 24.91 31.66 47.89 25.59 38.07 52.54 36.78 38.64 48.80 37.73 34.64 41.39 48.45 41.61

Few-shot Domain Adaptation Object Detection Methods
AcroFOD [17] ECCV’22 50.19 57.90 64.99 52.04 56.19 60.12 56.90 58.82 58.83 60.45 56.07 48.99 61.81 57.49
AsyFOD [18] CVPR’23 49.11 51.32 60.29 44.54 53.11 61.63 53.33 57.43 59.18 61.74 56.92 50.65 62.71 58.10

Unupervised Domain Adaptation Object Detection Methods
ConfMix [33] WACV’23 41.80 67.10 54.20 70.40 63.50 59.20 59.40 60.38 60.37 43.09 21.67 27.17 48.30 43.50
SIGMA [26] CVPR’22 42.92 42.83 59.41 39.63 41.68 59.97 47.74 36.34 42.52 38.62 39.67 35.20 48.64 40.17
LRA [36] TNNLS’23 53.50 62.80 37.31 47.91 44.47 75.76 56.32 14.74 17.23 3.36 16.01 4.65 24.09 13.34
CMT [8] CVPR’23 45.43 60.11 81.46 27.63 45.64 63.68 53.99 16.53 27.09 27.41 27.63 20.50 40.44 22.74

SIGMA++ [27] TPAMI’23 42.29 37.39 45.36 28.95 31.98 42.87 38.14 33.71 42.77 31.56 34.91 32.07 44.38 36.57
Ours 59.48 59.65 70.05 51.92 52.35 68.88 60.39 55.12 61.97 46.36 43.63 36.80 52.25 49.36

Upper Bound 65.14 71.11 71.81 64.77 53.37 71.94 66.36 82.49 81.36 85.20 76.28 73.85 90.34 81.59

Hospital 1→2 on 3VT. To further demonstrate the perfor-
mance of our method, we performed a cross-hospital eval-
uation on 3VT, another critical view of the fetal cardiac for
CHD diagnosis. As shown in Table 4, M3-UDA achieves
60.39% mAP, which greatly exceeds all other studies with
hospital 1→2 on 3VT. This further validates the efficacy of
our approach to improve the performance of detection key
structures by considering multiple topological knowledge
of the matching source and target domain.
Hospital 2→1 on 3VT. Again, as reported in Table 4,
for hospital 1→2 adaptive detection task on 3VT, we still
achieved the best results over the UDA object detection
comparison baseline. This reaffirms the effectiveness of our
method. Meanwhile, we can observe that AsyFOD, as a
few-shot DAOD method, requires fewer labeled data and
outperforms our method by 8.74%. However, getting some
experienced physicians at the target hospital to annotate the
data is sometimes not available.
site G→R on CardiacUDA. As shown in Table 5, we
have also conducted experiments in the public CardiacUDA
dataset for adaptive detection in different hospitals. First,
it is worth noting that in the adaptive detection on Car-
diacUDA dataset, the detection performance of most of
the baseline methods is very high. For example, SIGMA
reaches 92.98% mAP. Second, Upper Bound (97.60%
mAP) as well as Without DA (91.44% mAP) are also close,
which suggests that the domain gap is small. The Car-
diacUDA dataset is labeled only with LA, RA, LV, and RV,
which are four anatomical structures with relatively simple
relationships and non-overlapping. This indicates a single
topological knowledge of the CardiacUDA dataset. In con-
trast, our dataset contains 9 key structures, many of which

Table 5. Quantitative adaptation results on 4CC of CardiacUDA.
site G→site R

Method LA RA LV RV mAP
Without DA 97.33 87.48 90.91 90.03 91.44

Few-shot Domain Adaptation Object Detection Methods
AcroFOD [17] ECCV’22 99.51 99.03 98.76 87.57 96.21
AsyFOD [18] CVPR’23 94.73 94.73 93.47 94.73 94.41

Unupervised Domain Adaptation Object Detection Methods
ConfMix [33] WACV’23 53.90 65.80 66.40 59.30 61.40
SIGMA [26] CVPR’22 97.21 84.48 94.96 95.28 92.98

CMT [8] CVPR’23 90.89 81.32 87.86 74.64 83.68
SIGMA++ [27] TPAMI’23 90.17 87.66 99.08 94.69 92.90

Ours 99.42 90.39 100 90.00 94.95
Upper Bound 100 90.70 100 99.71 97.60

have complex positional relationships and are affected by
multiple gestational weeks and differences in acquisition
devices, resulting in a larger gap and a greater challenge.
Still, our method outperforms all UDA object detection
baselines by 1.97% mAP over SIGMA [26]. This shows
that our method is also effective in alignment of single topo-
logical knowledge from different hospitals. Since the do-
main gap is very small, the few-shot DAOD approach to ob-
tain the labeled data for a portion of the target domain may
exhibit good performance, e.g., AcroFOD [17] is 1.26%
mAP higher than our method.

4.4. Further Empirical Analysis

Ablation Studies. We performed ablation studies by adding
each component of our method, and the ablation results are
listed in Table 6. First, our method is a significant improve-
ment over the baseline method. For Hospital 1→2 and Hos-
pital 2→1 adaptive detection on 4CC, our method improves
19.61% and 10.23% mAP when compared to baseline, re-
spectively. Similarly, on 3VT, our method improved by
23.61% and 7.75%, respectively, compared to the baseline.
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Figure 5. Qualitative result comparison on 4CC and 3VT of target domain.

Figure 6. Visualization comparison of feature representation is
performed by t-SNE [43].

Table 6. Ablation experiments on 4CC and 3VT.
Hospital 1→2 on 4CC Hospital 1→2 on 3VT

Method HM GM SM mAP HM GM SM mAP
Baseline ✗ ✗ ✗ 57.20 ✗ ✗ ✗ 36.78

Ours
✓ ✗ ✗ 69.16 ✓ ✗ ✗ 51.49
✓ ✓ ✗ 73.17 ✓ ✓ ✗ 55.32
✓ ✓ ✓ 76.81 ✓ ✓ ✓ 60.39

Hospital 2→1 on 4CC Hospital 2→1 on 3VT
Baseline ✗ ✗ ✗ 64.32 ✗ ✗ ✗ 41.61

Ours
✓ ✗ ✗ 67.41 ✓ ✗ ✗ 44.44
✓ ✓ ✗ 73.23 ✓ ✓ ✗ 47.70
✓ ✓ ✓ 74.55 ✓ ✓ ✓ 49.36

Second, we can observe the effectiveness of each match-
ing component. For example, for Hospital 1→2 adaptive
detection on 4CC, HM improves by 11.96%, SM enhances
by 4.01%, and after adding GM, the detection mAP reaches
76.81%. Similarly, each matching module has a boost to our
method, as reported in Table 6. This shows that our multi-
matching approach has significant advantages and provides
effective internal and global topology knowledge in the tar-
get domain, which is well-suitable for structure detection
tasks in different hospital scenarios.
Feature Visualization Comparison. For each structure
category of the fetus, we randomly sample the same number
of pixels for the target domain on ResNet-101-based fea-
tures and show t-SNE visualization with some comparison
methods and the proposed method in Figure 6. As shown in
Figure 6, on the 4CC view, similar categories such as RA,
RV, LV, IVS, SP, LA, CR, DAO, and RI can be clearly sep-
arated in feature representation by our method. Similarly,
on the 3VT view, our method can clearly distinguish DAO,
IVS, PTDA, T, SVC, and AOA, which is beneficial for the

later detector head in object recognition.
Qualitative Result Comparison. Figure 5 illustrates the
qualitative results of our approach and Without DA in tar-
get hospital adaptation scenarios. We can observe that our
method avoids the misdetection of one RV and one LV in (a)
and (c) and a misdetection of the RIB in (g) and (h). Sim-
ilarly, we can also see that our method prevents one false
positive error of RV, one miss-detection of RV, and one false
positive error of DAO in (d) and (h).

5. Conclusion

This paper presents a new Fetal Cardiac Structure (FCS)
dataset and a multi-matching approach (M3-UDA) as a new
benchmark by histogram matching, sub-structure matching,
and global-matching for the unsupervised adaptation fetus
cardiac structure detection. Extensive experiments on our
proposed FCS, as well as on the publicly available Car-
diacUDA dataset, the experimental results show that M3-
UDA outperforms the existing state-of-the-art UDA object
detection methods significantly. Additional analysis and
component ablation experiments also demonstrate the ef-
fectiveness of our method. We believe FCS and M3-UDA
will provide new insights for object detection-based meth-
ods, UDA-based approaches, and disease detection studies
in medical scenarios.
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