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Abstract

In Federated Learning (FL), the issue of statistical data
heterogeneity has been a significant challenge to the field’s
ongoing development. This problem is further exacerbated
when clients’ data vary in modalities. In response to these
issues of statistical heterogeneity and modality incompat-
ibility, we propose the Adaptive Hyper-graph Aggregation
framework, a novel solution for Modality-Agnostic Feder-
ated Learning. We design a Modular Architecture for Lo-
cal Model with single modality, setting the stage for ef-
ficient intra-modality sharing and inter-modality comple-
mentarity. An innovative Global Consensus Prototype En-
hancer is crafted to assimilate and broadcast global con-
sensus knowledge within the network. At the core of our
approach lies the Adaptive Hyper-graph Learning Strategy,
which effectively tackles the inherent challenges of modality
incompatibility and statistical heterogeneity within feder-
ated learning environments, accomplishing this adaptively
even without the server being aware of the clients’ modali-
ties. Our approach, tested on three multimodal benchmark
datasets, demonstrated strong performance across diverse
data distributions, affirming its effectiveness in multimodal
federated learning.

1. Introduction

Propelled by its capacity to enable collaborative model
training across decentralized data sources while upholding
privacy preservation, federated learning (FL) has rapidly
gained traction as a burgeoning and propitious research
paradigm [1, 21, 26, 32, 39, 51]. Statistical heterogeneity
caused by non-IID data across clients represents the pri-
mary challenge for federated learning algorithm research,
spurring an abundance of studies centered around this chal-
lenge [9, 11, 14, 30, 38, 42].

To better handle this heterogeneity, numerous client clus-
tering techniques [15, 28, 31, 48] create multiple global
models by clustering clients with similar data distribution.
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Figure 1. On the left, the traditional approach emphasizes param-
eter similarity for collaboration. On the right, our method utilizes
a complex hypergraph to adaptively learn the correlation among
clients, tackling modality incompatibility and statistical hetero-
geneity.

Typically, client similarity is evaluated by either comparing
local model weights [5, 31] or loss values from different
cluster models [16, 25]. However, client clustering-based
methods lack flexibility in handling diverse data hetero-
geneity, as they do not specifically determine appropriate
client pairs and collaboration intensity levels.

Another perspective for helping clients collaborate is to
construct a dynamic graph for server aggregation [17, 27,
41]. As shown in Fig.1(a), this collaboration graph ex-
clusively connects clients that mutually benefit from each
other’s data, thereby optimizing the efficiency of the learn-
ing process. In this graph, each node symbolizes an indi-
vidual client’s personalized model. The edges, on the other
hand, represent the collaboration intensity between pairs of
models, with weights that are dynamically updated in each
communication round. Specifically, the server constructs a
collaboration graph that emphasizes model similarity cor-
relations, which is then utilized to generate an aggregated
model for each client. On the client side, local models are
optimized by balancing empirical task-driven loss and their
similarity to the server’s aggregated model, enhancing both
individual and collaborative performance in FL.
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In a real-world FL scenario, as illustrated in Fig.1(b),
visual, acoustic, and physiological signals are captured sep-
arately using different equipment. Growing interest in Mul-
timodal Federated Learning (MFL) [2, 6, 7, 40, 44, 52] re-
flects its superior ability over traditional Federated Learn-
ing (FL) to exploit cross-client data modality heterogeneity,
enhancing collective intelligence and broadening adaptive
learning across diverse applications. However, it also spot-
lights challenges [12, 24, 37] such as modality incompat-
ibility, where varying local data modalities result in diver-
gent client distributions, revealing the limitations of conven-
tional single-modality frameworks. The presence of mul-
tiple dimensions of client divergence, including i) modal-
ity incompatibility and ii) statistical heterogeneity, poses
challenges in identifying a unified global objective. In the
absence of explicit modality indicators, the server is chal-
lenged with the dilemma of accurately clustering model pa-
rameters, a predicament that is further exacerbated when
the architectures of modality-specific models remain identi-
cal across clients. Modality-agnostic federated learning,
in particular, represents a promising but insufficiently ex-
plored avenue that could significantly enhance the capabil-
ities of distributed learning architectures. As illustrated in
Fig.1(b), a critical question emerges: How to construct an
adaptive aggregation collaboration graph on the server
side that effectively considers both statistical and modal-
ity aspects?

To tackle the above-mentioned challenges, we intro-
duce the Adaptive Hyper-graph Aggregation for Multi-
modal Federated Learning (HAMFL) to explore relation-
ships among heterogeneous clients, facilitating knowledge
transfer and sharing to build more robust global models. On
the client side, we introduce a modular local model struc-
ture specifically designed to accommodate the rich tapestry
of multimodal data inherent to diverse client environments,
structured as follows: 1⃝ The Modality-Specific Module is
optimized to be shared with clients that collect similar types
of data (e.g., all visual, all auditory, etc.). 2⃝The Modality-
Shared Module is meant to distill and utilize the information
that is generalizable across different modalities of data. 3⃝
The Personalized Interaction Module adapts shared knowl-
edge to the specific context of each client, aligning with the
unique data characteristics and behavioral patterns of their
specific environment.

On the server side, we introduce the Global Consen-
sus Prototype Enhancer, designed for the key goal of effi-
ciently assimilating and integrating knowledge from a wide
range of clients. This Consensus Prototype is then dis-
tributed back to the clients to guide and calibrate their lo-
cal Modality-Shared modules, aligning them with a broader
spectrum of knowledge validated by the public dataset. Fur-
thermore, we introduce a novel adaptive hypergraph aggre-
gation strategy that intelligently identifies and models the

intricate inter-client relationships within the federated net-
work. Central to our approach is the use of local models as
nodes, with hypergraph initialization executed via k-means
clustering on the Modality Speculative Domain and Distri-
butional Speculative Domain. We integrate a hypergraph
that adaptively learns a collaboration matrix, with its learn-
ing process constrained by validations performed on public
datasets. To ensure a balance between representation accu-
racy and computational efficiency, we employ a Hypergraph
Diffusion Neural Network [36] in our framework.

To summarize our key contributions, we outline them as
follows:

1) Our study pioneers the exploration of modality-
agnostic federated learning, employing a comprehensive
analytical approach to model the dynamic relationships
among clients with diverse data modalities. 2) We de-
velop an innovative Global Consensus Prototype Enhancer
designed to assimilate and disseminate global consensus
knowledge effectively across the network. 3) At the heart of
our approach is the Adaptive Hyper-graph Learning Strat-
egy, tailored for multimodal client adaptive aggregation on
the server side. This strategy adeptly addresses issues of
modality incompatibility and statistical heterogeneity. 4)
Through extensive analysis across three multimodal bench-
mark datasets, our method has demonstrated exceptional
performance in both emotion and action recognition tasks.
These tasks are evaluated from first-person and third-person
viewpoints under various data heterogeneity conditions, so-
lidifying our approach’s efficacy.

2. Related work

2.1. Multimodal Federated Learning

In MFL, two main configurations are discernible: Hori-
zontal MFL, where clients house multi-modal samples, and
Vertical MFL, characterized by unique or minimally over-
lapping modalities among clients. Our investigation pivots
to Vertical MFL, emphasizing distinct, single-modality pos-
session per client and accentuating inter-client modal dis-
parities. Yang et al. [40] present the Feature-Disentangled
Activity Recognition Network (FDARN) for cross-modal
federated human activity recognition. Leveraging five ad-
versarial training modules, their approach discerns both
modality-agnostic attributes and modality-specific discrim-
inatory traits of clients, outperforming prevailing personal-
ized federated learning strategies. Zang et al. [49] introduce
a hierarchical aggregation approach, consolidating local en-
coders by client-held modality types and employing atten-
tion mechanisms to synchronize decoder weights indepen-
dent of data modality. Zhao et al. [50] segment the local
network into five components, either for modality-centric
aggregation for homogeneous modality clients or broad ag-
gregation for the entire clientele. Recent advancements
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[6, 40] disentangle the local model into two distinct com-
ponents: modality-agnostic weights that are shared on the
server side across all clients and modality-specific weights
shared among subsets of clients with homogeneous data
modalities. This method inherently assumes that the server
can identify the modality association of each model param-
eter, which conflicts with the principles of privacy preserva-
tion. Such an assumption conflicts with federated learning’s
confidentiality principles. To mitigate the risks outlined, we
introduce an adaptive hypergraph aggregation technique, al-
lowing the server to deduce client parameter modalities via
a public dataset.

2.2. Hypergraphs Neural Networks

A pioneering development within Topological Neural Net-
works is the use of Hypergraphs (HGs) [3, 13, 19], which
transcend traditional graph structures by employing hyper-
edges to encapsulate multi-node connections, facilitating
the representation of complex set-type relationships found
in datasets spanning semantic analysis to network systems.
Significant advances include Jiang et al.’s dynamic hyper-
graph neural networks [19], Yi and Park’s time-series hy-
pergraph models [43], Huang et al.’s message-passing in-
terpretations in UniGNN [18], Chien et al.’s AllSet frame-
work [8] integrating set functions into hypergraph learning,
and Wang et al.’s ED-HNN [36], which innovatively ap-
proximates hypergraph diffusion processes. These advance-
ments highlight the trajectory towards increasingly nuanced
and topologically aware neural network models capable of
addressing the intricate relationships inherent in complex
data.

Our method innovatively applies the concept of hyper-
graphs to the realm of federated learning, specifically to
enhance the process of model aggregation. Unlike tradi-
tional graph-based methods, which consider pairwise rela-
tions between nodes, hypergraphs allow for hyperedges that
can connect multiple nodes simultaneously, capturing com-
plex high-order interactions.

3. Methods

3.1. Preliminary

Personlized Federated Learning based on Graph. In fed-
erated settings characterized by K clients, a collaboration
graph G(V,W ) is defined to encapsulate the collaborative
relationships among clients. This graph, introduced in [41],
consists of a node set V = {c1, c2, . . . , cK}, representing all
clients, and an adjacency matrix W ∈ RK×K , where each
element (i, j) quantifies the extent of collaboration between
the ith and jth clients. The central focus of this research is
the optimization problem expressed as:

min
{θi},W

K∑
i=1

pi

Fi

 K∑
j=1

Wijθj

− λR(θi, θg)

 (1)

In the objective function, the first term models the em-
pirical loss at each client after collaboration, where θi =∑K

j=1Wijθj is the collaborated (aggregated) model at the
ith client. The second term is a regularization term quan-
tifying the divergence between the local model parameters
θi and the global model parameters θg . pi is the weighting
coefficient, which is the relative dataset size. λ is the regu-
larization coefficient, controlling the trade-off between the
global and local models.

3.2. Problem Decomposition in FL architecture

The server, equipped with a publicly available multimodal
dataset Dcom, typically sources this data from the internet,
reflecting practical scenarios. We assume uniform modal
distribution across each client’s local data, with M repre-
senting the total number of modalities. To handle these
constraints, we decompose the original problem (1) into two
parts: on the server side, we learn the aggregation matrixW
to aggregate local models by training a hypergraph model;
on the client side, we additionally design the contrast loss
function to learn modal sharing knowledge.

Solving W at the sever side. Since the server does not
have access to the local dataset to evaluate the loss value
of the client, we introduce a multimodal public dataset and
a hypergraph network to implement the automatic aggrega-
tion strategy. The server obtains a kind of hyperedge set-
ting {X,V, E} among clients by a specific method, and the
hypergraph network learns to obtain the model aggregation
matrix W by a loss function. Then, the optimization for the
server side is:

min
W

1

K

K∑
i

(L(
K∑
j

Wijθj , Dcom)),W = g(X,V, E)

s.t.
∑
j

Wij = 1,∀i;Wij >= 0,∀i, j.
(2)

where g(·) is the server-side hypergraph model. θj is the
model parameter of the j-th client. K is the total number of
clients. Here, {

∑
j Wijθj}Ki aggregates to obtain new local

models, updates the hypergraph network with the effects in
the public dataset, and delivers the updated models to the
client. More details will be explained in section 3.5.

Solving θi at the client side. Since the local client only
has private data for its own modality, we design a Global
Modality-Shared Prototype Pglobal, knowing that the client
learns the knowledge features shared by the modality. The
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Figure 2. The network architecture of the proposed framework. Client side: (a) Modular Architecture for Local Model. Server-side: (b)
Global Consensus Prototype Enhancer and (c) Multimodal Hypergraph Aggregation.

optimization for the i-th client is:

min
θi

Hi(θi) = L(θi, Di) + λL′(θi, Pgloal, Dcom) (3)

where the first term minimizes empirical task-driven loss to
pursue local model utility, and the second term serves as a
kind of prototypical regularized loss function to guide the
local model in learning the modal shared feature space.

3.3. Modular Architecture for Local Model

Refer to Fig.2 for our modular approach to local mod-
els in a multimodal federated environment, comprising
the Modality-Specific module ψc, the Modality-Shared
module ψd, and the Personalized Interaction module ϕp.
Each module serves a distinct function: ψc captures unique
characteristics within a single modality, ψd extracts com-
mon features across all modalities, and ϕp integrates these
features to enhance multimodal representation. A diver-
gence loss, inspired by domain separation networks [4],
ensures distinct feature spaces, while the Global Consen-
sus Prototype (Section 3.4) and InfoNCE loss ensure shared
feature consistency across modalities. For detailed formu-
lations of the loss functions and their contributions to the
learning process, see the supplementary materials. During

training, local models are fine-tuned using a public dataset
to capture cross-client generic knowledge, eschewing the
direct application of server-derived prototypes to accom-
modate individual client characteristics. We utilize a cross-
entropy loss function for the output of multimodal attention
ϕp( detailed in the supplementary materials ) to refine the
integration and enhance the model’s performance.

3.4. Global Consensus Prototype Enhancer

It is very critical to learn a robust and global consensus mul-
timodal prototype across heterogeneous clients. Therefore,
we introduce the Global Consensus Prototype Enhancer as
shown in Fig.2(b).

Multimodal Prototype Initialization: Initially, the
server trains a multimodal fusion network on a common
dataset Dcom, incorporating an attended fusion module tai-
lored for the specific task with a cross-entropy loss function
LCE . It generates the initial global model prototype for
each modality as follows:

p
(c,m)
out =

1

|Dc
m|

∑
xj∈Dc

m

fm(xj) (4)

where Dc
m is the set of samples in the common dataset with
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modality m and activity label c. fm(·) is the m-modality
module of the multimodal fusion network.

Contrastive Local-Global Aggregation: Upon receiv-
ing the Modality-Shared Modules ψd from clients, the
server first produces the c-th class local prototype on Dcom,
labeled as

{
p
(i,c,m)
local ,m ∈ {v, a, t}

}
. Subsequently, it cal-

culates the score of each local prototype using the Info-NCE
loss:

s(i,c,m) = log
exp([p

(i,c,m)
local ]⊤ · p(c,m)

out )∑K
j=1 1j ̸=iexp([p

(j,c,m)
local ]⊤ · p(c,m)

out )
(5)

We use softmax for normalization, and the aggregated pro-
totype for class c of modality m is formulated as follows,

p(c,m)
agg =

K∑
i=1

softmax(s(i,c,m))p
(i,c,m)
local (6)

Knowledge Transfer: In the final phase, the server
model distills knowledge from the clients by minimizing
the ℓ2 loss between the global and aggregated prototypes
for each modality and class:

Lm
proto =

1

|Dm|
∑

xj∈Dm

∥∥∥h(c,m)
out − p(c,m)

agg

∥∥∥2 (7)

where h
(c,m)
out is the intermediate output of the model:

h
(c,m)
out = fm(xj). The final loss for the whole multimodal

fusion network on Dcom is LCE +λ
∑

m∈v,a,t Lm
proto. The

intermediate multimodal output features of the multimodal
fusion network will eventually be averaged and aggregated
to obtain the global consensus prototype P t+1

global.

3.5. Multimodal Hypergraph Aggregation

Our approach confronts the unique complexities of Het-
erogeneous Federated Learning (HFL), where each client’s
dataset is modality-specific and confidential. Unless previ-
ous multimodal federated learning approaches [40, 49, 50],
this work diverges from the norm by not assuming server
awareness of the clients’ data modalities. To design an
adaptive aggregation strategy with challenges of modal-
ity incompatibility and statistical heterogeneity, we design
two domains: the Distributed Speculative Domain and the
Modality Speculative Domain. Complementing this ap-
proach, we integrate Hypergraph Neural Networks (HNN)
for the efficient and optimal aggregation of model parame-
ters.

Nodes Attributes X Initialization: Each vertex in
the hypergraph is characterized by the client’s Modality-
Specific and Modality-Shared module parameters. We ex-
pect the hypergraph network to learn the associations be-
tween clients through the parameters. The initial setting of
the vertex’s feature set X is:

X = PCA(Θ1,Θ2...Θk) (8)

where Θk is a vector of model parameters for k-th client.
PCA is the Principal Component Analysis, and PCA can
greatly reduce the computational effort of training without
losing the effect. Xc and Xd are obtained by entering the
parameters of each client Modality-Specific and Modality-
Shared module into the above equations.

Hyperedge E Initialization: In our approach to struc-
turing the hypergraph for Heterogeneous Federated Learn-
ing, we design hyperedges based on two key aspects:1)
Modality Speculative Domain: We conduct a k-means clus-
tering process applied to the Modality-Specific parameters
{Θi

c}K . Through this process, we aim to identify patterns
and relationships within the Modality-Specific aspects of
the clients’ data. Suppose the clustering results in µ1 dis-
tinct clusters. Correspondingly, we define a set of hyper-
edges E = {e1, ..., eµ1

}, with each hyperedge represent-
ing a cluster. These hyperedges encapsulate the intrinsic
modality-based connections within the data. 2) Distribu-
tional Speculative Domain: This domain addresses data
statistics by focusing on the accuracy across public datasets
using models from all clients, based on the principle that
more samples per class lead to better performance for that
class. Here, a similar k-means clustering process is em-
ployed, but it is based on the accuracy metrics. Assuming
this process yields µ2 clusters, we expand our hyperedge
set to include these new clusters, resulting in a combined
hyperedge configuration E = {e1, ..., eµ1+µ2

}.
By strategically employing the Modality Speculative

Domain and the Distributional Speculative Domain for hy-
peredge design, our hypergraph structure proficiently en-
capsulates the statistical characteristics of the data, while
effectively addressing the challenges of modality incompat-
ibility. This approach enhances the adaptive aggregation
strategy adept at handling complex, multimodal data sce-
narios.

Hypergraph Updating Process: We utilize NN-
parameterized Equivariant Hypergraph Diffusion Neural
Operators [36], proven to excel in node label prediction
on heterophilic hypergraphs where hyperedges conglomer-
ate nodes from distinct classes. These operators adeptly
facilitate dynamic interactions between unimodal and dis-
tributed domains by enabling effective diffusion of infor-
mation across diverse higher-order relations. The diffusion
process is as follows:

m(t)
e =

∑
v∈e

ϖ(h(t)v ),∀e ∈ E (9)

h(t+1)
v = ϱ(h(t)v ,

∑
e:v∈e

ρ(h(t)v ,m(t)
e )),∀v ∈ V (10)

where hv is the (latent) features of node v ∈ V , and me is
the (latent) features of hyperedge e ∈ E . ϖ, ρ, ϱ are multi-
layer perceptions (MLPs).

The hypergraph network is utilized to derive the latest
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node features ζ, which are crucial for aggregating client
model parameters. The weights for aggregating the client
models are given by the matrix W , with the elements de-
fined as:

Wij =
exp(cos(ζi, ζj))∑

j 1(i,j)∈e exp(cos(ζi, ζj))
(11)

where ζi denotes the latent feature of the client node i, and
(i, j) ∈ e signifies that clients i and j belong to the same
hyperedge. Subsequently, the model parameters are aggre-
gated according to ψt+1

i =
∑K

j=1Wijψ
t
j .

The hypergraph network is employed independently to
process the Modality-Specific ψc and Modality-Shared ψd

parameters, yielding Wc and Wd, respectively. Given that
the server lacks access to clients’ private data, it relies on
a public dataset to optimize the loss function of the hyper-
graph network. This setup enables the server to utilize the
aggregated client models to assess accuracy on the public
dataset. Now each local model is an ensemble of ψt+1

c ,
ψt+1
d , and ϕtp, along with their respective final layers tasked

with classification.
The loss function employed to update the hypergraph

network is given by:

Lhnn =
1

K

K∑
i=1

(1− δacci−1) (12)

where acci is the accuracy of the updated i-th client on
Dcom, and δ is a constant. Through the exponential term,
marginal precision is amplified to incentive the training of a
superior collaboration graph.

4. Experiment

4.1. Implementation details

Datasets. Our proposed method is rigorously evaluated us-
ing three renowned multimodal federated datasets: EPIC-
Kitchens [10], UCF-101 [33], and MELD [29], each of-
fering distinct challenges and data modalities. For EPIC-
Kitchens, encompassing 97 action classes, involves extract-
ing both video and audio features from each dataset in-
stance, serving as model inputs. In the case of UCF-101,
which includes 101 action classes, our approach entails ex-
tracting video features and optical flow data to facilitate
action recognition. MELD, with its 7 emotion classes,
presents a more complex scenario requiring the fusion of
video, audio, and text features for accurate emotion recog-
nition.

Data heterogeneity. Following prior work [20, 23, 35,
46, 47], we simulate the non-IID data distributions using
Dirichlet distributions, where a smaller α value corresponds
to more severe data heterogeneity. For evaluation, we adopt

top-1 accuracy on the above three datasets to assess the per-
formance of our method under different α.

Baselines. We consider various state-of-the-art solu-
tions against non-IID data distribution in the context of
federated learning. Specifically, we compare with the fol-
lowing approaches: the vanilla aggregation strategy Fe-
dAvg [26]; based on the abstract class prototypes Fed-
Proto [34]; learnable aggregation weights FedLAW [22];
by learning a collaboration graph pFedGraph [41]; employ
a dynamic and multi-view graph structure FedMSplit [6];
feature-disentangled activity recognition network FDARN
[40]; Contrastive Representation Ensemble and Aggrega-
tion for Multimodal CreamFL [45]. We also compare with
a baseline SingleSet, which trains a local model for each
client without using FL. For all baselines, we use the pub-
licly released code.

Implementation details. For the three datasets in our
experiment, there are 4 unique modalities (i.e., video, opti-
cal flow, audio, and text). To facilitate the fair comparison
with existing methods, we first extract the raw features for
different modalities. Then, the raw features will be input
into our model or baselines to conduct the tasks. It is worth
noting that using the same dimension features of different
modalities is not a mandatory requirement of our method in
practice.

Our model and baselines are all trained with SGD opti-
mizer, where the weight decay is set to 1e-5, and the mo-
mentum is set to 0.9. On the Epic-Kitchens, the learning
rate η of the local client is set to 0.001, and the batch size
is set to 64. On the other two datasets, the learning rate
η and the batch size are set to 0.01 and 32, respectively.
In addition, the learning rate ηh in the HNN model is set
to 0.01, and the learning rate ηf in the multimodal fusion
model is set to 0.02. δ is fixed at 64. Set λ1 and λ2 to
0.4 and 0.2 respectively. On all three datasets, the num-
ber of local epochs is set to 1, and the number of com-
munication rounds T is 200. For the SingleSet baseline,
the number of local epochs is set to 200. Unless explic-
itly specified, other hyper-parameters of each baseline are
tuned within the range provided by the authors, and the best
results are reported. Following [40], both the Modality-
Specific and Modality-Shared modules are implemented as
two-layer perceptrons with the activation function of ReLU,
where the dimension of the hidden layer and the output di-
mension d are set to 1024 and 512. Further details are pro-
vided in the Supplementary Material.

4.2. Performance Overview

Comparison with existing methods. We report the overall
performance on three datasets in Tab.1. Our model slightly
outperforms the state-of-the-art methods by 0.4% on V-
F action recognition and shows a notable improvement of
1.2% and 1.0% in V-A action recognition and A-V-T emo-
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Methods EPIC-Kitchens UCF-101 MELD
Audio Video Avg. Video Flow Avg. Audio Video Text Avg.

SingleSet 42.1(±0.39) 28.6(±0.52) 35.4(±0.59) 61.7(±1.14) 60.4(±1.15) 61.1(±1.22) 47.3(±1.16) 48.1(±1.62) 48.9(±1.05) 48.1(±1.81)
FedAVG [26] 41.8(±0.23) 29.7(±0.57) 35.8(±0.62) 67.8(±1.11) 66.3(±0.94) 67.1(±1.27) 48.5(±1.37) 50.8(±1.22) 49.3(±1.24) 49.5(±1.32)
FedProto [34] 42.7(±0.51) 31.2(±0.56) 36.9(±0.32) 69.7(±1.38) 69.1(±1.17) 69.4(±1.73) 49.3(±1.41) 52.7(±1.23) 51.5(±1.76) 51.2(±1.71)
FedLAW [22] 42.9(±0.49) 32.5(±0.32) 37.7(±0.65) 71.2(±0.95) 68.4(±1.22) 69.8(±1.48) 50.1(±1.02) 53.2(±1.25) 52.3(±1.74) 51.9(±1.45)

pFedGraph [41] 43.6(±0.53) 32.3(±0.51) 37.9(±0.77) 70.4(±1.34) 68.3(±1.25) 69.4(±1.24) 49.2(±1.67) 53.6(±1.26) 52.5(±1.43) 51.8(±1.53)
FedMSplit [6] 45.2(±0.61) 33.7(±0.37) 39.5(±0.42) 72.8(±1.56) 70.7(±1.48) 71.7(±1.37) 51.2(±1.25) 54.5(±1.07) 52.7(±1.64) 52.8(±1.56)
FDARN [40] 47.3(±0.55) 34.1(±0.74) 40.7(±0.64) 73.5(±1.05) 71.8(±0.87) 72.7(±1.15) 51.4(±1.47) 54.9(±1.35) 53.1(±1.16) 53.1(±1.39)
CreamFL [45] 46.9(±0.52) 33.8(±0.62) 40.4(±0.59) 73.3(±1.32) 72.6(±1.21) 72.9(±1.62) — — — —

Ours 48.1(±0.57) 35.2(±0.41) 41.6(±0.53) 74.1(±0.91) 72.4(±1.17) 73.3(±1.24) 51.8(±1.22) 55.7(±1.07) 54.8(±1.37) 54.1(±1.43)

Table 1. Performance of our HAMFL and other baseline methods on three datasets. For all methods, the non-iid of the data is set to α = 1,
and ten clients are set for each modality.

Methods EPIC-Kitchens
α=0.2 α=0.5 α=1

SingleSet 26.4(±0.58) 30.6(±0.63) 35.4(±0.59)
FedAVG 28.3(±0.69) 32.5(±0.75) 35.8(±0.62)
FedProto 29.2(±0.74) 33.5(±0.37) 34.9(±0.43)
FedLAW 31.2(±0.42) 32.9(±0.59) 35.4(±0.31)
pFedGraph 31.8(±0.86) 34.2(±0.62) 37.9(±0.77)
FedMSplit 33.9(±0.71) 36.5(±0.59) 39.5(±0.42)
FDARN 34.1(±0.61) 37.6(±0.38) 40.7(±0.64)
CreamFL 33.6(±0.79) 37.1(±0.73) 40.4(±0.59)
Ours 35.2(±0.65) 39.4(±0.46) 41.6(±0.53)

Table 2. Performance w.r.t data heterogeneity.

tion recognition. On UCF-101, for the flow modality, our
method cannot outperform the FDARN. The sparse nature
of optical flow data often leads to suboptimal aggregation
results following the dimensionality reduction of network
parameters. Conversely, CreamFL directly transmits the op-
tical flow prototype, thereby avoiding the associated chal-
lenges of reprocessing sparse data. Overall, our findings in-
dicate that: i) Our proposed method, along with other MFL
approaches like FedMSplit, FDARN, and CreamFL, consis-
tently outperforms traditional federated learning baselines
across all three datasets. This underscores the notion that
modality incompatibility among client modalities poses sig-
nificant challenges in model learning within federated sys-
tems. ii) Notably, our method operates under modality-
agnostic conditions, yet its performance closely matches or
even surpasses that of modality-specific methods, demon-
strating its robustness and effectiveness.

Impact of Data Heterogeneity. Demonstrating our
method’s robustness in federated learning, we conduct ex-
tensive experiments to assess performance under varying
data heterogeneity α. Specifically, we evaluate α = 0.2,
0.5, and 1 on three datasets, with results detailed in Tab.2.
Our method significantly boosts the convergence, stabilizes
training, and brings considerable performance improvement
compared with previous approaches. Specifically, with het-

Figure 3. The impact of the number of public datasets on the per-
formance of three datasets.

erogeneity value α =0.2, 0.5, and 1, our method has rela-
tive improvement over the FedAvg on the EPIC-Kitchens
dataset by 24.4%, 21.2%, and 16.2%, respectively.

Number of Public Datasets. We investigate the impact
of varying-sized public datasets on model performance and
the reliability of inference outcomes. As shown in Fig.3,
for the UCF-101 dataset, moderately increasing the size of
the public dataset facilitates a performance improvement.
A broader range of data samples allows the model to learn
more comprehensive data features, enabling more accurate
computation of the Global Modality-Shared Prototype and
inferring the data distribution of the clients. Contrary to
the above, larger public datasets adversely affect the per-
formance of the EPIC-Kitchens and MELD. This trend is
due to the highly imbalanced data distribution (i.e., long-tail
distribution) inherent in the two datasets. In such cases, an
overreliance on public data intensifies biases towards major-
ity categories, consequently detrimentally impacting overall
model performance.

Communication efficiency. Fig.4 shows the average
test accuracy of all clients with different number of commu-
nication rounds. With a small number of rounds (e.g., less
than 50 on the Epic-Kitchens), our model has similar per-
formance as the baselines, e.g., PerAvg, FedProto, and Fed-
LAW. Thanks to the Hyper-graph Aggregation, our model
achieves consistently better accuracy than all baselines af-
ter more rounds of training. As demonstrated in Fig.4a, the
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(a) EPIC-Kitchens (b) UCF-101 (c) MELD
Figure 4. Convergence rate of each method on three datasets.

Figure 5. Test accuracy (%) overview for HAMFL with varying
hyperedges(µ1, µ2).

performance of HAMFL is rapidly boosted as soon as the
hypergraph model on the server converges.

Varying Number of hyperedges (µ1, µ2). We use µ1

and µ2 to denote the number of hyperedges in the Modal-
ity Speculative Domain and the Distributed Speculative Do-
main, respectively. We train with different numbers of hy-
peredges; specifically, we set µ1, µ2 ∈ {2, 3, 4, 5, 6}. Fig.5
shows the results on UCF-101 (m = 2) and MELD (m = 3)
datasets. For µ1, optimal performance is achieved when
it aligns with the number of modalities in the dataset (i.e.,
µ1 = m). It indicates that HAMFL can accurately iden-
tify features of different modalities, effectively clustering
clients with similar modalities. The optimal values of µ2

are 5 (for UCF-101) and 3 (for MELD), respectively. The
UCF dataset requires larger µ2 due to the increased diver-
sity in data distribution caused by its wider variety of labels.
Such statistical characteristics demand more refined cluster-
ing to ensure that clients with similar data distributions are
effectively clustered.

Visualization of Multimodal Hypergraph Aggrega-
tion. Fig.6 illustrates the visualized parameter aggregation
weight matrices for Modality-Specific (Wc) and Modality-
Shared (Wd) modules. Taking the MELD dataset as an ex-
ample, we distribute the data of each modality across five
clients, amounting to a total of 15 clients. It is clearly
observable from the matrices that clients within the same
modality exhibit higher weight scores, indicating that the
proposed Modality Speculative Domain can accurately de-

Figure 6. Visualization of weight scores (Wc,Wd) for hypergraph
aggregated Modality-Specific(Left) and Modality-Shared(Right)
modules.

duce the modality of client data. Furthermore, compared
with the Modality-Specific module, the Modality-Shared
module is more adept at focusing on modality-independent
knowledge, such as data distributions. As a result, clients
with similar data distributions are given higher weight
scores in the aggregation process of Wd, as shown by the
red boxes in Fig.6.

5. Conclusion & Limitations

In this paper, we embark on an exploratory journey into
modality-agnostic federated learning. Our primary con-
tribution is the Adaptive Hyper-graph Learning Strategy,
serving as the cornerstone of our multi-modal client aggre-
gation process on the server side. Additionally, the Global
Modality-Shared Prototype has been crucial in assimilating
and broadcasting global consensus knowledge within the
network. Extensive experimental validation underscores
the efficacy of our HAMFL. We acknowledge limitations
in data availability and the need for optimization, as well
as challenges in evaluating the generalization of federated
learning models. Addressing these issues is a priority for
our future work to enhance the field.
Acknowledgements.This work was supported by NSFC
(No.62206200, 62206137, 62036012, 62376196,
U23A20387), and Tianjin Natural Science Foundation
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