
GPT4Point: A Unified Framework for Point-Language
Understanding and Generation

Zhangyang Qi1* Ye Fang3,5* Zeyi Sun4,5*

Xiaoyang Wu1 Tong Wu2 Jiaqi Wang5† Dahua Lin2,5 Hengshuang Zhao1†

1The University of Hong Kong 2The Chinese University of Hong Kong
3Fudan University 4Shanghai Jiao Tong University 5Shanghai Artificial Intelligence Lab

https://gpt4point.github.io * equal contribution † corresponding author

What is on top of the cake?

What is the purpose of the cake?

There is a candle on top of the cake.

The cake is meant to be a birthday 
cake, as indicated by the candle.

What is the significance of 
the number 4 on the cake?

The number 4 on the cake likely 
represents the age of the person 
celebrating their birthday.

3D Question Answering

选择的是
multimodal model
这个方向提交的
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Yes, it is a human face, 
specifically the face of Buddha.

Is it one human face?

No, it is not one human face, 
it is a collection of human faces.

Yes, the image depicts a 
single bear body.

No, it is a collection of 
different bear bodies, each 
with its own unique features.

Text-to-3D

Point-Text 
Feature

Controlable Text-to-3D

Is it one human face? Is it one bear body? Is it one bear body?

A portable, wall-mountable 
radio with a cord, handle, 
and wooden box design.

The 3D object model in the image is a 
horse-drawn carriage, which is a type of 
vehicle commonly used in the past for 
transportation and transportation of 
goods the carriage is made of wood and 
has a classic design, with a roof and 
wooden wheels.

3D  Captioning

Elaborate on the details 
of this point cloud, please.

Describe the object.

Point-Text Retrieval:

Zero-shot Classification:
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3D  Recognition

Match

Text

 A man wearing a red 
shirt and blue pants.

Point-E

Original Low-Quality Points

 A man wearing a red 
shirt and blue pants.

Figure 1. Task examples of GPT4Point. It performs accurate 3D recognition, detailed captioning, precise Q&A, and high-quality
controllable 3D generation. Additionally, GPT4Point excels in 3D anomalous object description, accurately assessing abnormal shapes
like the multi-face object and the 3D generation failure case. It is a crucial ability in the assessment of generated 3D objects.

Abstract
Multimodal Large Language Models (MLLMs) have ex-

celled in 2D image-text comprehension and image gener-
ation. Still, their understanding of the 3D world needs to
be improved, limiting progress in 3D language understand-
ing and generation. To solve this problem, we introduce
GPT4Point, an innovative, groundbreaking point-language
multimodal model explicitly designed for unified 3D ob-
ject understanding and generation within the MLLM frame-
work. GPT4Point, as a powerful 3D MLLM, can seamlessly
execute point-text reference tasks such as point-cloud cap-
tioning and Q&A. Additionally, GPT4Point is equipped with

advanced capabilities for controllable 3D generation, and
it can get high-quality results through a low-quality point-
text feature that maintains geometric shapes and colors. We
develop Pyramid-XL, a point-language dataset annotation
engine, to support the expansive needs of 3D object-text
pairs. It constructs a large-scale database of over 1M ob-
jects of varied text granularity levels from the Objaverse-XL
dataset, essential for training GPT4Point. A comprehen-
sive benchmark has been proposed to evaluate 3D point-
language understanding capabilities. In extensive evalua-
tions, GPT4Point has demonstrated superior performance
in understanding and generation.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction

The recent Large Language Models (LLMs) [7, 37–
39, 46, 51, 53, 55] have demonstrated remarkable advance-
ments in natural language processing. Inspired by their
powerful capabilities, researchers have also explored Mul-
timodal LLMs (MLLMs) via adapting LLMs into vari-
ous modalities like images [28, 32], audio [3, 16, 22] and
videos [5, 67]. The proliferation of extensive image-text
pair [4, 48] has crucially enabled 2D MLLMs i.e., Vision
Language Models (VLMs) to interpret images through tex-
tual representations. Concurrently, there is a growing trend
in utilizing these multimodal models for guiding text-to-
image generation [15, 49, 50, 60]. This represents a form
of compression and reconstruction, exploring how to accu-
rately recover and edit the input image using controllable
image generation models. However, despite the impres-
sive capabilities of MLLMs in handling multiple modali-
ties, they still face significant limitations in understanding
and accurately interpreting the 3D world, a critical need for
various important downstream applications like intelligent
robotics and augmented reality [9, 44].

Recent efforts to develop 3D MLLMs [21, 69] have no-
table limitations. Some [21, 69] prioritize the overall scene
and focus primarily on the spatial coordinates of objects,
often neglecting the geometric details of individual objects.
This can lead to a limited understanding of the 3D world.
Meanwhile, these methods generally convert 2D image fea-
tures into 3D representations [21], which leads to a sub-
stantial loss of geometric accuracy. 3D geometry informa-
tion is essential for understanding. As shown at the bot-
tom of Fig. 1, the VLM fails to recognize the four-sided
face object while our GPT4Point can figure out the anoma-
lies. Concurrent works focusing on utilizing 3D features
directly exhibit notable limitations. PointBind [18] exhibits
a deficiency in training and demonstrates restricted text ref-
erencing abilities due to the limited dataset. On the other
hand, PointLLM [57] necessitates the training of the corre-
sponding Language Model (LLM) component and does not
possess the capability to expand into text generation.

We present GPT4Point, a novel unified framework for
point-language understanding and generation. GPT4Point
introduces the 3D object MLLM, a groundbreaking lan-
guage model that fully utilizes point clouds to perform vari-
ous point-text tasks, as shown in Fig. 1. We use a Bert-based
Point-QFormer for point-text feature alignment. Aligned
features are separately input into the LLMs for text infer-
ence tasks and Diffusion for 3D object generation tasks. It
is worth noting that, given a low-quality point cloud feature
as a condition, GPT4Point can generate higher-quality re-
sults while maintaining the geometric shapes and colors by
using point-text aligned features. This process can be called
controllable text-to-3D, which becomes a milestone for 3D

point textual editing.

To tackle the scarcity of object point-language data [52],
we leverage the Objaverse-XL dataset [10, 11] to develop an
automated, effective data annotation engine Pyramid-XL. It
employs Vision Language Models (VLMs) for generating
text annotations. Pyramid-XL solves the problem of VLMs
needing to understand multi-view images directly. By syn-
thesizing captions from multi-views obtained by the VLMs,
the text annotation is stratified into three hierarchical lev-
els, ranging from low to high, ultimately leading to precise
annotations. Apart from the data engine, we establish an
object point-text benchmark for assessing point multimodal
model capabilities in recognition and text inference tasks,
such as 3D object point cloud captioning and Q&A. This
benchmark also provides a critical standard for evaluating
3D object generation, while current assessments often rely
on qualitative judgments from rendered images without a
direct evaluation in 3D space [43]. Only relying on render-
ing images may lead to misunderstanding; for instance, in
the bottom right of Fig. 1, a failure case produced by 3D
generation (a bear has two bodies) makes 2D VLMs, and
even humans fail to recognize its anomaly. However, our
model can identify anomalies quickly.

Our paper makes three major contributions:
• We present the unified framework for point-language un-

derstanding and generation GPT4Point, including the 3D
MLLM for point-text tasks and controlled 3D generation.

• Introducing the automated point-language dataset anno-
tation engine Pyramid-XL based on Objaverse-XL, cur-
rently encompassing 1M pairs of varying coarseness and
can be extended cost-effectively.

• Establishing a novel object-level point cloud benchmark
with comprehensive evaluation metrics for 3D point cloud
language tasks. This benchmark thoroughly assesses
models’ understanding capabilities and facilitates the
evaluation of generated 3D objects.

2. Related Work

Multimodal large language models (MLLMs). Large
Language Models (LLMs) have demonstrated robust ca-
pabilities in language comprehension, reasoning, and gen-
eralization [7, 37–39, 46, 51, 53, 55]. Building upon
this, Multimodal Large Language Models (MLLMs) ex-
tend these reasoning skills to additional modalities such
as image [13, 14, 17, 64, 66, 68], audio [3, 16, 22], and
video [5, 29]. Typically, MLLMs align target features with
textual features and then integrate them with LLMs for var-
ious text inference tasks. Some train the whole architecture
from scratch [23, 42], and others [1, 8, 26, 28, 32] utilize
pre-trained LLMs. In 3D MLLMs, existing models either
rely on 2D image information [21, 69] or align low-quality
textual phrases with points [19, 57]. To solve these prob-
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Gradient
 A bowl of objects sits on top of a table.

Figure 2. The model architecture of GPT4Point for training. In Stage 1, we employ a Bert-based [12] Point-Q-Former for point-text
feature alignment through three point-text tasks. Then, in Stage 2, an LLM is appended to train the model’s text inference capabilities. A
Point Cloud Diffusion is attached separately to train controlled text-to-3D generation, which keeps the geometry shape and colors.

lems, we introduce a novel 3D MLLM designed for diverse
point-text tasks. Our model, featuring a Point Q-Former
based on Bert [12], aligns two domain features and inte-
grates an LLM for text-based reasoning tasks, advancing
3D multimodal understanding.

Language-driven 3D object understanding. 3D point
cloud multimodal models encompass a broad spectrum,
generally categorized into those focusing on the entire scene
containing multiple objects and those focusing on individ-
ual objects. The former emphasizes the relative positions
of objects in the scene rather than their geometric shapes.
Here, we primarily focus on the latter. In a self-supervised
way, robust backbones like PointBert [61] for object points
have been obtained [40, 61]. Then, point cloud language
pretraining attempts to align the point cloud and text modal-
ities. Some methods [24, 63] try to convert point clouds to
depth images for alignment with text using CLIP [45]. Tri-
modal approaches such as ULIP [18, 58, 59, 66] integrate
point cloud, text, and image data. However, these methods
all exclusively use 2D images explicitly or implicitly. Our
work differs by directly aligning 3D point-text modalities,
removing the dependency on image data.

Text-to-3D generation. Text-to-image generation mod-
els have experienced significant advancements recently [47,
62], yet text-to-3D models face challenges due to limited
3D data availability. Current approaches often rely on opti-

mizing Neural Radiance Fields (NeRF) representation [35]
with Score-Distillation-Sampling (SDS) loss [43]. While
these optimization-based methods [6, 30, 43, 54] still fall
short in robustness, speed, and generalization. Alterna-
tively, Point-E [36] and Shap-E [25] employ feed-forward
3D generative models trained on large, undisclosed 3D
datasets, offering better generalization and faster process-
ing. However, these models often produce random, uncon-
trollable outputs with low-quality textures. To solve these
limitations, we leverage point-text features to enhance the
controllability of feed-forward models. This approach uses
a low-quality point-text feature as a condition that allows
for maintaining specific shapes and colors, thereby enabling
the generation of higher-quality 3D objects.

3. Methods
This section provides an overview of our data text anno-

tation engine and model architecture. In Sec. 3.1, we intro-
duce Pyramid-XL, our point-language dataset annotation
engine, discussing its design, function, and the progression
from low-quality descriptions to ultimately precise and de-
tailed ones. Then, in Sec. 3.2, we delve into GPT4Point’s
architecture, explaining how to align point and text and
demonstrating how LLM and point diffusion models con-
tribute to unified understanding and generation.
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Level 3: VLM Instruction QA Pair

A red and gold tablecloth with a 
bowl, a book, and a ball on it.

One bowl and book are placed neatly on the table, while balls are placed in the bowl. 
There are three glass ball, the colors are yellow, blue, and purple, respectively. The 
tablecloth has a luxurious and elegant appearance, with a pattern of gold lines on a 
red background. The book is likely a novel or a guidebook. The overall scene 
suggests a cozy and comfortable setting, perhaps in a living room or a dining area.

Level 3: VLM Instruction Dense Caption

A bowl of objects sits 
on top of a table.

Level 2：Multi-View Systhesis Caption

What is the tablecloth made of?

The tablecloth is made of silk.

What is on the table?

The table has a red and gold tablecloth, 
a book a bowl with many balls in it.

What are the details of the 
balls inside the bowl?

There are three glass ball, the colors 
are yellow, blue, and purple.

What is the color of the tablecloth?

The table cloth is red.

The image is a 3D rendering of a table with a red tablecloth with a 
yellow pattern. There are four different views of the table shown in 
separate boxes. In each view, the table has a plate with four 
different colored crystal balls on it. There are also two books 
placed on the table, one on each side. The books are open and 
have colorful covers.

Direct Input to VLM 

Level 1：Single-View Caption

Figure 3. Pyramid-XL: An automated point-text annotation engine. Directly inputting images into VLMs yields unsatisfactory results.
We propose a progressive annotation approach with 3 levels of granularity, leveraging results from the previous level for precise outcomes.

3.1. Point-Language Dataset Annotation Engine

The public release of the large-scale Objaverse dataset [11]
and its successor Objaverse-XL [10] includes 800K and
10M objects, respectively, providing vast 3D object data.
However, these objects lack corresponding text descrip-
tions. We plan to use the rendered images of the objects
as input and obtain textual descriptions through a trained
Vision Language Model (VLM). However, direct input of
multi-view images into the VLM does not enable it to un-
derstand their 3D structure and give precise descriptions,
as shown in the top right of Fig. 3. Hence, Pyramid-XL
employs a hierarchical pipeline, evolving from initial low-
quality descriptions to achieve precise and detailed results.

Pyramid-XL

Single-View Caption (Level 1): We use the primary
VLM model BLIP-2 [28] to generate concise de-
scriptions, approximately ten words in length, from
a single-view rendered image.
Multi-View Caption (Level 2): This level synthe-
sizes multiple Level 1 descriptions by GPT-4 [38]
to create comprehensive multi-view captions, which
have approximately thirty words.
VLM Instruction Caption and QA Pair (Level 3):
Utilizing the view with the highest CLIP score, se-
lected from textual descriptions, we engage the ad-
vanced VLM to produce detailed dense captions
and a corresponding QA dataset.

In terms of scale, Pyramid-XL is employed to annotate
over 1M objects with Level 1 captions, 660K objects with
Level 2 captions (same as Cap3D [34]), and 70K objects
with Dense Captions including QA data. To assess the im-
pact of text granularity on training, we designate the 1M
Level 1 captions as the training dataset, while a smaller set
of detailed Level 3 data is used for instruction tuning. This
methodology mirrors practices in the vision field, where
models are initially trained on large volumes of coarser data
and finetuned on more detailed data from specialized do-
mains. Detailed experimental results of this approach are
presented in Sec. 5.3.

3.2. Model Architecture

GPT4Point consists of two stages, as illustrated in Fig. 2.
In Stage 1, we focus on point-text alignment using the
Point-QFormer, a Bert-based structure similar to the Q-
Former in BLIP-2 [28]. This stage involves supervision
through three tasks related to recognition and text reason-
ing. In Stage 2, only the point cloud is input into the point
encoder and Point-QFormer to obtain aligned features, di-
vided into the LLM Branch and the Diffusion Branch.
These branches supervise text comprehension and object
generation tasks, respectively.

Stage 1: point-text feature alignment. Given a point
cloud P ∈ RN×6, where each point is represented by six
dimensions (XYZ coordinates and RGB color values), the
initial stage of training focuses on feature extraction. The
point encoder E processes the point cloud to yield the point
cloud feature token T p

1 = E(P ). Concurrently, the input
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text is tokenized via the Point Q-Former’s text tokenizer,
resulting in the text feature token T t

1 . These tokens, T p
1 and

T t
1 , are then utilized as inputs for the Point Q-Former FQ,

facilitating the fusion of point cloud and textual data. We
jointly optimize three training objectives: Point-Text Con-
trast (PTC) and Point-Text Matching (PTM), both recogni-
tion tasks, along with Point Caption Generation (PTG), a
text inference task designed for aligning point clouds with
textual data. The formulas are as follows:

L1 = FQ

(
T p
1 ,T

t
1

)
= FQ

(
E (P ) ,T t

1

)
(1)

Here, L1 represents the loss for three tasks, and we have set
the weight ratios between them all to 1. In the final layer of
E , a fully connected layer maintains consistency between
the dimensions of T p

1 and T t
1 .

Stage 2: point understanding and generation. After the
point-text feature alignment, we proceed with understand-
ing and generation tasks. We must only input the point
cloud into the Point Encoder and Point Q-Former to obtain
the aligned feature. A Large Language Model (LLM) is
integrated with the Point Q-Former to help understand the
task. The semantically integrated point cloud features are
represented as T P

2 = FQ (T p
1 ) = FQ (E (P )). The textual

feature tokens T t
2 are obtained from the LLM’s tokenizer.

The objective function is defined as follows:

L2 = FLLM
(
T p
2 ,T

t
2

)
= FLLM

(
FQ (E (P )) ,T t

2

)
(2)

FQ indicates Point Q-former including a fully connected
layer in its last layer to ensure consistency between the di-
mensions of T p

2 and T t
2 . L2 represents the loss function

from the Point Caption task alone.

For 3D object generation, we utilize the features ob-
tained from low-quality point clouds via the Point Q-Former
as conditions inputted into the text-to-3D framework. This
process generates refined 3D objects that maintain consis-
tency in shape and color with the original point cloud. A
notable distinction from the LLM branch is that we have
frozen point cloud diffusion and Point Q-Former. As shown
in Fig. 2, we employ a single fully-connected layer to
project the aligned features into the CLIP token embed-
ding space, referred to as T p

3 , and then concatenate these
with the original text embeddings T t

3 using the CLIP tok-
enizer. The output from the CLIP text encoder, enriched
with information from the original point cloud, is instru-
mental in enabling effective text-to-3D generation. The fi-
nal output is achieved using Point E. This framework is in-
spired by BLIP-Diffusion [27] techniques used in subject-
driven 2D generation. However, the critical distinction here
from BLIP-Diffusion lies in how we concatenate the Clip
text token and Q-Former feature. This difference may also
stem from variations in the data volumes between 2D and
3D, which will be thoroughly examined in the appendix.

4. Benchmarks and Evaluation
Evaluating the performance of multimodal models

presents significant challenges due to the need for more ma-
ture metrics to assess the quality of generated texts. For
3D objects, benchmarks primarily rely on human judgment
or GPT-based assessments [57]. There are two key issues
to consider in this context. Firstly, the evaluation process
involves a certain degree of subjectivity. Identical results
might receive varying scores, leading to an element of ran-
domness. Secondly, each evaluation incurs time and mone-
tary costs. In this section, we present the evaluation bench-
mark we have proposed, which is primarily designed to be
objective, ensuring repeatability and verifiability. Sec. 4.1
outlines the composition of our test set. Sec. 4.2 addresses
the evaluation of recognition capabilities, while Sec. 4.3
provides a detailed assessment of text inference abilities.

4.1. Composition of Test Set

We leverage the Objaverse dataset [11], aligning it with
LVIS categories [20], to create Objaverse-LVIS validation
and test sets. In Objaverse-LVIS, we exclude scenes with
complex settings, such as indoor houses or outdoor parks,
focusing more on scenarios with single objects or combi-
nations of multiple objects. We construct validation and
test sets, each containing 1K objects. Compared to the
PointLLM [57], which uses only 200 unfiltered objects as
a test set, our more extensive set of 1K objects better mea-
sures the model’s generalization capabilities. We initially
use Pyramid-XL for textual descriptions to get initial anno-
tations, followed by multiple rounds of expert manual revi-
sions, ensuring comprehensive and accurate descriptions.

4.2. 3D Object Recognition

3D object recognition represents the classification capa-
bilities of 3D multimodal models and the ability to match
point cloud features with textual features. Objective mea-
sures, like accuracy, are typically used for evaluation.
Zero-shot point classification. Zero-shot point classifica-
tion is considered a classic task in this domain. The widely
used ModelNet40 dataset [56], which includes 2,468 ob-
jects across 40 categories, serves as a benchmark to evalu-
ate a model’s classification capabilities. In the multimodal
context, the typical approach involves using the text ’a 3D
model of [name]’ as input to match the point cloud modal
features. The accuracy metric ACC@1, indicating the pre-
cision of top-1 rankings, best reflects the model’s ability to
match object categories accurately.
3D point-text retrieval. In 3D Point-Text Retrieval, we
initially select 128 candidates based on point-text feature
similarity and then re-rank these candidates using matching
scores. Unlike classification tasks, which usually involve
simple category names, the text can have more complex de-
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Figure 4. Examples of text inference using the GPT4Point with ViT-g and OPT6.7B after Instruct Finetuning. The table showcases
its proficiency with point cloud input, excelling in tasks like detailed caption generation and point cloud-based question answering. This
underscores our model’s profound grasp of point cloud geometry and color, translating them into meaningful semantics.

scriptions. The evaluation metrics used are similar to those
in image-text retrieval. We employ R1, R5, and R10 met-
rics to measure the accuracy of the top 1, 5, and 10 results
in correctly matching points to text and vice versa.

4.3. 3D Object Text Inference

3D object text inference deeply represents the understand-
ing capabilities regarding objects, including 3D object point
cloud captioning and 3D point cloud question answering.
3D point cloud captioning. This task primarily evaluates
the model’s ability to provide an overall summary of a 3D
object. The captions in the Objaverse-XL-LVIS caption
test set are primarily within 30 words and accurately de-
scribe the object’s geometry, color, and state. Moreover,
we predominantly employ standard image description met-
rics, such as BLEU1, BLEU4, METEOR, ROUGE-L, and
CIDEr [2, 31, 41] for evaluation.
3D point cloud question answering. In addition to point
cloud captioning, 3D point cloud question answering ex-
plores object details through multiple rounds of dialogue.

For instance, we can further explore the color or shape of
specific parts of an object or even infer its simple usage. The
curated Objaverse-XL-LVIS short QA 1K test set features
concise, straightforward questions and answers, allowing us
to calculate answer accuracy conveniently. Besides accu-
racy, we also use metrics from captioning to evaluate model
performance. It is important to note that, for a fair com-
parison, we solely utilize zero-shot learning, meaning no
fine-tuning is conducted on this kind of short QA dataset.

5. Experiments
5.1. Training Details

We configure our setup to process 8,192 input point
clouds, utilizing Point-BERT [61] as the backbone. This
transformer-based network excels in capturing geometric
and semantic features of object point clouds. Moreover, the
backbone is pretrained through retrieval tasks like ULIP-
2 [59]. We employ OPT [65] and FlanT5 [46, 55] as Large
Language Models (LLMs). For the training process, we
adopt an initial learning rate of 1e-4, weight decay of 0.05,
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Model Input Data Type
ObjaverseXL-LVIS Retrieval (1K test set) ModelNet40[56]

Point → Text Text → Point Accuracy
R@1 R@5 R@10 R@1 R@5 R@10 Acc@1

Image-Text Modal
BLIP-2 Single-View Image

(Mesh with Color)
17.56 41.16 52.82 16.72 40.2 52.56 35.62

InstructBLIP† 20.4 43.1 55.3 13.7 32.5 42.7 31.48

Point-Text Modal
PointLLM(Vicuna-7B)†

Point Cloud (+Color)
- - - - - - 41.33

GPT4Point 32.2 64 81.3 89.7 98.1 98.9 43.90

Table 1. Point-Text Retrieval on the Objaversexl-LVIS test dataset and zero-shot 3D classification on ModelNet40. Please note that
† denotes Generative 3D object classification, which refers to the process of classifying 3D objects based on the generation of captions.

Model
#Trainable
Params

ObjaverseXL-LVIS Caption (1K test set) ObjaXL-LVIS QA (1K)
BLEU1 BLEU4 METEOR ROUGE CIDEr Acc BLEU1 ROUGE

Image-Text Modal
BLIP-2 (OPT2.7B) 188M 22.2 3.0 10.3 28.2 32.3 13.4 14.2 16.8
BLIP-2 (OPT6.7B) 188M 24.9 4.1 11.5 30.0 44.2 15.4 15.1 18.3
InstructBLIP(Vicuna7B) 202M 25.5 4.3 11.6 30.7 47.2 15.9 16.2 20.1
Qwen-VL(Qwen-7B) 7.2B 27.1 4.9 13.1 31.3 63.8 18.2 19.5 24.4

Point-Text Modal
PointLLM (Vicuna-13B)† 13.3B 26.2 4.9 11.9 31.3 50.9 23.4 22.3 26.2
GPT4Point (OPT2.7B) 110M 28.9 6.0 13.2 33.9 68.4 22.1 23.4 25.3
GPT4Point (OPT6.7B) 110M 31.5 7.2 13.8 35.4 78.7 27.1 26.2 30.4
GPT4Point (FLANT5XL) 110M 32.2 7.2 14.2 35.5 78.0 27.6 26.3 31.3

Table 2. 3D Object Point Caption and Question Answer (QA) on the Objaversexl-LVIS 1K test dataset. For the BLIP series, only
fine-tuning of the Q-Former structure is required, whereas models like PointLLM need fine-tuning of the large language model.

batch size of 32, and the AdamW optimizer [33]. All hyper-
parameters remain unchanged in both stages. The training
process takes ten epochs for each stage on 8 A100 GPUs.

5.2. Evaluation and Diverse Tasks

We evaluate our model on the benchmark we proposed in
Sec. 4, which includes 3D object recognition and 3D object
text inference. Additionally, we demonstrate the model’s
capability for controllable text-to-3D generation.
3D object recognition. Recognition capabilities are shown
in Tab. 1, with zero-shot classification results on the right
side. Our approach demonstrates superior performance,
outperforming the Vision Language Model(VLM) Instruct-
BLIP [8] by 12.42 points and surpassing PointLLM [57] by
2.57 points. PointLLM employs a generative approach to
generate text results by prompting, limiting its direct recog-
nition capabilities. The results for 3D point-text retrieval
are shown on the left side. Our GPT4Point model outper-
formed other VLMs [1, 8, 28]. The results quantitatively
highlight the challenges of single-viewpoint 3D object oc-
clusions and biases, emphasizing our approach’s advantages
over traditional image-text models.
3D object text inference. Model’s text inference capabil-
ities are displayed in Tab. 2. On the left, 3D object point

cloud captioning results confirm GPT4Point’s superiority
over pre-trained VLMs and PointLLM. Notably, the Point
Q-Former structure allows the freezing of the LLM, signif-
icantly reducing training parameters. The results for 3D
point cloud Q&A on the right side show that GPT4Point
achieved the best zero-shot accuracy, surpassing Instruct-
BLIP [8] by 11.7 points and outperforming PointLLM [57]
by 4.2 points. Alongside quantitative results, Fig. 4 qual-
itatively demonstrates its detailed answers and multi-turn
dialogue capabilities, with more examples in the appendix.

Controllable text-to-3D object generation. Here, we
showcase the generative capabilities of our model. Given
features of low-quality point clouds and textual descrip-
tions, we can generate corresponding higher-quality point
clouds, making text-to-3D more controllable. Fig. 6 dis-
plays experimental results; we compare our point feature
condition with text or single image condition in Point-
E, demonstrating that aligning features using point cloud
and textual information significantly improves guidance for
point cloud generation. It is worth noticing that compared to
a single-view image rendered from the original 3D model;
our Point Q-former feature is in a better condition, contain-
ing richer information about the geometric shape and de-
tailed color information of 3D objects. This is the first step
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Figure 5. Object generated from Point-E finetuned on Cap3D [34] and our Pyramid-XL The first line shows Cap3D [34] finetuning
results. In contrast, the second, using our Pyramid-XL Level 3 Dense Caption, outperforms Cap3D in geometry and color. This underscores
the high quality of our text annotations.

Controlable     
 Text-to-3D

A 3D icecream cone with whipped cream

Direct
Text-to-3D

3D model of brown leather office chair

A bottle of hot saucer

Direct
Image-to-3D

Low-Quality 
Condition

Figure 6. Point-E generation result when conditioned on text,
single image, and our Point-Q-former features

towards the point cloud editing.

5.3. Assessing the Effectiveness of Pyramid-XL

In this section, we demonstrate the effectiveness of
Pyramid-XL in obtaining high-quality point-text annota-
tions. We focus on two tasks: finetuning Point-E [36] for
3D object generation using dense captions and utilizing an-
notations of varying granularities on the QA benchmark.
Finetune the Point-E with Level 3 Caption. We finetuned
Point-E [36] base-40M text-vec model using 70K Level 3
VLM instruction captions from Pyramid-XL for 3D object
generation. The results in Fig. 5 show significant improve-
ments in geometric details and color fidelity in point clouds,
especially in objects like baskets and Halloween costumes,
compared to Cap3D [34].
Ablation study in model pretraining. Our ablation studies
on Pyramid-XL, detailed in Tab. 4, investigated the impact
of pretraining data scale and quality on model performance.
The comparison between the first two rows indicates that
using a large volume of coarse annotations boosts baseline,
and Level 3 annotations lead to improvements.

Text-to-3D methods
Rendering Eval User Study

FID ↓ CLIP Score Score(1-5)

Direct text-to-3D 34.7 74.9 3.98
Direct image-to-3D 32.6 75.3 3.67
Controllable text-to-3D 31.6 76.2 4.03

Table 3. Different 3D generation methods on the Cap3D, 2K test
set. Our controllable text-to-3D achieved the best results.

Level of Pyramid-XL
3D Object QA
val test

Level 2 22.3 22.1
Level 1 + Level 2 25.6 25.4
Level 1 + Level 2 + Level 3 (30%) 27.3 27.1
Level 1 + Level 2 + Level 3 (70%) 28.3 28.2
Level 1 + Level 2 + Level 3 (100%) 28.5 28.4

Table 4. the impact of text granularity. Levels 1, 2, and 3 rep-
resent coarse single-view annotation, multi-view annotation, and
fine-grained annotation, respectively. After finetuning, we utilize
the large language model OPT2.7B for pretraining and evaluation
using ObjaverseXL-LVIS validation and test sets.

6. Conclusion
We introduce the innovative GPT4Point, a Unified Frame-
work for point-language understanding and generation, in-
cluding the 3D MLLM for point-text tasks and controlled
text-to-3D generation based on low-quality point features.
We develop Pyramid-XL, a point-language dataset annota-
tion engine. This setup constructs a large-scale database
over 1M objects of varied coarseness levels from the
Objaverse-XL dataset. Furthermore, we establish an object-
level point cloud benchmark with specific metrics for eval-
uating 3D point cloud-language tasks.
Acknowledgement. It is supported by National Natu-
ral Science Foundation of China (No. 62201484), HKU
Startup Fund, HKU Seed Fund for Basic Research, National
Key R&D Program of China (No. 2022ZD0160201) and
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