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Abstract

Human hands are highly articulated and versatile at
handling objects. Jointly estimating the 3D poses of a hand
and the object it manipulates from a monocular camera
is challenging due to frequent occlusions. Thus, existing
methods often rely on intermediate 3D shape representa-
tions to increase performance. These representations are
typically explicit, such as 3D point clouds or meshes, and
thus provide information in the direct surroundings of the
intermediate hand pose estimate. To address this, we in-
troduce HOISDF, a Signed Distance Field (SDF) guided
hand-object pose estimation network, which jointly exploits
hand and object SDFs to provide a global, implicit repre-
sentation over the complete reconstruction volume. Specif-
ically, the role of the SDFs is threefold: equip the visual
encoder with implicit shape information, help to encode
hand-object interactions, and guide the hand and object
pose regression via SDF-based sampling and by augment-
ing the feature representations. We show that HOISDF
achieves state-of-the-art results on hand-object pose esti-
mation benchmarks (DexYCB and HO3Dv2). Code is avail-
able at https://github.com/amathislab/HOISDF.

1. Introduction

Pose estimation during hand-object interaction from a sin-
gle monocular view can contribute to widespread appli-
cations, e.g., in augmented reality [10], robotics [2, 15],
human-computer interaction [42], and neuroscience [36].
Many excellent 3D hand [32, 45, 51, 58] and object [8, 25,
41] pose estimation algorithms have been developed. How-
ever, due to severe occlusion, they can easily fail during
hand-object interactions. This has led to the emergence of
dedicated hand-object interaction datasets [7, 18, 20, 35],
and subsequently joint hand-object pose estimation has
drawn increasing attention. Despite much progress, most
methods still struggle when the hand or object is heavily
occluded [11, 19, 22, 30, 39, 47, 49]. We argue that this
limitation is rooted in the way 3D shape information is em-
bedded in these algorithms.

In essence, existing methods can be classified into two
approaches: Direct lifting and coarse-to-fine methods (see
Figure 1). Direct lifting methods first filter 2D image fea-
tures according to the pixel positions of the hand and ob-
ject and then use the remaining features to make predic-
tions [11, 19, 30, 33, 39]. These methods do not utilize
explicit 3D intermediate representations and rely entirely
on the network to learn the mapping from 2D image to
3D pose. Coarse-to-fine techniques make an initial predic-
tion from the 2D image and improve upon it with a refine-
ment network [12, 13, 22, 47, 49]. The intermediate rep-
resentations can either be hand joints [12, 13] or hand ver-
tices [22, 47, 49], which can be interpreted as explicit shape
representations. Although these representations can incor-
porate 3D shape information, we argue that implicit shape
representations in the form of signed distance fields (SDFs)
offer more effective 3D shape information for subsequent
computations.

To achieve this, we introduce HOISDF (a Hand-Object
Interaction pose estimation network with Signed-Distance
Fields), which uses SDFs to guide the 3D hand-object pose
estimation in a global manner (Figure 1). HOISDF consists
of two sequential components: a module learning to pre-
dict the signed distance field, and a module that performs
pose regression that is field-guided (Figure 2). The signed
distance field learning module regresses the hand and ob-
ject signed distance fields based on the image features. The
module is encouraged to focus on capturing global infor-
mation (e.g., rough hand/object shape, global rotation and
translation) by regressing signed distances in the original
camera space, since we believe global plausibility is more
important in the intermediate stage, while fine-grained de-
tails can be recovered in the later stages. To effectively
leverage the dense field information, our field-guided pose
regression module effectively uses the learned field infor-
mation to (i) sample informative query points, (ii) augment
the image features for those points, (iii) gather cross-target
(i.e., hand-to-object or object-to-hand) cues to reduce the
influence of mutual occlusion, and (iv) combine the point
features together to estimate the hand and object poses.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

10392

https://github.com/amathislab/HOISDF


Figure 1. Conceptual advantage of the SDF-guided model over existing approaches. Our model utilizes Signed Distance Fields (SDF)
to provide global and dense constraints for hand-object pose estimation. In contrast to direct lifting and coarse-to-fine methods, which
struggle to refine poor initial predictions, the distance field yields global cues not limited to areas near an initial prediction.

Overall, HOISDF can be trained in an end-to-end man-
ner. We achieve state-of-the-art results on the DexYCB and
HO3Dv2 datasets, corroborating the benefits of using SDFs
as global constraints for hand-object pose estimation and
the effectiveness of our approach to exploiting the field in-
formation. Altogether, our main contributions are:
• We introduce a hand-object pose estimation network that

uses signed distance fields (HOISDF) to introduce im-
plicit 3D shape information

• We develop a new signed-distance field-guided pose re-
gression module to effectively integrate the relevant parts
of the global field information for hand and object pose
estimation.

2. Related Work
2.1. 3D Hand-Object Pose Estimation

Recently, joint hand-object pose estimation has drawn in-
creasing research interest [29], and many hand and object
interaction datasets have been developed [7, 18, 20, 35].
The current methods can be divided into direct lifting tech-
niques and coarse-to-fine strategies. Among the former,
Chen et al. [11] fused hand and object features with se-
quential LSTM models. Hampali et al. [19] extracted 2D
keypoints and sent them to a transformer architecture to find
the correlation with the 3D poses. Li et al. [30] proposed
a data synthesis pipeline that can leverage the training feed-
back to enhance hand object pose learning. Lin et al. [33]
proposed to learn harmonious features by avoiding hand-
object competition in middle-layer feature learning. For the
coarse-to-fine methods, Hasson et al. [22] obtained initial
hand and object meshes and optimized them with interac-
tion constraints. Tse et al. [47] used an attention-guided
graph convolution to iteratively extract features from the
previous hand-object estimates. Wang et al. [49] designed a
dense mutual attention module to explore the relations from
the initial hand-object predictions. We build on those meth-

ods but, in contrast, focus on implicit 3D shape information
by learning SDFs, which provide global, dense constraints
to guide the pose predictions.

2.2. Distance Fields in Hand-Object Interactions

Unlike explicit representations such as point clouds and
meshes, neural distance fields provide a continuous and
differentiable implicit representation that encodes the 3D
shape information into the network parameters. Given a 3D
query point, a neural distance field outputs the signed or un-
signed distance from this point to the object surface. Neural
distance fields have been widely used in 3D shape recon-
struction and representation [1, 16, 38, 40, 55]. Recently,
SDFs have also been exploited in the context of hand-object
interaction. In particular, Karunratanakul et al. [26] pro-
posed to jointly model the hand, the object, and contact ar-
eas using an SDF. Ye et al. [54] used an SDF and the pre-
dicted hand to infer the shape of a hand-held object. Chen
et al. [12] pre-aligned the 3D space with hand-object global
poses to support the SDF prediction. Chen et al. [13] further
used entire kinematic chains of local pose transformations
to obtain finer-grained alignment. However, those methods
mainly use SDF as the endpoint of the model to directly
reconstruct 3D meshes instead of using SDF as an inter-
mediate representation. Here we explore how SDFs as an
intermediate representations can guide subsequent pose es-
timation. Our experiments clearly demonstrate the benefits
of our approach.

2.3. Attention-based Methods

Attention mechanisms [48] have been wildly successful in
machine learning [4, 6, 14, 17, 24] due to their effectiveness
at exploiting long-range correlation. In the context of mod-
eling hand-object relationships, Hampali et al. [19] propose
modeling correlations between 2D keypoints and 3D hand
and object poses using cross attention. Tze et al. [47] de-
sign an attention-guided graph convolution network to cap-
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Figure 2. Overall pipeline of HOISDF. HOISDF has two parts: A global signed distance field learning module and a field-guided
pose regression module. The global signed distance field learning module regresses the hand object signed distances as the intermediate
representation and encodes the 3D shape information into the image backbone through implicit field learning. The field-guided pose
regression module uses global field information to filter and augment the point features as well as guiding hand-object interaction. Those
enhanced point features are then sent to regress hand and object poses using point-wise attention.

ture hand and object mesh information dynamically. Wang
et al. [49] propose to exploit mutual attention between hand
and object vertices to learn interaction dependencies. By
contrast, our HOISDF applies attention across field-guided
query points to mine the global 3D shape consistency con-
text and cross-attend between hand and object.

3. HOISDF

We propose Hand-object Pose Estimation with Global
Signed Distance Fields (HOISDF), a joint hand-object pose
estimation model that leverages global shape constraints
from a signed distance field. HOISDF comprises two com-
ponents: A global signed distance field learning module
and a field-guided pose regression module (Figure 2). Both
components benefit from the robust 3D shape information
modeled with the SDF and the whole architecture is trained
end-to-end.

3.1. Global Signed Distance Field Learning

We simultaneously learn hand and object signed distance
fields (SDFs) with the following rationale: i) An SDF im-
plicitly represents 3D shape with the model parameters; the
implicit learning procedure can thus propagate 3D shape
information to the feature extraction module. ii) Jointly
learning hand and object fields allows the model to encode
their mutual constraints. Meanwhile, since we predict hand
and object signed distances in the initial stage as interme-
diate representations, we encourage our SDF learning mod-
ule to focus more on global plausibility rather than local
fine-grained details. Below, we describe the image feature
extraction and the SDF learning in detail.

Image Feature Extraction. For extracting hierarchical
features F, we use a standard encoder-decoder architecture,
specifically a U-Net [19, 23, 46]. Following standard prac-

tice [19, 33, 49], we regress 2D predictions (a single chan-
nel heatmap [19] and hand/object segmentation masks with
loss Limg , see Supp. Mat. for details) to enable the model
to represent hand-object interaction at the 2D image level.

3D Signed Distance Field Learning. With the extracted
image features, the SDF module learns the continuous map-
ping from a 3D query point p ∈ R3 to the shortest signed
distances between p and the hand/object surfaces. Com-
pared to [12, 13], we directly learn SDFs in the original
space without rotating to canonical spaces using pose pre-
dictions. Our SDF module will consequently focus on the
global information (e.g., general shape, location and global
rotation) of the hand and object.

Specifically, given a 3D query point p ∈ R3, we project
it to the 2D image space to compute the pixel-aligned image
features [13, 19, 49, 50] extracted by the U-Net decoder
{Fi

dec}, where i ∈ X indexes over the hierarchical decoder
levels of the U-Net. We then concatenate the queried image
features and pass them to a Multilayer Perceptron (MLP) to
obtain a feature vector

fimg = MLP(⊕i∈X Fi
dec(π3D→2D)), (1)

where π3D→2D represents the projection and interpolation
operation, ⊕ indicates the concatenation of all the hierar-
chical pixel-aligned image features, and X is the set of hi-
erarchical features.

To emphasize the importance of p, we expand the coor-
dinate representation by a Fourier Positional Encoding [37]
into a vector fpos. We then concatenate the triplet p, fpos
and fimg together and pass them to the hand SDF decoder
SDFh and the object SDF decoder SDFo. This can be ex-
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Figure 3. Visualization of the intermediate query points on DexYCB testset. The darkness of the query points reflects the predicted
distance from the query point to the hand (in blue) and object (in green) surfaces. The intermediate SDF representations can capture the
GT 3D hand and object shapes. HOISDF effectively uses the robust global clues from SDFs to deal well with various objects and hand
movements as well as their mutual occlusions.

pressed as

fsdf = p ⊕ fpos ⊕ fimg, (2)
dh = SDFh(fsdf ), (3)
do = SDFo(fsdf ). (4)

Here, dh is the shortest distance from p to the hand mesh
surface, and do is the shortest distance from p to the object
mesh surface; dh and do will be positive if they are out-
side the surface and negative otherwise. The field decoders
SDFh, and SDFo are all 3-layer MLPs with tanh activation
in the last layer [26].

During training, we sample Ns 3D query points, ensur-
ing that most points are sampled near the hand and object
mesh surfaces. We pre-compute the ground-truth distances
from the query point to the hand and object surfaces and use
the smooth-L1 loss [43] to supervise the learning of dh and
do. We sum the losses together and refer to the resulting
loss as Lsdf .

3.2. Integrating Field Information: Field-guided
Pose Regression

After the field learning module, we aim to use the learned
fields to predict the hand and object poses. However, ef-
fectively using the field information is non-trivial: i) The
field information is implicitly encoded in the model param-
eters; we can only read the field information at a specific
location by sending a query point into the network; ii) The
resulting signed distance at a certain query point is just a
scalar distance, which on its own provides only a weak link
with the pose prediction; iii) How to explicitly model the
hand-object interaction using SDF is unclear. To address
these challenges, we hence introduce the field-guided pose
regression module described below.

3.2.1 Field-informed Point Sampling

To address the first problem, we propose a point-sampling
strategy that aims to extract the most helpful field informa-
tion while querying only a few points. It builds on the as-
sumption that the query points near the ground-truth surface
are the most informative ones. As such, during inference,
we voxelize the 3D space with Nv bins, which gives us N3

v

query points. We first use the hand and object bounding
boxes to filter the points in 2D space. Then, we send the re-
maining points into SDFh and SDFo and sort them accord-
ing to the obtained hand and object signed distances sepa-
rately. We sample N2

v /nh hand query points and N2
v /no

object query points with the lowest absolute hand distance
and object distance, respectively. Here, nh and no are two
positive hyperparameters controlling the number of sam-
ples. Since we can access the ground-truth mesh during
training, we directly sample Nh hand query points near the
hand mesh and No object query points near the object mesh
(with an absolute distance smaller than 4cm) for speed and
memory optimization (2x faster). Towards the end of train-
ing, we also sample points with the same strategy as during
testing to learn the point distribution. We will show the ef-
fectiveness of our proposed sampling strategy in Sec. 4.4.

3.2.2 Field-based Point Feature Augmentation

To address the second problem, given a sampled hand
query point ph, we convert dh to the volume density
σh = α−1sigmoid(−dh/α), where α is a learnable pa-
rameter to control the tightness of the density around the
surface boundary. This is motivated by the strategy used
in StyleSDF [38] for image rendering, but here we use it
for the purpose of feature augmentation. We then multiply
σh with fimg . The field information will thus influence the
whole feature representation. ph and its positional encod-
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ing fpos discussed in Sec. 3.1 are also concatenated to fur-
ther augment the point feature. The final hand query point
feature fh is obtained as

fh = ph ⊕ fpos ⊕ (fimg · σh). (5)

For a sampled object query point po, the object query
point feature fo is obtained in an analogous way (i.e., aug-
menting the feature by the volume density σo based on ob-
ject SDF do).

3.2.3 Cross Fields Hand-Object Interaction

Since we use the shared image backbone to learn the hand-
object SDFs jointly, hand-object relations can be implicitly
modeled during implicit field learning. Here, we aim to
model the hand-object interaction explicitly to better deal
with the mutual occlusions. Intuitively, the hand-object
contact areas are highly informative about the object/hand
pose. Therefore, we augment the hand/object query points
with the object/hand SDFs, respectively, to serve as interac-
tion cues (Fig. 2). Specifically, for a sampled object query
point po, we send it to the hand SDF decoder SDFh to ob-
tain the cross-hand signed distance doh. doh is then con-
verted to the volume density σoh and used to augment the
queried image feature fimg similarly to Sec. 3.2.2. The final
cross-hand query point feature foh is obtained as

foh = po ⊕ fpos ⊕ (fimg · σoh). (6)

foh will serve as object cues for hand pose estimation. A
po with smaller doh will play a bigger role in helping the
hand pose estimation. Similarly, a hand query point ph is
also sent to object SDF decoder SDFo and used to generate
a cross-object query point feature fho.

3.2.4 Feature Enhancement with Point-wise Attention

As the pixel-aligned feature fimg mainly contains local in-
formation, the local query point features fh and fo could be
misled and thus make wrong predictions in the presence of
severe occlusion. To address this problem, we propose to
use an attention mechanism [27, 48] to exploit reliable de-
pendencies in the global context. In contrast to existing ap-
proaches that either perform attention over 2D features [19]
or over 3D mesh vertex features [47, 49], our point-wise at-
tention explores the global field information and the local
image information with the aim of finding global 3D shape
consistency between the sampled query points. Specifically,
the extracted Nh hand query point features {fih}i∈(0,Nh) are
sent into a hand attention module, which consists of six
Multi-Head Self-Attention (MHSA) layers [27, 48].

Meanwhile, to leverage object cues inside the cross-
hand query point features {fioh}i∈(0,No), we also send them
to the MHSA layers SA to conduct cross attention with

{fih}i∈(0,Nh). The resulting enhanced hand point features
are computed as

({fieh}i∈(0,Nh), ∗) = SA({fih}i∈(0,Nh), {fioh}i∈(0,No)),
(7)

where ∗ denotes that we ignore the output from the No

cross-hand query tokens. Analogously, the enhanced object
point features {fieo}i∈(0,No) can be obtained by processing
object query point features {fio}i∈(0,No) and cross-object
query point features {fiho}i∈(0,Nh) with an object attention
module.

3.2.5 Point-wise Pose Regression

With attention, we incorporate globally consistent informa-
tion and cross-target cues into the hand point features {fieh}
and object point features {fieo}. Those points thus have
enough global-local shape context information to regress
hand-object poses. We apply asymmetric designs for hand
and object pose estimation. Since the hand is non-rigid,
flexible, and typically occluded when grasping an object,
regressing the hand pose requires gathering richer informa-
tion inside the {fieh}. We hence follow [19] to use Cross-
Attention layers CA with the learned hand pose queries
{qi}. We supervise the learning of hand pose queries with
MANO parameters [44] to obtain both hand joints and a
hand mesh. Sixteen hand pose queries regress 3-D MANO
joint angles, and one more hand pose query regresses the
10-D mano shape parameters β. This can be expressed as

({θi ∈ R3}i∈(0,16), β) =

CA({fieh}i∈(0,Nh), ({qi}i∈(0,16),q16)). (8)

We use a smooth-L1 loss [43] to supervise the learning
of the MANO parameters, referred to as Lmano. Similarly to
[19], we also regress the intermediate hand pose objective
to guide the final predictions. However, since our {fieh} al-
ready contains rich 3D information, we directly regress 3D
hand joints instead of 2D joints as in [19]. We use {fieh} as
dense local regressors [31, 51] to predict the offsets {oijh }
from each hand query point pi

h to every pose joint as well
as the prediction confidence. The corresponding loss is de-
noted as Loff. Note that the design of the hand pose re-
gressor is not identical. Our field-guided query points al-
ready include rich global-local shape context information
and yield satisfactory pose estimation results with various
regressors (see Sec. 4.5).

Compared with the hand, the object is more rigid. There-
fore, we simply regress rotation vectors {ri} and transla-
tion vectors {ti} with all the enhanced object point features
{fieo} and use a smooth-L1 loss [43] Lobj to supervise them.
During inference, we average the predictions from all the
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object points to obtain the final object translation and orien-
tation.

4. Experiments

We first introduce the hand-object benchmarks, describe
implementation details and compare HOISDF with state-
of-the-art (SOTA) methods. We finally detail ablations.

4.1. Datasets and Evaluation Metrics

We evaluate HOISDF on DexYCB [7] and HO3Dv2 [18]
datasets containing, respectively, 582K and 77K images of
human interacting with YCB objects [5].

DexYCB Dataset. We use the default S0 train-test split
defined by DexYCB [7]. Some methods [33, 34] use the
full DexYCB dataset by flipping the left-hand images (de-
noted as DexYCB Full), while other methods [12, 13, 20,
22, 47, 49, 53] select input frames in which the right hand
and the object are in close interaction to ensure the physi-
cal contact (denoted as DexYCB). In general when we refer
to DexYCB we mean this latter split. To broadly compare,
we train HOISDF on both settings. Since most of the meth-
ods use the data only with the right hand, we conduct our
ablations under the DexYCB split.

For hand pose estimation, we report Mean Joint Er-
ror (MJE) and Procrustes Aligned Mean Joint Error
(PAMJE) [57]. We also report Mean Mesh Error (MME),
area under the curve of the percentage of correct vertices
(VAUC) the F-scores (F@5mm and F@15mm), and corre-
sponding Procrustes Aligned version following [52] to mea-
sure hand mesh reconstruction performance. For object 6D
pose estimation, we report Object Center Error (OCE) fol-
lowing [12, 13], Mean Corner error (MCE) following [49],
and standard pose estimation average closest point distance
(ADD-S) following [20, 22, 49] to measure performance in
center, corner, and vertex levels.

HO3Dv2 Dataset. We use the standard train-test split-
ting protocol and submit the test results to the official web-
site to report performance. Since the HO3Dv2 is rela-
tively small-scale, some methods [49, 53] render synthetic
hand object images to enhance learning. Therefore, apart
from training the model only with the original data in the
HO3Dv2 training set, we also train another model (denoted
with ‘*‘ in Table 4) by including synthetic images. We fol-
low the render pipeline of Wang et al. [49].

For hand pose estimation, we use the HO3Dv2 evalu-
ation metrics: Mean Joint Error (MJE), Scale-Translation
aligned Mean Joint Error (STMJE) [58], and Procrustes
aligned Mean Joint Error (P-MJE) [57]. For object 6D
pose estimation, we report mean Object Mesh Error (OME)
and standard pose estimation average closest point distance
(ADD-S) following [20, 22, 49].

Metrics in [mm] MJE PAMJE OCE MCE ADD-S Object

Lin et al. [32] 15.2 6.99 - - - No
Spurr et al. [44] 17.3 6.83 - - - No
Liu et al. [34] 15.2 6.58 - - - Yes
Park et al. [39] 14.0 5.80 - - - No
Chen et al. [9] 14.2 6.40 - - - No
Xu et al. [52] 14.0 5.70 - - - No
Lin et al. [33] 12.6 5.47 42.7 48.0 33.8 Yes

HOISDF (ours) 10.1 5.13 27.6 35.8 18.6 Yes

Table 1. Quantitative comparison on the DexYCB dataset. Trained
and tested on the DexYCB Full split. HOISDF reaches lower hand
and object pose estimation errors. The metrics are represented in
millimeters. The last column indicates whether a method performs
the object 6D pose estimation.

Metrics in [mm] MJE PAMJE OCE MCE ADD-S Object

Hasson et al. [20] 17.6 - - - - Yes
Hasson et al. [22] 18.8 - - 52.5 - Yes

Tze et al. [47] 15.3 - - - - Yes
Li et al. [53] 12.8 - - - - Yes

Chen et al. [12] 19.0 - 27.0 - - Yes
Chen et al. [13] 14.4 - 19.1 - - Yes
Wang et al. [49] 12.7 6.86 27.3 32.6 15.9 Yes
Lin et al. [33] 11.9 5.81 39.8 45.7 31.9 Yes

HOISDF (ours) 10.1 5.31 18.4 27.4 13.3 Yes

Table 2. Same as Table 1, but for DexYCB split, see Sec. 4.1.

4.2. Implementation and Training Details

We adopt ResNet-50 as the U-Net backbone [23, 46]. All
the point features: the image fimg , the hand feh, and object
feo are of size 256. We employ a transformer [48] encoder
as our point-wise attention module and a transformer de-
coder as our MANO regressor [44]. We follow the standard
practice [19, 33, 49] to train a unified model for all the ob-
jects in the dataset. The overall loss is a weighted sum of
all individual loss functions,

L = λ1Limg + λ2Lsdf + λ3Lmano+

λ4Loff + λ5Lobj, (9)

where λ1 to λ5 are used to balance all the loss terms to
the same scale. During training, the network parameters
are optimized with Adam [28] with a mini-batch size of 32.
The initial learning rate is 1e-4 and decays by 0.7 every 5
epochs. HOISDF typically converges to a satisfying result
after about 40 epochs.

For query points sampling, during training, we sample
Ns = 1000 query points for 3D field learning. During in-
ference, we empirically found that with a discretization size
of Nv = 64, sampling N2

v /nh = 600 hand query points
and N2

v /no = 200 object query points was enough for good
performance.

4.3. Comparisons with State-of-the-Art Methods

Quantitative comparisons on DexYCB. We evaluate
HOISDF on the DexYCB test sets (Tables 1 and 2) and
compare it with (SOTA) methods. Among the best mod-
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Metrics MME↓ VAUC↑ F@5↑ F@15↑ PAMME↓ PAVAUC↑ PAF@5↑ PAF@15↑ Object

Park et al. [39] 13.1 76.6 51.5 92.4 5.5 89.0 78.0 99.0 No
Chen et al. [9] 13.1 76.1 50.8 92.1 5.6 88.9 78.5 98.8 No
Xu et al. [52] 13.0 76.2 51.3 92.1 5.5 89.1 80.1 99.0 No
Lin et al. [33] 11.6 77.6 53.0 93.3 5.2 89.6 79.8 99.2 Yes

HOISDF (ours) 9.9 80.5 60.1 94.9 4.9 90.2 81.8 99.3 Yes

Table 3. Quantitative comparison with hand mesh metrics on the DexYCB Full testset. MME and PAMME are in millimeters.

els, [49] is best at object estimation while [33] is best at
hand pose estimation. However, HOISDF outperforms prior
methods by a substantial margin for both hand and object
metrics (Table 2). It is worth mentioning that HOISDF
beats the methods that perform just hand pose estimation
[32, 39, 44, 52]. Furthermore, we also compare HOISDF
with SDF-based hand object interaction methods [12, 13].
As mentioned in Sec. 3.1, both of them use SDFs to regress
the (output) hand meshes, while we use SDFs as intermedi-
ate representations and for field-guided inference. HOISDF
significantly outperforms these methods.

As HOISDF also predicts a MANO mesh, we compare
with the SOTA methods for hand mesh reconstruction per-
formance on the DexYCB Full test set (Table 3). We ob-
serve a consistent improvements with HOISDF.

Qualitative comparisons on DexYCB. Here, we com-
pare our HOISDF qualitatively with two SOTA hand object
pose estimation methods on the DexYCB test set (Fig. 4).
We can see HOISDF outperforms [33, 49] under various
objects and different types of hand object interactions.

Quantitative comparisons on HO3Dv2. As further evi-
dence of the effectiveness of HOISDF, we also evaluate it
on the HO3Dv2 dataset. Again, HOISDF consistently beats
the current SOTA methods on almost all the hand and object
metrics both with and without synthetic data (Table 4). Lin
et al. [33] obtains slightly better performance with regard
to PAMJE, but performs very poorly in the other metrics,
while HOISDF is more balanced.

On both datasets, especially HO3Dv2 with fewer data,
HOISDF yields a larger improvement on the metrics that
exploit more global information (MJE, STMJE and object
metrics). We attribute this advantage to the fact that SDFs,
as intermediate representations, capture global information
effectively to guide the subsequent pose estimations. We
will first visualize query points (Fig. 3) and then validate
our design choices.

Visualization of the learned SDFs. We visualize the
pose predictions and the intermediate hand-object query
points on the DexYCB testset (Fig. 3). We can see that the
remaining query points after the field-informed point sam-
pling already reveal the general hand object shape.

Figure 4. Qualitative comparisons between HOISDF and [33,
49] on DexYCB testset. HOISDF effectively uses robust global
clues near the hand and object to deal well with various objects
and severe occlusions.

Metrics in [mm] MJE STMJE PAMJE OME ADD-S

Hasson et al. [20] - 31.8 11.0 - -
Hasson et al. [21] - 36.9 11.4 67.0 22.0
Hasson et al. [22] - 26.8 12.0 80.0 40.0

Liu et al. [34] - 31.7 10.1 - -
Hampali et al. [19] 25.5 25.7 10.8 68.0 21.4

Lin et al. [33] 28.9 28.4 8.9 64.3 32.4
HOISDF (ours) 23.6 22.8 9.6 48.5 17.8

Li et al.* [53] 26.3 25.3 11.4 - -
Wang et al.* [49] 22.2 23.8 10.1 45.5 20.8
HOISDF* (ours) 19.0 18.3 9.2 35.5 14.4

Table 4. Quantitative comparison on the HO3Dv2 dataset. The
metrics are represented in millimeters.‘*‘ denotes models that
were co-trained with synthetic data.

4.4. Ablation for Intermediate Representations

Since using SDF as a global intermediate representation is
the key component of HOISDF, we analyze the role of the
SDF here, comparing it with other intermediate representa-
tions, and analyzing the query points.

Comparison different intermediate representations.
Here, to elucidate the role of the SDF, we build several base-
lines that use different intermediate representations while
trying to keep the remaining model components (e.g., im-
age backbones, feature dimensions, pose regressors, etc.)
the same as in our model. We replace the 3D field learning
module (Sec. 3.1) with 2D keypoint learning, 2D segmen-
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Metrics in [mm] MJE PAMJE OCE MCE ADD-S

2D Keypoint 14.9 7.13 34.2 45.3 22.9
2D Segmentation 14.1 6.88 31.3 43.1 21.0

3D Vertices 12.7 6.57 24.1 35.3 16.5

3D SDFs (ours) 10.1 5.31 18.4 27.4 13.3

Table 5. Comparison between different intermediate representa-
tions on DexYCB testset. The SDF-based representation outper-
forms other representations because it encodes 3D shape informa-
tion, is direct to regress, and has less joint cumulative error.

Metrics in [mm] Mean MCP PIP DIP Tip

Wang et al. [49] 7.67 7.63 6.36 6.29 10.4
HOISDF (ours) 6.16 6.02 5.27 5.40 7.95

Table 6. Sampled point distributions. Using SDF as global guid-
ance for point sampling gathers query points closer to the GT pose
joints. MCP, PIP, DIP, and Tip are different finger parts.

tation learning, and 3D mesh learning (see Supp. Mat.).
We found that utilizing intermediate 2D representations is
much worse, and that 3D vertices are also significantly less
powerful than SDFs (Table 5). Next, we provide further
evidence for the effectiveness of using SDF as an interme-
diate representation by analyzing the sampled query points
during inference.

Analysis of the sampled points. We argued that the
SDF representation better captures global shape informa-
tion across the capture volume (Figure 1). We analyze the
point distributions of HOISDF’s hand query points sampled
using our proposed point sampling strategy and the inter-
mediate hand mesh vertices extracted by the initial stage of
Wang et al. [49]. Indeed, our model samples closer points to
the hand joints, particularly for the most challenging finger
joints like the finger tips (Table 6).

4.5. Ablations for the Field-Guided Pose Regression
Module

The field-guided pose regression module is the other key
component to let HOISDF effectively leverage the SDF in-
formation. To verify that, we conduct ablations for differ-
ent parts. Firstly, we showed that our field-guided sampling
method is efficient and robust by comparing it with other
sampling ways (Table 7). Secondly, we assessed the role
of the point feature augmentation method by comparing it
with different variations; altering various parts gracefully
reduced the performance (Table 8). Next, the mutual hand-
object feature enhancement method proposed in Sec.3.2.3
is also proven to be effective by removing the cross atten-
tion or replacing with other non-augmented features (Ta-
ble 9). Finally, we show that HOISDF is robust to changes
in regression targets (Table 10) since our hand/object query
points already capture enough global-local context with our
field-guided module. Overall, the ablations validate our de-
sign choices.

Metrics in [mm] MJE PAMJE OCE MCE ADD-S

Random 25.8 13.5 48.4 53.7 29.6
Signed distance 13.3 6.58 19.7 30.7 15.9
Field gradient 10.1 5.29 18.5 27.7 13.5

Absolute distance (ours) 10.1 5.31 18.4 27.4 13.3

Table 7. Comparison between different sampling strategies on
DexYCB testset. Our field-informed point sampling can achieve
the best performance. See Supp. Mat. for details on the alternative
sampling strategies.

Metrics in [mm] MJE PAMJE OCE MCE ADD-S

w/o SDF augmentation 11.5 6.05 23.6 31.2 15.7
w density concatenation 11.0 5.71 22.7 30.5 15.3
w distance concatenation 11.5 6.07 23.3 30.9 15.6

w SDF augmentation 10.8 5.68 22.2 30.0 15.1

Table 8. Effects of field-based point feature augmentation on the
DexYCB test set. Our SDF feature augmentation best enhances
features for the subsequent pose estimations. See Supp. Mat. for
details on the alternative augmentations.

Metrics in [mm] MJE PAMJE OCE MCE ADD-S

w/o cross feature enhancement 10.8 5.68 22.2 30.0 15.1
w cross image feature 11.1 5.74 20.2 28.6 14.2
w cross target feature 11.3 5.81 23.7 31.8 15.9

Cross feature enhancement (ours) 10.1 5.31 18.4 27.4 13.3

Table 9. Effects of hand-object feature enhancement on the
DexYCB testset. HOISDF’s cross feature enhancement gave the
best results. See Supp. Mat. for details on the alternative feature
computations.

Metrics in [mm] MJE PAMJE

w/o intermediate joint regression 10.4 5.49
w/o MANO regression 10.5 5.65

w MANO shape & inverse kinematics 10.0 5.35

MANO regression (Ours) 10.1 5.31

Table 10. Robustness to different pose regressors on the DexYCB
testset. Benefiting from the rich global-local context information
inside the enhanced features, HOISDF can obtain great perfor-
mance even with simple pose regression targets. See Supp. Mat.
for details on the alternative regression targets.

5. Conclusion

We proposed a novel 3D hand-object pose estimation algo-
rithm that takes advantage of jointly learned signed distance
fields. It achieves strong results and inference is fast (see
Sup. Mat.) We believe this paradigm could also be applied
to other pose estimation problems, e.g., [2, 10, 15, 36, 42].
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