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Abstract

This paper introduces a novel unified representation of
diffusion models for image generation and segmentation.
Specifically, we use a colormap to represent entity-level
masks, addressing the challenge of varying entity numbers
while aligning the representation closely with the image
RGB domain. Two novel modules, including the location-
aware color palette and progressive dichotomy module, are
proposed to support our mask representation. On the one
hand, a location-aware palette guarantees the colors’ con-
sistency to entities’ locations. On the other hand, the pro-
gressive dichotomy module can efficiently decode the syn-
thesized colormap to high-quality entity-level masks in a
depth-first binary search without knowing the cluster num-
bers. To tackle the issue of lacking large-scale segmenta-
tion training data, we employ an inpainting pipeline and
then improve the flexibility of diffusion models across var-
ious tasks, including inpainting, image synthesis, referring
segmentation, and entity segmentation. Comprehensive ex-
periments validate the efficiency of our approach, demon-
strating comparable segmentation mask quality to state-of-
the-art and adaptability to multiple tasks.

1. Introduction
Deep learning has propelled the performance of several
tasks to new heights, marking substantial progress within
the computer vision community. Image generation [17,
27, 29, 74] and segmentation [6, 18, 32, 43, 45, 75],
as two typical dense prediction tasks within this field,
are widely used in plethora of applications such as au-
tonomous driving [40], video surveillance [49], medical
imaging [52], robotics [12], photography [56], and intel-
ligent creation [61, 62].

The innovative usage of latent codes [46] in diffusion
models has recently demonstrated remarkable capabilities
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Figure 1. Visualization results of a single UniGS model on im-
age generation and segmentation. We present four tasks: multi-
class multi-region inpainting, image synthesis, referring segmen-
tation, and entity segmentation. We note that the generation of
colormaps shares a similar pipeline with images without needing
any explicit segmentation loss.

in producing high-quality images, opening a new era of
AI-generated content (AIGC). Nevertheless, using a simi-
lar design for segmentation remains relatively unexplored
in diffusion-based works, despite evidence from specific
studies [3, 5, 33, 36, 54] that highlight the potential of at-
tention blocks to group pixels. Realizing such a capability
with a unified representation for image and entity-level seg-
mentation masks could potentially refine image generation,
achieving greater coherence between the synthesized enti-
ties and their masks. Moreover, this unified representation
offers significant potential for performing various dense
prediction tasks, including both generation and segmenta-
tion in a single representation, as shown in Figure 1.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

6305



The intuitive solution is to represent segmentation masks
simply as a colormap like Painter [59] and InstructDiffu-
sion [16]. However, the implementation is far from straight-
forward for three main reasons. First, the colormap de-
sign should be consistent with latent space not explored in
Painter [59]. Second, it should be able to differentiate enti-
ties in the same category. This challenge is not addressed
in instructDiffusion [16], which can only detect one en-
tity. Finally, the mask quality is not guaranteed and usually
has many noises without regular segmentation loss func-
tions like cross-entropy or dice loss. Even though the col-
ormap design effectively achieves a unified representation,
the large-scale dataset requirements for training diffusion
models are at odds with the sparse segmentation annotations
at hand, resulting in a critical bottleneck in our exploration.

To tackle these challenges, our first step is to validate
that variational autoencoder (VAE) [23] used in stable dif-
fusion [46] can effectively encode and decode colormaps in
the same way as images. Based on colormap representa-
tion and latent diffusion model, we introduce the UniGS
framework to simultaneously generate images and multi-
class entity-level segmentation masks. The UniGS has a
UNet architecture augmented with dual branches: one for
image and another for mask generation. In the mask branch,
we propose two modules, including a location-aware palette
and a progressive dichotomy module. The former assigns
each entity area to some fixed colors by the entities’ center-
of-mass location, enabling UniGS to discriminate entities
within the same category. The latter efficiently decodes gen-
erated noisy colormap into explicit masks without knowing
the entity numbers.

Then, we train our diffusion model under the inpainting
protocol, addressing the scarcity of large-scale mask anno-
tations. In this way, the diffusion model is primed to hone
in on specific regions rather than the entire image. This
flexibility facilitates using multiple segmentation datasets
for training our diffusion model. Combining unified image
and mask representation with an inpainting pipeline further
integrates various tasks within a single representation with
minor modifications. Figure 1 shows the effectiveness of
the UniGS on four tasks, including multi-class multi-region
inpainting, image synthesis, referring segmentation, and en-
tity segmentation.

The main contributions of this work are as follows:
• We are the first to propose a unified diffusion model

(UniGS) for image generation and segmentation within
a unified representation by treating the entity-level seg-
mentation masks the same as images.

• Two novel modules, including a location-aware palette
and progressive dichotomy module, can make efficient
transformations between the entity-level segmentation
masks and colormap representations.

• The inpainting-based protocol addresses the scarcity of

large-scale segmentation data and affords the versatility
to employ a unified representation across multiple tasks.

• The extensive experiments show our UniGS framework’s
effectiveness on image generation and segmentation. In
particular, UniGS can obtain segmentation performance
comparable to state-of-the-art methods without any stan-
dard segmentation loss design. Our work can inspire
foundation models with a unified representation for two
mainstream dense prediction tasks.

2. Related Work

Diffusion Model for Generation. The diffusion mod-
els were initially introduced in the context of generation
tasks [14] and have undergone significant evolution through
latent design [46]. Diffusion models have been applied to
a wide variety of generation [15, 39, 46, 50], image super-
resolution [1, 13, 63], image inpainting [34, 53, 68, 71],
image editing [22, 64, 73], image-to-image translation [11,
28, 57, 72], among others. We note that all current methods
utilize the latent code to generate high-resolution images
and have been extended to 3D [25, 37, 70] or video gen-
eration [4, 21, 35, 65]. Instead of those methods focusing
on content generation, we endow the diffusion model with
perception and segmentation ability by using similar repre-
sentations for the images.

Diffusion Model for Segmentation. Several studies have
delved into pixel-level segmentation [6, 18, 32, 41–45, 48,
75] using diffusion models through three distinct pipelines.
The first two pipelines emphasize leveraging pre-trained
stable diffusion [46] to simultaneously generate segmen-
tation masks and images. Specifically, the first pipeline,
as discussed in studies like [3, 5, 33, 36, 54], employs
both self- and cross-attention maps in stable diffusion for
shape grouping. However, these approaches demonstrate
limited capabilities in the instance or entity-level discrimi-
nation [43, 45]. Conversely, the second pipeline [30, 66, 67,
69] primarily focuses on integrating a segmentation branch
to produce precise mask generation by bringing substan-
tially computational costs. Instead, the third pipeline [7, 8]
is conditioned upon the input image by diffusing the im-
age features to masks or bounding boxes. Furthermore, a
prevalent issue with these methods is the inconsistency be-
tween image generation and segmentation mask generation
processes. In contrast, we develop a unified representation
for both tasks by converting the segmentation mask into a
colormap.

Unified Representation. Some foundation models [16,
59, 60] explored unified representation for both generation
and perception tasks. Our work is mostly similar to the
Painter [59] and InstructDiffusion [16] but with various de-
signs. Rather than reproducing the original color through
MAE’s [19] regression as in Painter [59], our approach in-
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Figure 2. Overview of the UniGS framework within the inpainting pipeline. Similar to stable diffusion, our UniGS denoise the feature
in the latent space by an encoder and decoder. We note that the predictions of UNet ẑi and ẑm are unified representations that can be
decoded into images and colormaps by a similar latent decoder.

Notation Definition Notation Definition

Υ AutoEncoder (VAE) Ω Coarse Mask Generator
Ψ Colormap Encoder Φ Colormap Decoder

M Entity-level Masks Mc Colormap
I0 Original Image mc Coarse Mask

Table 1. Illustration of some notations in the Method section.

volves gradually diffusing the latent code of the colormap
by several time steps. Compared to the InstructDiffu-
sion [16], our framework offers greater flexibility in decou-
pling the image and colormap using distinct latent codes.
As a result, there’s no necessity to employ a lightweight
segmentation branch for mask generation in our approach.

3. Method
Based on the latent diffusion model [46], the proposed
UniGS framework aims to progressively and simultane-
ously denoise images and segmentation masks given a text
prompt. In Figure 2, we show the overview of the UniGS
model within the inpainting pipeline. Such a pipeline can
address the challenge of insufficient segmentation datasets
and unifying multiple tasks in a single representation.

Specifically, the input of our UNet has four parts, includ-
ing the latent encode of the noised image, colormap, con-
text, and a resized coarse mask. They are denoted by zit, z

s
t ,

zct and mc, respectively. Based on the text prompt, we use
an UNet to denoise the zit, z

s
t to ẑi and ẑm. During infer-

ence, zit and zst would be the pure Gaussian noise. Com-
pared to stable diffusion [46], there is no obvious structure
difference except for the input and output channel numbers.

In the following, we begin with an overview of latent
diffusion techniques for high-resolution image synthesis.
Then, we introduce our novel mask representation to repre-
sent entity masks. Lastly, we propose our whole inpainting
pipeline and its extension to multiple tasks. It is noted that
Table 1 lists essential notions in this section.

3.1. Review of Latent Diffusion

Diffusion models [20] is a class of likelihood-based mod-
els that define a Markov chain of forward and backward
processes, gradually adding and removing noise to sample
data. The forward process is defined as

q(zt|z0) = N (zt|
√
ᾱtz0, (1− ᾱt)z0), (1)

which transforms data sample z0 to a latent noisy sample
zt for t ∈ {0, 1, ..., T} by adding gausian noise ϵ to z0.
ᾱt :=

∏t
s=0 αs =

∏t
s=0(1 − βs) where βs represents the

noise variance schedule [20]. During training, a neural net-
work (usually an UNet) fθ(zt, t) is trained to predict ϵ to re-
cover z0 from zt by minimizing the training objective with
ℓ2 loss [20]:

Ltrain =
1

2
||fθ(zt, t)− ϵ||2. (2)

where θ is the parameters of the neural network. At infer-
ence stage, data sample z0 is reconstructed from zT with
the model fθ and an updating rule [20, 51] in an iterative
way, i.e., zT → zT−∆ → ... → z0. For a clear illus-
tration, we omit the updating rule and regard the output of
fθ(zt, t) as z0. In the context of generating high-resolution
images I0 ∈ Rh×w×3 given a text prompt, diffusion models
would incur substantial computational costs if using large
image size like h = w = 512. The h and w represent
the image height and width. To tackle this issue, latent
diffusion models (LDM) uses latent code of the images as
zi0 ∈ Rh

4 ×
w
4 ×4 [58]:

zi0 = Υ(I) and Î0 = Υ−1(ẑi0) (3)

where Υ and Υ−1 represent the encoding and decoding pro-
cess of AutoEncoder (VAE) to I . ∗̂ indicates the prediction
results. As such, latent diffusion reduces computational
demands and maintains good generation ability. We base
our UniGS model on Stable Diffusion [46], a popular LDM
variant.
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3.2. Colormap-based Entity Mask Representation

We use a colormap representing segmentation masks that
can align mask representation with image format while sup-
porting variability in entity numbers. However, designing a
colormap encoder and decoder is non-trivial due to the re-
quirements of discriminating each entity within the same
categories. Moreover, this representation would lack the
standard segmentation loss in latent space like binary cross-
entropy and dice loss. Using the denoise loss in Eq 2 for
colormap would lead to several extreme cases in Figure 3.
Thus, we describe our location-aware palette and progres-
sive dichotomy modules in colormap encoding and decod-
ing to solve the above-mentioned problems.
Colormap Encoding. The colormap encoder Ψ con-
verts several entity-level binary segmentation masks M ∈
{0, 1}n×h×w to an colormap Mc ∈ [0, 255]h×w×3 as

Mc = Ψ(M) (4)

n denotes the number of sampled entities. The Mc is initial-
ized by zero value and then assigned some color for each en-
tity area by our location-aware palette. Specifically, we par-
tition an image into b×b grids where each grid has a unique
color. Each entity area is associated with these fixed colors
if their gravity centers are at the grids. Each RGB chan-
nel has five candidate color values {0, 64, 128, 192, 255} in
our location-aware palette. Thus, the overall color number
is 124 = 53 − 1 with color (0, 0, 0) indicating the back-
ground. The grid numbers b2 = |b × b| should be less than
124.

The location-aware palette design proves simple but effi-
cient in covering nearly all labeled entities (97.4% coverage
ratio across the COCO, ADE20K, OpenImages, and Entity-
Seg datasets). That’s because UNet has a position encod-
ing design that can help predict corresponding colors. In
contrast, random color assignments often struggle to distin-
guish between entities of the same category due to provid-
ing too large a color space.
Colormap Decoding. While the generated colormap ef-
fectively differentiates between entities visually, converting
it into the perfect entity-level masks presents several chal-
lenges. A primary issue is the need for more awareness
of entity numbers. Therefore, heuristic k-means clustering
is impractical. To tackle this issue, we propose a progres-
sive dichotomy module Φ to group areas of identical color
by pixel-level features p without prior knowledge of cluster
numbers.

M̂ = Φ(M̂c) = Φ(Υ−1(ẑs0)) (5)

where M̂c is predicted colormap decoded by VAE, and M̂ ∈
{0, 1}n×H×W has n binary masks.

Specifically, the progressive dichotomy module (PDM)
is a depth-first cascaded clustering method where we fur-

NoiseBoundary

Background

Two Entities

Similar Color

Figure 3. Illustration of several difficult cases in the decoded
color map. We conclude those cases into three kinds of problems,
including boundary, similar color, and background.

ther split the jth entity mask m̂j
v−1 generated at (v − 1)

th

iteration into the two sub-masks m̂2j
v and m̂2j+1

v at vth iter-
ation,

{m̂2j
v , m̂2j+1

v } = BK(m̂j
v−1) (6)

The BK denotes two-cluster k-means and each m̂ ∈
{0, 1}H×W . Further splitting m̂j

v−1 will stop until the av-
erage L2 distance of mask pixels to their mean less than δ:∑

o∈m̂j
v−1

(po − cm̂j
v−1

)2

|m̂j
v−1|

< δ (7)

The cm̂j
v−1

=

∑
o∈m̂

j
v−1

po

|m̂j
v−1|

with |m̂j
v−1| denoting the pixel

numbers of mask m̂j
v−1.

The pixel feature po is designed in light of three critical
observations in Figure 3. o ∈ [0, ..., h × w). At first, it is
not trivial to discern whether a gradient color signifies one
or multiple entities. Second, the foreground colors would
be degraded by the background. Thirdly, some black holes
are hard to predict as true or false positives. Thus, we de-
sign po ∈ R1×6 with both RGB and LAB image space. In-
cluding LAB image space is pivotal due to their perceptual
uniformity property, which ensures that minor variations in
LAB values translate to approximately uniform alterations
in color as perceived by the human eye, thereby providing
enhanced contrast.

3.3. Inpainting Pipeline

We adopt an inpainting pipeline for training and inference
to reconcile the generative model’s requirements for large-
scale segmentation datasets. For example, the Open-Images
dataset [2] with mask annotations encompasses approxi-
mately 1.8 million images but only contains about three
entity-level labels per image. Directly training the latent
diffusion model results in too many ambiguities due to un-
labeled areas. Instead, our inpainting pipeline enables the
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Task
Condition Output

coarse mask (mc) control factor (zci ) text prompt template image (ẑi0) mask (ẑs0)

Inpainting Ω(M) Υ(I0 ⊙ (1−mc)) ‘inpainting: generate dog.’ ✓ ✓

Image Synthesis J Υ(Mc) ‘synthesis: generate dog, ground, and sky.’ ✓ ✗

Referring Segmentation Ω(M) Υ(I0) ‘referring: find dog.’ ✗ ✓

Entity Segmentation J Υ(I0) ‘panoptic: all entities.’ ✗ ✓

Table 2. Illustration of the condition signal’s design on training task in our framework. The ✓and ✗indicate whether we expect the
two output tensors to be the same as our condition zci .

generative model to concentrate on the valid areas regard-
less of the partial segmentation labels.

In the training period, the UNet input is zu ∈
RH

4 ×W
4 ×13 that concatenated by

zut = CONCAT(zit, z
s
t ,m

c, zct ) (8)

zit and zst are the latent code of the noised image It and col-
ormap St in time step t where both zit and zst are Rh

4 ×
w
4 ×4.

mc ∈ {0, 1}h
4 ×

w
4 ×1 is a coarse mask where 1 indicates a

rectangular or an irregular area that needs our UniGS frame-
work to fill entities and their masks,

mc = Ω(M) (9)

More details regarding Ω are available in the supplementary
material. Next, zci is the latent code of the masked image by
mc,

zct = Υ(I0 ⊙ (1−mc)) (10)

The UNet output is

ẑ0 = fθ(z
u
t , t) ∈ RH

4 ×W
4 ×8 (11)

where the first and last four channels of ẑ0 can be latently
decoded to the final image and colormaps.

3.4. One-to-Many Tasks

The inpainting pipeline with colormap representation al-
lows for integrating various tasks within a single model. We
use the UniGS model for four vision tasks: inpainting, im-
age synthesis, referring segmentation, and entity segmenta-
tion. The configuration of each task is presented in Table 2.
Multi-class Multi-region Inpainting. Our baseline task
that has been detailed in Section 3.3.
Image Synthesis: zci is latent code of colormap Mc con-
taining sampled entities. Meanwhile, the coarse mask mc is
J matrix of all ones to cover the entire image area. For the
output, we maintain ẑs0 = Υ(Mc) and predict the entities’
appearance ẑi0.
Referring Segmentation. This task aims at segmenting
some classes based on instructions. Thus, we preserve im-
age information by zci = Υ(I0). Considering the require-
ment of negative samples to ensure alignment between the

entity and text prompt, we define λ as the possibility of each
sampled entity belonging to a negative in training. For neg-
ative samples, the category names in text prompts are re-
placed with others that do not appear in the coarse mask.

Entity Segmentation. All the entities should be predicted
in ẑs0 with the coarse mask area J .

4. Experiments
In this section, we first explore the performance of our pro-
posed UniGS in four individual tasks, including multi-class
multi-region inpainting, image synthesis, referring segmen-
tation, and entity segmentation. Some key module designs
or hyper-parameters on the mask quality are ablated in re-
ferring segmentation. Similar to other works [9, 45, 47] to
evaluate the image and mask quality, we use the intersec-
tion over union (IoU) and recall for mask evaluation and
the Fréchet inception distance (FID) and CLIP score (CS)
for image generation.

4.1. Experiment Setting

For each single-task model, we exclusively utilize the
COCO dataset [31], the Open Images [26], and EntitySeg
datasets [45] as our training data. Considering the COCO
panoptic data having about 10% ignored area, we only use
the EntitySeg for entity segmentation task in case of perfor-
mance degradation.

In our training process, we randomly sample up to four
objects per sampled area for tasks such as inpainting, image
synthesis, and referring segmentation. On the other hand,
entity segmentation should include all the entities that can
cover the whole sampled area. During the inference period,
we sample 1000 images in COCO validation data as our test
set, where each image has a coarse mask and various control
factors for different tasks, as shown in Table 2.

We initialize our model with stable diffusion v1.5 in-
painting and weight newly added channels as zero. The im-
age size and latent factor reduction ratio are set to 512×512.

4.2. Multi-class Multi-region Inpainting

We evaluate the inpainting model by inserting one or mul-
tiple objects into the coarse mask area generated from the
entity masks. The model’s output in this task includes the
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Figure 4. Qualitative comparison of inpainting results between Stable Diffusion and our UniGS. For the coarse masks, we keep
the consistency of the ones used in our training phase to eliminate the pattern gap. Furthermore, we showcase multi-class, multi-region
inpainting to the multiple entities within the same category, moving beyond the conventional approach of incorporating a single entity.

Method
FID (↓) CLIP Score (↑) FID (↓) CLIP Score (↑)

single object multiple objects

SD1.5
I 4.95 88.86 7.82 83.80

UniGS1.4 4.39 88.92 6.19 84.43
UniGS1.5

I 3.78 90.22 5.89 85.87

Table 3. Quantitative results on image inpainting task. The
SD1.5

I means the stable diffusion inpainting model with version
1.5. The UniGS1.4 is the UniGS that initialized from the stable
diffusion model with version 1.4, the UniGS1.5

I is the UniGS that
initialized from stable diffusion inpainting model with version 1.5.

generated image and colormap. As in Table 3, our method
outperformed the original model regarding both FID and
CLIP scores. This improvement was observed even when
our model was initialized using the stable diffusion 1.4
pre-trained model, highlighting the effectiveness of our ap-
proach in enhancing image generation through the integra-
tion of object mask guidance. That’s because our unified
representation effectively constrains the model to maintain
consistency between the visual appearance of the objects
and their corresponding masks. As a result, the object
masks impart a robust shape priority, guiding and refining
the image generation process to ensure alignment and co-
herence in the final output.

Figure 4 shows the visual comparison between stable dif-
fusion and our UniGS with the coarse masks generated from
our code used in the training period. In other words, our
testing keeps a similar pattern of inpainting area. It is ev-
ident from these results that the objects generated by the
model are in strong harmony with the high-quality masks,
showcasing the model’s effectiveness in seamlessly inte-

grating the objects into the overall image composition. Fur-
thermore, this impressive coherence between generated ob-
jects and their masks is attributable to our model’s unified
representation of images and segmentation masks.

4.3. Image Synthesis

In this task, we expect to take a colormap as input along
with a text-based image synthesis prompt and output a syn-
thesized image. Except for the conventional metrics of
Fréchet inception distance (FID) and CLIP score, we in-
corporated mean Intersection over Union (mIoU) to evalu-
ate the alignment of the generated image with the specified
mask shape. For this external evaluation, we utilized the
Mask2Former model equipped with a large swan backbone
to perform segmentation on the images generated by our
model. The mIoU is then calculated by comparing these
segmentation masks against the original colormap. In Fig-
ure 5, we present the visual consistency between the syn-
thesized objects and the provided color masks among four
methods: stable diffusion, ControlNet, T2I Adaptor, and
UniGS. We modify the pipeline of the compared approaches
for a fair comparison. For stable diffusion designed not for
image synthesis, we only use text prompts for conditions.
For ControlNet and T2I-Adaptor, we follow the default set-
tings and input the segmentation map and text prompt to get
the synthesis image. In this figure, we highlight the model’s
ability to align the generated objects with the specified mask
constraints closely. Moreover, those visualization results re-
flect the successful and seamless integration of these objects
within their backgrounds, further highlighting the benefits
of our unified representation in synthesizing contextually
coherent and visually harmonious images. As shown in Ta-
ble 4, our method is more favorable in all critical metrics,
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Figure 5. Qualitative comparison among Stable Diffusion, ControlNet, T2I-Adapter, and our UniGS on the image synthesis task.
Compared to those methods, UniGS maintains more coherence between the generated entities and their corresponding segmentation masks.

Method
FID (↓) CS (↑) mIoU (↑) FID (↓) CS (↑) mIoU (↑)

single object multiple object

SD [70] 36.502 54.708 0.196 34.770 56.511 0.191
CN [72] 35.111 55.230 0.277 30.108 58.709 0.326
T2I [38] 34.434 59.024 0.306 24.898 62.910 0.379

UniGS 15.272 65.015 0.781 14.271 69.504 0.777

Table 4. Quantitative results on image synthesis task. ‘SD’,
‘CN’, and T2I indicate the stable diffusion, CrontrolNet, and T2I-
Adaptor. The ‘CS’ is the CLIP Score.

Method Backbone mIoU(↑) Recall (↑)

Mask2Former [10] Swin-Large 0.815 0.887
UniGS (Ours) - 0.808 0.872

Table 5. Quantitative results on referring segmentation task.
We choose Mask2Former with a Swin-Large backbone as our
baseline for comparison with SOTA segmentation methods.

including the FID, CLIP score, and mIoU. This comparison
underscores that the unified representation for both image
and segmentation mask can help the image synthesis net-
work have a higher quality perceptual judgment and more
precise mask-to-object alignment.

4.4. Referring Segmentation

We evaluate the quality of generated masks by mIoU and
recall metrics for the referring segmentation task. In Ta-
ble 5 on the comparison to the state-of-the-art segmenta-
tion method Mask2Former [10], our generative method has
considerable segmentation quality. These results are worth
noticing as we do not use any explicit segmentation loss,
thereby demonstrating the potential of the UniGS model.

Method Backbone mIoU(↑) Recall (↑) APe (↑)

ConInst-Entity [43, 55] Swin-Large 0.621 0.685 0.397
SAM [24] VIT-Huge 0.653 0.714 0.432
CropFormer [45] Swin-Large 0.664 0.727 0.449
UniGS (Ours) - 0.631 0.692 0.407

Table 6. Quantitative results on entity segmentation task. The
APe is AP with a non-overlapped constraint used in entity seg-
mentation.

Method mIoU(↑) Recall (↑)

Random Color Assignment 0.493 0.563
Location-aware Palette (Ours) 0.808 0.872

Table 7. Ablation study on various color assignments in mask
encoder. The ‘Random Color Assignment’ indicates assigning
each entity with a random color.

4.5. Entity Segmentation

The entity segmentation aims at splitting an input image
into several semantically coherent regions. Thus, the gen-
erated colormap should cover the whole image. After la-
tent decoding the output from UNet, we use the progressive
dichotomy module to transform the colormap into explicit
segmentation masks. In Table 6, we show that there is still a
significant performance gap between the UniGS and state-
of-the-art entity segmentation model. However, we mention
that the entity performance of the UniGS model is accept-
able and better than kernel-based methods like CondInst.

4.6. Unified Model

Our model cannot only perform a single task as a single
model but also achieve multi-tasking as a unified model that
text prompts can differentiate. Furthermore, we add a group
of learnable task embeddings to indicate each task better.
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This task embedding would be added to the position em-
bedding. In Table 8, the unified model performs best on the
four tasks with enough training epochs. That means four
tasks can benefit each other in a unified representation.

Method Epoch Inpainting Synthesis Referring Seg Entity Seg
FID(↓) FID(↓) mIoU(↑) mIoU(↑)

Single Model 48 5.890 14.271 0.808 0.631
Unified Model 48 6.312 23.187 0.798 0.604
Single Model 200 5.886 14.354 0.810 0.626
Unified Model 200 5.494 13.920 0.838 0.649

Table 8. The comparison between each single best and unified
model on all four tasks. “Unified model” is trained in multi-tasks,
and “Single model” is selected as the best model for each single
task.

4.7. Ablation Study

In the following, we ablate different color assignment crite-
ria and progressive dichotomy modules with various hyper-
parameters. All the ablation studies are conducted in refer-
ring segmentation tasks to measure the mask quality.
Location-aware Palette. To evaluate the effectiveness of
our color mapping over the random color assignment for the
object, we have individually trained the referring segmenta-
tion models for both color mapping methods, as shown in
Table 7. Our color mapping method lets the model easily
learn the pattern of the object color mask.
Progressive Dichotomy Module. Compared to the fixed
cluster numbers in k-means, our proposed progressive di-
chotomy module has the advantage of adaptive cluster num-
bers. We verify our method in Table 9 by comparing K-
Means and ours. Our progressive dichotomy module has no
noticeable performance degradation compared to K-Means,
even with knowing the ground truth numbers, manifest-
ing the effectiveness and robustness of our progressive di-
chotomy module.

Furthermore, the distance threshold δ and pixel feature
used in the progressive dichotomy module are ablated in
Table 10. In Table 10(a), we can see that the distance thresh-
old designed in the progressive dichotomy module is robust
to the segmentation performance ranging from 0 to 20. In
Table 10(b), using the RGB and LAB space pixel feature
to decode the generated colormap can obtain the best mask
quality because the LAB space can offer more contrast in-
formation for those two similar colors in RGB space.

Table 11 illustrates a comparison of our PDM to other
clustering methods. We note that the agglomerative method
requires large memory, leading to out-of-memory in our ex-
periments.

5. Conclusion
This paper introduces a novel, effective, unified represen-
tation of image generation and segmentation tasks. The
key to our approach is regarding entity-level segmentation

Method Cluster Numbers mIoU(↑) Recall (↑)

Native K-Means
Fixed (3) 0.520 0.641

Adaptive (GT) 0.810 0.874

PDM Adaptive 0.808 0.872

Table 9. Comparison between native K-Means and our pro-
gressive dichotomy module. ‘Fixed (3)’ indicates that we assign
native K-Means with three cluster numbers. ‘Adaptive (GT)’ is to
assign the cluster number by the ground truth number.

δ mIoU(↑) Recall (↑)

1 0.804 0.868
10 0.808 0.872
20 0.791 0.857
50 0.705 0.789

(a)

pixel feature mIoU(↑) Recall (↑)

RGB 0.796 0.860
LAB 0.787 0.856

RGB + LAB 0.808 0.872
(b)

Table 10. Ablation study on progressive dichotomy module.
We ablate the distance threshold δ (a) and pixel feature (b) in the
colormap decoding process.

Method Cluster Numbers Time (s) Memory (MB) mIoU(↑) Recall (↑)

Native K-Means Fixed (3) 0.51 240 0.520 0.641
Adaptive (GT) 0.58 279 0.810 0.874

DBSCAN Adaptive 14.20 677 0.341 0.398
Agglomerative Adaptive Inf OOM - -
PDM Adaptive 1.47 295 0.808 0.872

Table 11. The comparison to other clustering methods. The
‘PDM’ indicates the proposed progressive dichotomy module.
The native k-means, DBSCAN, and agglomerative methods are
the standard clustering methods.

masks as a colormap generation problem. To distinguish en-
tities within the same category, we employ a location-aware
palette where each entity is distinctly colored based on its
center-of-mass location. Furthermore, our progressive di-
chotomy module can efficiently transform a generated, al-
beit noisy, colormap into high-quality segmentation masks.
Our extensive experiments on four diverse tasks demon-
strate the robustness and versatility of our unified represen-
tation in image generation and segmentation. In the future,
we will explore the multi-task training of our unified repre-
sentation in a single model. We hope our work can foster
the development of a foundation model with a unified rep-
resentation for various tasks.
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