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Figure 1. Diverse exemplary clips sampled by our method from our newly collected BEAT Emotion Transition Dataset. The vital
frames are visualized to demonstrate that the upper body gestures change with the emotion transition of human speech, synchronously.
From top to bottom: the input speech audio, the corresponding transcript, and two sampled clips. Best view on screen.

Abstract

Generating vivid and emotional 3D co-speech gestures
is crucial for virtual avatar animation in human-machine
interaction applications. While the existing methods en-
able generating the gestures to follow a single emotion la-
bel, they overlook that long gesture sequence modeling with
emotion transition is more practical in real scenes. In ad-
dition, the lack of large-scale available datasets with emo-
tional transition speech and corresponding 3D human ges-
tures also limits the addressing of this task. To fulfill this
goal, we first incorporate the ChatGPT-4 and an audio
inpainting approach to construct the high-fidelity emotion
transition human speeches. Considering obtaining the re-
alistic 3D pose annotations corresponding to the dynami-
cally inpainted emotion transition audio is extremely diffi-
cult, we propose a novel weakly supervised training strat-
egy to encourage authority gesture transitions. Specifically,
to enhance the coordination of transition gestures w.r.t. dif-
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ferent emotional ones, we model the temporal association
representation between two different emotional gesture se-
quences as style guidance and infuse it into the transition
generation. We further devise an emotion mixture mech-
anism that provides weak supervision based on a learn-
able mixed emotion label for transition gestures. Last, we
present a keyframe sampler to supply effective initial pos-
ture cues in long sequences, enabling us to generate di-
verse gestures. Extensive experiments demonstrate that our
method outperforms the state-of-the-art models constructed
by adapting single emotion-conditioned counterparts on
our newly defined emotion transition task and datasets.
Our code and dataset will be released on the project page:
https://xingqunqi-lab.github.io/Emo-Transition-Gesture/.

1. Introduction

Co-speech gesture generation aims to synthesize vivid and
emotional human postures coordinated with the audio in-
put. These non-verbal behaviors serve as a key factor dur-
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ing human conversations that significantly facilitates the de-
livery of speech content [5, 14, 16]. Meanwhile, model-
ing co-speech gestures has a wide range of embodied AI
applications in human-machine interaction [22, 27], robot
assistants [9], and virtual/augmented reality (AR/VR) [11].
Conventionally, many researchers usually focus on synthe-
sizing human upper body gestures consistent with speech
audio [32, 47, 48, 50, 53].

Nevertheless, except for a few recent works that generate
the co-speech gestures of a single emotion category [2, 3,
28, 52], previous works mostly focus on emotion-agnostic
generation [4, 48, 50]. Most of them overlook synthesiz-
ing the long sequence co-speech gestures with the emotion
transitions, which are more practical in real-world scenes.
For example, a person may not maintain a single emotion
forever when communicating with others or in speech talk-
ing. In this work, we therefore introduce the task of speech-
driven emotion transition for generating vivid and diverse
3D co-speech gestures, displayed in Figure 1. There are two
main challenges in this task: 1) Datasets of 3D co-speech
gestures synchronized with emotion transition speech au-
dios are scarce. Creating such a dataset containing 3D hu-
man postures is difficult due to the lack of guidance from
emotional experts and complex motion capture systems. 2)
Modeling the plausible and temporal coherent co-speech
gestures from one emotion to another in long sequences is
difficult, especially in the transition duration.

To overcome the issue of data scarcity, we newly present
two datasets containing emotion-transition human speech
that are built upon previous single-emotion ones [28, 32].
In particular, thanks to the developed language model
ChatGPT-4 [34], we first leverage it to generate text tran-
scripts of the transition based on speech context. Then,
by employing the audioLDM2 technique [29, 30] for au-
dio inpainting, we ensure the inpainted transition’s tim-
bral consistency with its adjacent contexts and a smooth
emotional transition throughout. Afterwards, to support
our insight on modeling co-speech gestures coherent with
emotion-transition speech, corresponding 3D human pos-
tures of transition are required.

However, due to the dynamically generated transition
transcripts, it is infeasible to construct the aligned realis-
tic 3D pose annotation of human bodies. Hence, we solve
the challenges of vivid co-speech gesture generation in a
novel weakly supervised pattern, containing a motion tran-
sition infusion mechanism and an emotion mixture strat-
egy. Specifically, in the motion transition infusion mech-
anism, we model the temporal correlation between the gen-
erated head and tail gesture features as style guidance repre-
sentation. The style guidance representation provides mo-
tion transition cues that are infused into the transition em-
bedding via an adaptive instance normalization (AdaIN)
layer [18]. Along with this manner, we can effectively en-

hance the coordination of transition gestures w.r.t. two dif-
ferent emotional ones.

Moreover, to alleviate the lack of supervision during
the transition between two emotions, the emotion mixture
strategy is built to provide weak emotional supervision of
the generated transition gestures. Concretely, we learn
a joint embedding of two different emotional gesture se-
quences using a temporal aggregation encoder. Then, we
pre-train an emotion classifier based on the annotated hu-
man 3D poses with single emotion labels in the dataset.
Here, this joint embedding is leveraged as an emotion mix-
ture weight for the pre-trained classifier to facilitate high-
fidelity transition gesture synthesis with desirable proper-
ties. Finally, considering the generated 3D postures should
be non-deterministic given the human speech, we devise a
keyframe sampler to produce diverse initial poses as refer-
ence. In this fashion, our method enables diverse co-speech
gesture generation with emotion transitions. Extensive ex-
periments conducted on our newly constructed two datasets
verify the effectiveness of our methods, displaying vivid
and emotional 3D co-speech gestures.
Overall, our contributions are summarized as follows:

• We introduce a new task of emotion transition co-
speech gesture generation cooperating with two newly
constructed datasets named BEAT Emotion Transition
(BEAT-ETrans) and TED Emotion Transition (TED-
ETrans), significantly facilitating research on 3D human
motion modeling.

• We design a motion transition infusion mechanism to en-
sure the temporal coordination of transition gestures w.r.t.
two different emotional ones and a weakly supervised
emotion mixture strategy to enable high-fidelity transition
gesture synthesis with desirable properties.

• Extensive experiments show that our method outperforms
state-of-the-art counterparts on both datasets, displaying
realistic and vivid co-speech gestures given emotion tran-
sition human audios.

2. Related Work
2.1. Co-speech Gesture Synthesis

Synthesizing human co-speech gestures plays a signifi-
cant role in various applications [17, 22, 37, 46]. Nu-
merous studies have been proposed to address these issues
that are roughly divided into rule-based approaches [20,
21], machine-learning-based approaches [23, 41], and deep
learning-based ones [2, 28, 32, 36, 48, 50, 52, 53]. Tra-
ditional researchers follow the rule-based workflow, lever-
aging the speech-gesture pairs as guidance to generate co-
speech gestures pre-defined by linguistic experts. Other
early works integrate the manually defined gesture fea-
tures with machine learning techniques to synthesize the co-
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speech gestures. In the aforementioned two manners, the re-
searchers usually focus on the optimization of the matching
process between human speech and pre-defined gestures. It
may require experts much expensive effort in the speech-
gesture pair construction.

Recently works focus on building the mapping directly
from the input human speech and sequential gestures by ex-
ploiting the deep neural networks. They usually leverage
multi-modality cues to facilitate the generation of co-speech
gestures, associating with the speech audio [25, 48, 53],
speaker identity [50], emotion [2, 28, 31], and text tran-
script [32]. However, they overlook that emotion transi-
tion of the long sequential co-speech gesture modeling is
much more practical in the real scenes. Moreover, since
the lack of annotated 3D gestures corresponding to dynam-
ically constructed transition speech, few of the above meth-
ods could be directly adapted to this new thought.

2.2. 3D Human Motion Modeling

Human motion modeling aims to generate realistic and
smooth human motions with various multi-modality condi-
tions [8, 19, 33], including co-speech gesture generation as
a sub-task. One of the hottest topics is synthesizing human
motion from text prompts with a few past postures as the
seed [35, 45, 51]. These methods usually engage in forcing
human motion to represent the semantic expression aligned
with the text. Literally, the task most closely related to ours
is AI choreographer [24, 26, 42] which generates the motion
from music signals. However, the AI choreographer works
mainly focus on the rhythmic-coherent motion of the whole
human body but without subtle finger gestures. While shar-
ing a similar goal with the approaches mentioned above,
our newly defined work differs from them significantly. We
take the emotion-transition long sequence co-speech ges-
ture without corresponding 3D human pose annotation into
consideration, thus motivating us to utilize the motion tran-
sition of two annotated emotional gestures and coherent the
overall sequence.

3. Proposed Method
3.1. Emotion Transition Dataset Construction

We aim to address the emotion transition co-speech ges-
ture generation in a weakly supervised manner. Due to the
existing paired speech-gesture datasets [28, 36], we could
focus on synthesizing the high-fidelity transition human au-
dios. Synthesizing datasets conducive to our task focuses
on ensuring semantic coherence, smooth emotional audio
transitions, consistent timbre, and audio fidelity.

Preliminary: Considering our key insight to modeling the
co-speech gesture with emotion transition, we first split
the existing aligned speech-gesture pairs [28, 36] into four-
second clips. To diversify the datasets, we randomly splice

two clips from the same speaker to construct an emotion-
transition candidate pair. The clip with neutral emotion is
leveraged as head speech, and the other with various emo-
tions is represented as tail speech. We leverage the dynam-
ically synthesized two-second audio as a transition to com-
bine the head and tail speeches. In the following, we briefly
summarize our efforts in constructing the dynamic transi-
tion speech audio.

Textual Inpainting of Transition: To ensure the semantic
coherence of transition w.r.t. head/tail speeches, we exploit
the advanced language generation model ChatGPT-4 [34] to
complete the transcript according to the context. Literally,
we follow the conventional estimation that people usually
talk 30 phonemes [40] in a two-second speech as the prompt
to guide transcript generation by ChatGPT-4.

Synthesis of Transition Audio: Once we obtain the tran-
script of transitions, we employ a superior text-to-speech
model, audioLDM2 [29, 30], to generate corresponding
speech audio. Here, we leverage the speaker embeddings
extracted via SpeechBrain’s ECAPA-TDNN [7, 39] as prior
guidance to maintain the identity consistency of the gen-
erated transition audio. Then, we adopt Whisper [38] to
restrict the word error rate, thereby ensuring the accuracy
and clarity of the speech content. In this fashion, the syn-
thesized transition audio realizes controlled duration while
the natural smooth tonality is well preserved. The datasets
will be released in the future. More details are provided in
the Section 4.1.

3.2. Problem Formulation

Given a sequence of audio signal A = {a1, ..., aN} as in-
put to model G, our goal is to generate vivid and emotional
3D co-speech gestures P = {p1, ..., pN} of the upper hu-
man body. N represents the number of synthesized pos-
tures corresponding to the audio A. Each pi is denoted as
J joints with 3D representation. In particular, we define
the audio signal as consisting of a head speech, a dynam-
ically inpainted transition speech, and a tail speech. Here,
the head and tail speeches are randomly selected from pre-
vious co-speech gesture datasets [28, 32] with a single emo-
tion label, respectively. Following the conventions of pre-
vious works [28, 32, 50, 53], we invoke M frame poses as
the initial seed to guide generation. The overall objective is
expressed as

argmin
G

∥P − G (A, {p1, ..., pM})∥ . (1)

Note that only the generated gestures with head and tail
speeches are supervised with ground truth coming from
existing datasets [28, 32]. The transition gestures with L
frames, where L ≪ N , will be weakly supervised through
the following processes within a motion transition infusion
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Figure 2. The overview of our proposed method. The middle part (blue) displays the overall pipeline for 3D co-speech gesture
generation from emotion transition human speech. The left part (green) depicts our proposed Motion Transition Infusion Mechanism
that enhances the coordination of transition gestures w.r.t. head/tail ones. The right part (orange) shows the designed Emotion Mixture
Strategy to provide weak supervision of the generated transition gestures, thereby achieving authority producing.

mechanism and an emotion mixture strategy. The audio sig-
nal is fed into an audio encoder for feature extraction. Our
overall workflow is shown in Figure 2.

3.3. Weakly-supervised Emotion Transition

Motion Transition Infusion Mechanism: To ensure the
temporal coherence of the transition gestures w.r.t. head/tail
ones, we propose a motion transition infusion mechanism
to model the temporal association representation between
different emotional gestures. As depicted in Figure 2 (left),
the total sequential features f total consist of the features of
head fhead, transition f tran, and tail f tail. Inspired by [33],
we nominate a head chunk fheadchunk composed of the last L
frames of head gesture embeddings and a tail chunk f tailchunk

consisting of the first L ones of the tail gesture embeddings.
Here, the dimension of each frame representing gesture em-
bedding is R1×D.

In particular, we first calculate the temporal correlation
matrix Chead

trans ∈ RL×L between the head chunk embedding
and transition embedding. Here, the temporal correlation
matrix represents the temporal variations in the gestures
from the head to the transition. Similarly, we obtain the cor-
relation matrix Ctail

trans from tail chunk embedding and tran-
sition embedding. Then, the global temporal dependency
from head to tail is computed via matrix multiplication be-
tween Chead

trans and Ctail
trans. Further, we develop a motion

encoder to acquire the sequence-aware style guidance rep-
resentation based on the global temporal dependency. The
style guidance representation is exploited to boost the tran-
sition embeddings via an adaptive instance normalization

(AdaIN) layer [18]. By doing so, we derive the transition
f tran as

f tran=AdaIN
{
f tran,Enc(Chead

trans ⊗Ctail
trans)

}
, (2)

where ⊗ indicates matrix multiplication, and Enc denotes
the motion encoder.
Emotion Mixture Strategy: Considering obtaining the re-
alistic 3D pose annotations corresponding to dynamically
inpainted transition audio is quite difficult, we design an
emotion mixture strategy to provide weak supervision of the
generated gestures. Our key insight is built upon the fact
that different emotions in the head/tail would lead to dif-
ferent gesture motions, thereby the emotion represented by
transition gestures would be a mixture of the head and tail
ones. As shown in Figure 2 (right), we utilize two learnable
parameters as soft emotion labels of the transition gestures.

Specifically, through computing the correlation matrix
between the embeddings of head gestures and tail gestures,
we obtain the motion deformation representation S from
one emotion to another (e.g., neutral-to-anger). This mo-
tion deformation is formulated as:

Stail
head=Softmax(fhead ⊗ f tail

′

), (3)

where ′ indicates the transpose operation. With the help of
the motion deformation representation, we obtain the two
learnable emotion embeddings (ehead, etail) from the head
and tail, respectively, as

ehead = MaxPool
{
Wlinear(f

head)⊙ Stail
head

}
,

etail = MaxPool
{
Wtail(f

head)⊙ Stail
head

}
, (4)
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where Wlinear denotes linear matrix, and ⊙ means dot
product. Maxpool indicates the AdaptiveMaxPooling op-
eration. etail is calculated in a similar way. Then, we ob-
tain the two learnable parameters represented by emotion
weights of head and tail gestures, as follows

(σ, 1− σ) = Softmax(ehead, etail). (5)

Once we acquire the learnable emotion weights, we lever-
age a pre-trained pose-based emotion classifier to provide
weak supervision. In this fashion, the authority of generated
transition gestures is well-preserved. The training details of
the pre-trained pose-based emotion classifier are provided
in the supplementary material.

Keyframe Posture Sampling: Conventionally, re-
searchers [32, 50, 53] directly leverage the padded initial
poses as conditional seeds to guide the co-speech gesture
generation. In long-sequence modeling, an intuitive man-
ner is to extend the initial pose length M for adapting the
overall synthesized gestures’ length. However, this would
lead to the poor generalizability of the network (i.e., the
performance gains degradation from the reduction of initial
poses). Therefore, we propose a simple yet effective VAE-
based [43] keyframe sampler to provide high-fidelity pos-
ture prior conditions while enabling diverse results. Evenly,
we split the annotated sequence into several chunks keeping
the same length with the transition of length L. The sam-
pler is trained with the keyframe randomly selected to re-
construct the corresponding chunk. In the inference phase,
the keyframe sampler samples diverse chunks, blending as
the initial postures for gesture generation. Since the transi-
tion sequence lacks the pose annotation, we randomly select
the frame from head or tail sequences for posture sampling.

To further enhance the sequence-aware correspondence
of the generated co-speech gestures, we leverage the di-
verse initial postures as the query Q to match the key fea-
tures K and value features V in the transformer-based back-
bone [44]. Similar to [37], we adopt a motion discriminator
to ensure the temporal smoothness of the generated results.
For more details about network architecture please refer to
supplementary material.

3.4. Objective Functions

Reconstruction Loss: We leverage the ground truth 3D
pose annotation of the head and tail to constrain the gen-
erated co-speech gestures as:

Lrec=
∥∥∥P{head,tail}−P̂{head,tail}

∥∥∥
1
, (6)

where P̂{head,tail} denotes generated gestures of head and
tail speeches.

Adversarial Learning Loss: To ensure the realism of the
generated gestures, we further exploit the adversarial train-
ing loss, expressed as:

Ladv = EP [logD(P )]

+ EA [log(1− (G (A, {p1, ..., pM}))] , (7)

where D denotes the motion discriminator and G means
gesture generator.

Weakly Supervision Loss: We leverage the pre-trained
pose-based emotion classifier to provide weak supervi-
sion of the transition gestures upon the learnable emotion
weights:

Lemotion = −y logF(P̂trans), (8)

where y is the learnable emotion label, F is the emotion
classifier, P̂trans is the generated transition gestures.
Finally, the overall objective is:

min
G

max
D

Ltotal=λrLrec + λadvLadv + Lemotion. (9)

The λr, and λadv are weight coefficients.

4. Experiments
4.1. Datasets and Experimental Setting

BEAT Emotion Transition Dataset (BEAT-ETrans):
Since there are only single emotion labels of aligned
speech-gesture corpus in the original BEAT dataset [28], to
satisfy our insight on emotion transition co-speech gesture
generation modeling, we recollect a BEAT Emotion Tran-
sition Dataset (dubbed BEAT-ETrans). In particular, we re-
sample the motion FPS as 15 and intercept the continuous
60 frames with stride 30 as the head/tail clips. Here, the
head clips are all annotated as neutral, and tail clips are de-
noted with the other seven emotions: anger, happiness, fear,
disgust, sadness, contempt, and surprise. As for one head
speech, we randomly select two or three tails with different
emotions to construct the head-tail pairs. By leveraging the
two-second (i.e., corresponding 30-frame postures) transi-
tion to blend the heads and tails, we obtain the 10-second
human speech clips in our BEAT-ETrans. We obtain 58, 077
clips, including a total of 161.3 hours reported in Table 1.
Then the clip numbers of training/validation/testing sets are
randomly split as 41, 908/4, 077/12, 092. In all of our ex-
periments, we utilize the upper body with 71 joints.

TED Emotion Transition Dataset (TED-ETrans): In-
spired by [32, 36], we further newly collect a TED Emotion
Transition Dataset (dubbed TED-ETrans) based on more
than 1.7K speakers from in-the-wild TED talk show videos,
demonstrated in Table 1. Due to the lack of emotional la-
bels, we first leverage the annotated BEAT dataset to pre-
train an audio-based emotion classifier for labeling TED au-
dios. To ensure the authority of emotion labels, we set the
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Table 1. Statistics comparison of existing 3D co-speech gesture datasets with ours. Our BEAT-ETrans and TED-ETrans are built upon
the existing BEAT [28] and TED-Expressive [32], respectively. To the best of our knowledge, we are the first to present two large datasets
with emotion transition human speech.

Modality
Dataset Joint

Annotation Body Hand Audio Text Speakers Single Emotion Emotion Transition Duration (hours)

TED [50] pseudo label 9 ✗ ✓ ✓ 1,766 ✗ ✗ 106.1
SCG [15] pseudo label 14 24 ✓ ✗ 6 ✗ ✗ 33
Trinity [10] mo-cap 24 38 ✓ ✓ 1 ✗ ✗ 4
ZeroEGGS [12] mo-cap 27 48 ✓ ✓ 1 ✗ ✗ 2
BEAT [28] mo-cap 27 48 ✓ ✓ 30 ✓ ✗ 35
TED-Expressive [32] pseudo label 13 30 ✓ ✓ 1,764 ✗ ✗ 100.8

BEAT-ETrans (ours) mo-cap 27 48 ✓ ✓ 30 8 ✓ 161.3
TED-ETrans (ours) pseudo label 13 30 ✓ ✓ 1,764 6 ✓ 59.8

Table 2. Comparison with the start-of-the-art methods on our newly collected BEAT-ETrans and TED-ETrans datasets. ↑ denotes the
higher the better, and ↓ indicates the lower the better. ± means 95% confidence interval.

Models BEAT-ETrans TED-ETrans

FGDh+t ↓ FGDtrans ↓ BC ↑ Diversity ↑ FGDh+t ↓ FGDtrans ↓ BC ↑ Diversity ↑

Seq2Seq [49]ICRA′19 40.95 47.93 0.141 96.66±2.16 29.60 49.47 0.265 72.81±1.99

S2G [13]CV PR′19 25.56 37.04 0.671 98.26±2.04 18.16 41.63 0.824 76.82±2.32

Trimodal [50]TOG′20 14.09 42.50 0.764 100.87±2.12 21.06 33.20 0.758 82.87±1.86

CAMN [28]ECCV ′22 9.03 27.53 0.794 118.46±2.33 19.28 41.04 0.785 79.03±1.49

HA2G [32]CV PR′22 7.28 25.79 0.779 121.77±2.31 16.72 40.38 0.787 80.14±1.65

DiffGesture [53]CV PR′23 6.68 25.03 0.788 122.29±2.01 18.69 25.13 0.818 92.01±2.07

Ours 4.42 18.84 0.881 124.93±2.10 12.19 23.54 0.906 93.79±2.53

classification threshold as ≥ 0.95, and the two uncommon
emotions (i.e. fear, disgust) are dropped. Then we main-
tain the same data pre-processing strategy with our BEAT-
ETrans to obtain a total of 21, 515 clips with 59.8 hours.
The final clip division criteria of the TED-ETrans dataset
are training/validation/testing with 15,061/2,152/4,302 re-
spectively. In practice, the 43 upper body joints are lever-
aged in the experiments.

Implementation Details: We set the total generated co-
speech gesture length as N = 150, and the transition and
chunk lengths are L = 30. Conventionally, we leverage
M = 4 frames as the reference initial poses. The feature
dimension D = 512 in practice. The raw audio of human
speech is converted to mel-spectrograms with FFT window
size 1024, and hop length 512. The audio encoder takes
the ResNetSE34 [6] as the backbone. Empirically, we set
λr = 20, and λadv = 2. Our models are implemented
on the Pytorch platform with a single NVIDIA Tesla V100
GPU. The initial learning rate is set to 0.0003 by utilizing
Adam Optimizer. The whole training takes 100 epochs with
a batch size of 96.

Evaluation Metrics: To fully evaluate the realism and di-
versity of the generated co-speech gestures, we introduce
various metrics:
• FGD: Fréchet Gesture Distance (FGD) [50] is utilized to

measure the distribution distance between the realistic se-
quential gestures and generated ones. Since we only have
the 3D joint annotation of the head/tail, we take the net-
work architecture provided in [32, 50] to train the auto-
encoder for distance computing on the two datasets, re-
spectively. The FGD of transition gestures is calculated
as the average value between the distribution distance of
transition and head/tail, indicated as FGDtrans. Simi-
larly, FGDh+t means the distance between the generated
head/tail gestures and ground truth.

• BC: Beat Consistency Score (BC) [28, 32] measures the
speech audio alignment degree with the generated co-
speech gestures.

• Diversity: Similar to [32, 53], we exploit the same fea-
ture extractor in FGD to obtain the feature embeddings
of the generated gestures. The diversity reflects the av-
erage distance between 500 random combination pairs in
the testing set of 60 speech audios.

4.2. Quantitative Evaluation
Comparisons with SOTA Methods: To the best of our
knowledge, we are the first to explore the co-speech ges-
ture generation with emotion transition human audios. To
fully verify the superiority of our method, we implement
various state-of-the-art single-emotion-based counterparts:
Seq2Seq [49], S2G [13], Trimodal [50], CAMN [28],
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Table 3. Ablation study on different components of the proposed method. ✓ indicates the employment of a certain module. ↑ denotes the
higher the better, and ↓ indicates the lower the better. ± means 95% confidence interval. MTIM: Motion Transition Infusion Mechanism;
EMS: Emotion Mixture Strategy; FKS: Keyframe Sampler.

Model Variations BEAT-ETrans TED-ETrans

Baseline MTIM EMS KFS FGDh+t ↓ FGDtrans ↓ BC ↑ Diversity ↑ FGDh+t ↓ FGDtrans ↓ BC ↑ Diversity ↑

✓ 21.21 56.33 0.701 88.89±1.58 26.44 47.87 0.712 74.19±2.75

✓ ✓ 10.75 27.94 0.866 108.69±2.63 20.95 36.38 0.827 82.42±2.24

✓ ✓ ✓ 5.69 21.70 0.878 112.80±1.95 14.02 26.21 0.900 87.21±2.12

✓ ✓ ✓ ✓ 4.42 18.84 0.881 124.93±2.10 12.19 23.54 0.906 93.79±2.53

HA2G [32], and DiffGesture [53]. For a fair comparison,
all the models are implemented by the source code released
by the authors. Note that since we only have the ground
truth of head and tail gestures, several recent VAE-based
works [1, 2, 48, 52] cannot be directly applied in the exper-
iments (or they have not released codes so far).

As reported in Table 2, we adopt the FGDh+t, FGDtrans,
BC, and Diversity for a well-rounded view of compar-
isons. Our method outperforms all the competitors by a
large margin on both two datasets. Remarkably, on the
TED-ETrans dataset, our method even achieves 34.8% (i.e.,
(18.69 − 12.19)/18.69 ≈ 34.8%) improvement over the
sub-optimal counterparts in FGDh+t. We observe both the
DiffGesture [53] and ours synthesize the high-fidelity ges-
tures of head/tail speech with much lower FGDh+t than oth-
ers. However, the DiffGesture shows worse performance
on FGDtrans due to lack of supervision. In terms of di-
versity, our simple yet effective keyframe sampler provides
authority and diverse initial postures as the reference, thus
enabling us to demonstrate diverse gesture styles compared
to other counterparts. Moreover, we find that the diver-
sity scores on BEAT-ETrans are much higher than those
on TED-ETrans dataset. This can be attributed to the more
complex human joints in the BEAT-ETrans dataset.

Ablation Study: To further verify the effectiveness of our
proposed methods, we conduct the ablation study of dif-
ferent components as variations, reported in Table 3. The
baseline model is implemented by a simple transformer-
based pipeline with stacking three times blocks in the
encoder-decoder. Obviously, all the combinations of our
proposed components have positive impacts on the gener-
ated results. Specifically, by adding the motion transition
infusion mechanism to the baseline, the indicator BC has
achieved significant improvement (e.g., 0.701 → 0.866 in
the BEAT-Etrans). This result verifies that our motion tran-
sition infusion mechanism effectively models the temporal
correlation between the transitions w.r.t. head/tail gestures,
thus leading to the generated results preserving rhythm co-
herency with given speech, globally.

Moreover, adopting the emotion mixture strategy ide-
ally improves the performance of FGDtrans on both two

datasets. This indicates that the learnable emotion mixture
wights can provide effective weak supervision by leverag-
ing the pre-trained pose-based emotion classifier. Besides,
we have observed significant improvement in the perfor-
mance of FGDh+t during this phase compared to the pre-
vious version. This aligns with our transformer backbone’s
emphasis on modeling the sequential temporal correlations
as a whole. The better transition gestures encourage our
model to maintain better temporal consistency, thereby the
head/tail gestures achieve better results.

Finally, after additionally employing the keyframe sam-
pler to produce authority initial postures as the reference,
our method obtains the best performance. Although the
properties of BC and FGD on both datasets just have
slightly improvement, the diversity realizes a noticeably
better achievement (e.g., 112.80 → 124.93 in the BEAT-
ETrans dataset). This highly supports our insight into
keyframe-driven diversification strategy.

4.3. Qualitative Evaluation

Visualization: To fully demonstrate the performance of our
method, we show the visualized keyframes generated from
ours compared with counterparts on our newly collected
TED-ETrans and BEAT-ETrans datasets, respectively. As
depicted in Figure 3, our method displays vivid and di-
verse results against others. In particular, we observe that
Seq2Seq and Trimodal tend to synthesize unreasonable and
stiff results (e.g., the blue rectangle in the right BEAT-
ETrans dataset). Although CAMN and HA2G can generate
natural upper-body postures, we find that they sometimes
produce unreliable subtle fingers (e.g., the red rectangle in
the left TED-ETrans dataset). Both our method and Dif-
fGesture create reasonable gestures. However, the results
synthesized by DiffuGesture are mismatched with the emo-
tion transitions. In contrast, our method can synthesize the
synchronous motions (e.g., in the BEAT-ETrans, the arms
become droopy as emotion turns to sadness). Meanwhile,
we further verify the diversification results as shown in Fig-
ure 1. Given the same input audio, our method generates
diverse and vivid co-speech gestures. Please refer to the
supplementary material for more visualization results.
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Figure 3. Visualization of our generated 3D co-speech gestures against various state-of-the-art methods. The samples of the left part are
from our newly collected TED-ETrans dataset, and the samples of the right part are from our BEAT-ETrans dataset. Best view on screen.

User Study: To further analyze the quality of results by
various counterparts and ours, we conduct a user study by
visualizing the results and inviting 15 subjects. For each
emotion in both datasets, we randomly select 12 samples for
each participant (7 emotions in BEAT-ETrans, 5 emotions
in TED-ETrans). All the participants are recruited anony-
mously from schools including various majors. In particu-
lar, the subjects are required to rate the generated co-speech
gestures from 0 to 5 (the higher, the better) in terms of natu-
ralness, motion smoothness, and speech-gesture coherency.
The results are demonstrated in Figure 4. Our method show-
cases the best performance compared with all the competi-
tors. Especially in terms of motion smoothness, our method
achieves noticeable advantages, indicating the effectiveness
of our proposed motion transition infusion mechanism and
the emotion mixture strategy.

5. Conclusion

In this paper, we introduce a new task of 3D co-speech ges-
ture generation given emotion transition human speech. We
therefore newly collected two datasets named the BEAT-
ETrans and the TED-ETrans to fulfill this goal while signifi-
cantly facilitating the research on 3D human motion model-
ing. Then, we fully take advantage of the sequential tempo-
ral correlation via a motion transition infusion mechanism

0
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3

3.5

4

4.5

5

Seq2Seq S2G Trimodal CAMN HA2G DiffGesture Ours

Natrualness Smoothness Coherency

Figure 4. User study on gesture naturalness, motion smoothness,
and speech-gesture coherency.

to ensure the generated gestures preserve temporal coher-
ence. Furthermore, we design an emotion mixture strategy
to supply emotional weak supervision of the synthesized
transitions. Extensive experiments conducted on our two
newly collected datasets show the superiority of the method.
As our method intends to generate diverse and vivid emo-
tion transition gestures, we will investigate diversifying the
3D gesture with temporal smooth sampling, instead of the
keyframe-wise manner.
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