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Abstract

Diffusion models have recently brought a powerful rev-
olution in image generation. Despite showing impressive
generative capabilities, most of these models rely on the
current sample to denoise the next one, possibly result-
ing in denoising instability. In this paper, we reinterpret
the iterative denoising process as model optimization and
leverage a moving average mechanism to ensemble all the
prior samples. Instead of simply applying moving average
to the denoised samples at different timesteps, we first map
the denoised samples to data space and then perform mov-
ing average to avoid distribution shift across timesteps. In
view that diffusion models evolve the recovery from low-
frequency components to high-frequency details, we fur-
ther decompose the samples into different frequency compo-
nents and execute moving average separately on each com-
ponent. We name the complete approach “Moving Aver-
age Sampling in Frequency domain (MASF)”. MASF could
be seamlessly integrated into mainstream pre-trained dif-
fusion models and sampling schedules. Extensive experi-
ments on both unconditional and conditional diffusion mod-
els demonstrate that our MASF leads to superior perfor-
mances compared to the baselines, with almost negligible
additional complexity cost.

1. Introduction

Diffusion model is an increasingly appealing direction
to improve the state-of-the-art innovations for generative
tasks. In the regime of computer vision, multiple milestones
under diffusion models have been established on uncondi-
tional and conditional image synthesis [5, 18, 37, 41], im-
age restoration [10, 32, 48], inpainting [1, 23, 30], caption-
ing [31], video generation [9, 19, 52], 3D/audio synthesis
[6, 22, 40, 49]. In general, the diffusion model consists
of a forward process that progressively introduces Gaus-
sian noise into an image, and a denoising network that

*This work was performed at HiDream.ai.

Figure 1. We utilize a diffusion model from ADM [8] pre-trained
on ImageNet-64 to sample from white noise and capture the inter-
mediate output as denoised sample xt. Subsequently, we plot the
pixel value of xt with respect to generative timesteps. The start-
ing point and ending point of the trajectory of xt are regarded as
the ground truth for the noisy image and clean image, respectively.
With that we calculate the ground truth of xt at any timestep t us-
ing the formulation defined in forward process.

approximates the reverse of the forward process to pro-
duce an image from noise. Compared to generative adver-
sarial networks (GAN) [13, 21, 34], diffusion models are
shown capable of better training stability and less sensitiv-
ity to hyperparameters, leading to high-quality and coher-
ent samples and alleviating mode collapse. The representa-
tive works are DDPM [18] and DDIM [41], which generate
samples from white noise by a Markov chain and a “short”
generative Markov chain corresponding to non-Markovian
forward process, respectively. Despite accelerating sam-
pling several orders of magnitude by DDIM, both DDPM
and DDIM capitalize only on the current sample to produce
the next one, introducing discretization errors [29]. The
stochastic nature of these errors brings instability into de-
noising. As illustrated in Figure 1, the denoised sample thus
tends to oscillate around the ground truth value and the de-
noising process necessitates lengthy timesteps to converge.
To mitigate this issue, some high-order solvers including
DPM-Solver [28, 29] and UniPC [60], exploit the resulting
samples of the previous K (usually 1 to 3) timesteps to re-
fine the prediction of the current sample. Nevertheless, the
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prior information in the generative process is still not yet
fully leveraged for denoising.

Another observation in diffusion models is the frequency
principle that diffusion models denoise the low-frequency
signals first, and gradually add high-frequency details into
the sample. Most existing diffusion approaches, however,
seldom explore this principle in generative process and
treat the sampling consistent as the denoising proceeds,
regardless of the connection between frequency evolution
and generative timesteps. In contrast, Spectral Diffusion
[53] presents dynamic feature extraction at each generative
timestep to adjust frequency characteristics. The require-
ments of a specialized network design and the re-training of
the denoising network make it difficult to apply to existing
diffusion models.

In response to the above issues, we propose a training-
free approach, namely Moving Average Sampling in Fre-
quency domain (MASF), to enhance the stability of gener-
ative process. Technically, MASF reframes the iterative de-
noising process as model optimization and delves into the
moving average mechanism to utilize all the prior samples
at each timestep. Note that the diffusion models denoise
samples from xT to x0, and each sample inherently lies
in distinct distribution between white noise and the initial
data distribution. This case deviates from the assumption in
model optimization that the parameters should come from
a constant distribution. As such, it is inappropriate to di-
rectly apply moving average to xt. Instead, we map sam-
ple xt to the data space x0 and execute moving average
on x0 to reduce distribution shift across sampling at differ-
ent timesteps. Furthermore, MASF decomposes the sample
into frequency components and performs separate moving
average on each component to dynamically evolve differ-
ent components along the denoising process. Specifically,
we devise a weighting scheme to prioritize low-frequency
components denoising in the early timesteps and progres-
sively contribute more weights to high-frequency compo-
nents in the later timesteps. To ensure compatibility with
existing diffusion networks that only accept the complete
sample, we reconstruct the sample from all frequency com-
ponents before feeding it into the denoising network at each
timestep. The conversion between sample and frequency
components only introduces insignificant extra overheads.

In summary, we have made the following contributions:
1) The proposed MASF is shown capable of leveraging
all the prior samples in frequency domain to better denoise
the current sample in generative process. 2) The exquisitely
designed MASF is shown able to be seamlessly integrated
into existing diffusion models. 3) MASF has been prop-
erly analyzed and verified through extensive experiments on
both unconditional and conditional diffusion models to val-
idate its efficacy.

2. Related Work
Sampling Methods in Diffusion Models. Diffusion mod-
els have made tremendous progress in generating high-
fidelity images [8, 36, 38, 39, 57], wherein sampling meth-
ods play a crucial role in unleashing their power for im-
age generation with minimal computational cost. [42] first
formulates the diffusion sampling process as the solving
of stochastic differential equations (SDEs) [2, 12, 20, 59]
and ordinary differential equations (ODEs) [27, 29, 41, 60].
Specifically, some works [12, 28, 29, 58] build on approx-
imating exponential integrators to reduce the truncation er-
ror, while the others [25, 27] follows traditional numeric
methods [4, 45] to solve ODEs. In addition, [8, 17] im-
poses advanced guidance during sampling process to facil-
itate generation. In this work, we propose an orthogonal
design to the aforementioned sampling methods from the
perspective of improving denoising stability.
Sampling Process Stabilization. In an effort to allevi-
ate the denoising instability issue, some prior works ex-
plore momentum to stabilize sampling process. For in-
stance, [46] examines the divergence artifacts in scenar-
ios with limited sampling steps and incorporates the mo-
mentum technique into existing sampling methods. [47]
associates the diffusion process with stochastic optimiza-
tion procedure and draws inspiration from momentum SGD
to design momentum-based forward process to accelerate
training convergence. Similarly, inspired by Adam opti-
mizer, [44] proposes a new sampler that follows the con-
vention in Adam optimizer to define their momentum and
update velocity. In contrast, our proposed MASF executes
moving average in frequency domain to novelly excavate
the frequency dynamics for stabilizing sampling process
along frequency evolution.
Frequency Modeling in Diffusion Models. Wavelet de-
composition [14, 33] has been widely adopted in conven-
tional generative methods (e.g., GANs [11, 50, 51, 56])
to exploit additional frequency-aware information in fre-
quency domain. Recently, several advances start to inte-
grate diffusion models with wavelet information. In partic-
ular, [24] employs score-based models in wavelet spectrum
to promote image colorization, while [15] accelerates score-
based generative models by factorizing data distribution
into multiscale conditional probabilities of wavelet coeffi-
cients. Additionally, [35] and [55] design frequency-aware
architectures to process data in frequency domain, pursu-
ing faster processing and higher image quality, respectively.
Spectral Diffusion [53] also studies the frequency evolution
in denoising procedure, and utilizes wavelet gating to trig-
ger spectrum-aware distillation, leading to reduced compu-
tation cost. Nevertheless, Spectral Diffusion requires addi-
tional re-training of a specialized denoising network, and
thus fails to be directly applied to different diffusion mod-
els. Instead, our approach seeks a training-free solution
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that exploits all the prior samples in frequency domain to
strengthen the stability of denoising process, which can be
seamlessly integrated into any diffusion models.

3. Preliminaries
Here we first briefly review the typical Denoising Diffusion
Probabilistic Models (DDPM) [18] and Denoising Diffu-
sion Implicit Model (DDIM) [41] for sampling.
Denoising Diffusion Probabilistic Models. DDPM con-
sists of a forward process and a denoising process. For the
forward process, DDPM transitions from intractable data
distribution, denoted as x0 ∼ q0(x0), to Gaussian distribu-
tion qT (xT ) ∼ N (xT ;0, I). This is achieved by progres-
sively adding Gaussian noise to the original image x0, and
the transition distribution at timestep t is thus defined as:

q(xt|xt−1) = N (xt;
√
αtxt−1, (1− αt)I), (1)

where α1, . . . , αT are predefined variance schedules. Fol-
lowing the properties of chained Gaussian processes,
DDPM defines ᾱt =

∏t
i=1 αi and the value of xt is thus

calculated in a single step:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I). (2)

The denoising process employs a neural network to approx-
imate the conditional distribution pθ(xt−1|xt). The opti-
mization objective can be derived from the variational lower
bound, which is expressed as:

L = DKL(q(xt−1|xt,x0)||pθ(xt−1|xt)). (3)

The analytical form of q(xt−1|xt,x0) is defined by
N (xt−1; µ̃t−1, σ

2
t−1I), while pθ(xt−1|xt) takes the form

N (xt−1;µθ(xt, t), σ
2
t−1I). The specific formulations of

µ̃t−1 and µθ(xt, t) are measured as follows:

µ̃t−1 =
1

√
αt

(xt −
1− αt√
1− ᾱt

ϵ), (4)

µθ(xt, t) =
1

√
αt

(xt −
1− αt√
1− ᾱt

ϵθ(xt, t)). (5)

In this context, ϵθ(xt, t), generated by the diffusion model,
serves to approximate the added noise ϵ, based on the
noised image xt and the specific timestep t. After elimi-
nating constant scaling factors in this loss function, DDPM
allows for a simplification of the optimization objective:

Lt−1 = Ex0,ϵ
[
∥ϵ− ϵθ(xt, t)∥2

]
. (6)

Denoising Diffusion Implicit Model. DDIM upgrades
DDPM framework by integrating a non-Markovian process,
which effectively decouples xt−1 from xt, enabling the
skipping of timesteps to accelerate the sampling process.

Denoising

(a)

(b)

(c)

Figure 2. The evolution of (a) denoised sample xt, (b) estimated
sample in data space xt

0 and (c) four subbands in frequency do-
main of xt

0 along denoising process. Here each group of subbands
is achieved via wavelet decomposition, yielding four different fre-
quency components: ll (↖), lh (↗), hl (↙), and hh (↘).

In this way, DDIM redefines the denoising distribution as:

pθ(xt−1|xt) = N (
√

ᾱt−1x
t
0 +

√
1 − ᾱt − η2

t

xt −
√
ᾱtx

t
0√

1 − ᾱt

, η
2
t I).

(7)

Here xt
0 denotes the estimated original sample from the per-

turbed sample xt, which is calculated as:

xt
0 = (xt −

√
1− ᾱtϵθ(xt, t))/

√
ᾱt. (8)

The model’s behavior is contingent on the
value of ηt. Specifically, when ηt is set as√

(1− ᾱt−1)/(1− ᾱt)
√
1− αt, it aligns with the

sampling process of DDPM. Conversely, setting ηt to
0 completely eliminates stochasticity during sampling,
thereby turning into the sampling process of DDIM.

4. Our Approach
Now we proceed to present our central proposal, Moving
Average Sampling in Frequency domain (MASF), aiming to
enhance the stability of the denoising process. This section
starts by introducing the moving average sampling within
the data space. After that, we novelly capitalize on Dis-
crete Wavelet Transformation (DWT) to extend such mov-
ing average strategy into the frequency domain. Further-
more, a new dynamic weighting scheme is designed to dy-
namically perform moving average over different frequency
components, pursuing harmonized stabilization along with
frequency evolution at denoising process. Figure 3 depicts
an overview of our MASF framework.

4.1. Moving Average in Data Space

Recall that during typical denoising process, the estimated
denoised sample xt always oscillates around its ground
truth value due to the stochastic nature of discretization er-
rors [29]. The local errors committed at each timestep ac-
cumulate into the global error, which can potentially disrupt
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Figure 3. The overall framework of our Moving Average Sampling in Frequency domain (MASF) for denoising stabilization. At each
denoising timestep t, MASF first maps the denoised sample xt into data space, leading to the estimated sample xt

0. We then perform
frequency decomposition of xt

0 via Discrete Wavelet Transformation (DWT) and achieve four subbands (xt
{ll,lh,hl,hh}). After that, MASF

updates each frequency component (e.g., the low-frequency component xt
ll) through moving average over prior samples, pursuing harmo-

nized stabilization along with frequency evolution. The refined subbands x̄t
{ll,lh,hl,hh} are finally converted back to image domain via

Inverse DWT (IDWT) to trigger the subsequent denoising process.

the sampling process and result in denoising instability. In-
tuitively, as shown in Figure 2 (a), the denoising process
resembles model optimization, where the denoised sample
is iteratively refined via the learnt diffusion model, akin
to parameter (denoised sample) optimization (denoising) in
model training. This observation motivates us to explore
the commonly adopted moving average technique in con-
ventional model optimization, to stabilize the optimization
trajectory of the denoised sample xt at inference. Never-
theless, considering that denoised samples xt at different
timesteps are perturbed at various noise scales, simply ap-
plying moving average over primary xt derived from dis-
tinct distributions might inject harmful distortions into op-
timization trajectory. As an alternative, we propose to map
the denoised sample xt back to initial data space, leading to
estimated sample xt

0 consistently predicting clean sample
(see Figure 2 (b)). After that, we perform moving aver-
age over prior estimated samples xt

0 to stabilize the denois-
ing process. It is worthy to note that this design of moving
average in data space is readily pluggable to any sampling
solver. We next discuss how to integrate moving average
into DDIM framework [41] and other solvers.

Moving Average in DDIM Solver. Since DDIM ex-
plicitly computes estimated sample xt

0 during sampling,
our moving average design can be directly applied over the
measured xt

0. Formally, in order to stabilize the optimiza-
tion trajectory of xt

0, we maintain a global moving aver-
age x̄t

0 that aggregates all prior estimated samples. At each
timestep t, we update x̄t

0 by additionally augmenting the
observed xt

0 (0 ≤ t < T ):

x̄t
0 = (1− γ)xt

0 + γx̄t+1
0 , (9)

where γ is a balancing hyperparameter that controls the de-
gree of dependence on the previous moving average versus

the current sample. A larger γ reflects more reliance on
previous x̄t+1

0 but less focus on xt
0, leading to a smoother

trajectory. Based on x̄t
0, we can estimate more stable and

accurate denoised sample xt−1 by simply replacing xt
0 with

the global moving average x̄t
0 in Eq. (7) of DDIM.

In addition, we observe that the different spatial loca-
tions in an image evolve in different rates during denoising
process. For example, as shown in Figure 2 (b), the cat’s
face in xt

0 evolves more sharply than left bottom corner of
background. Motivated by this, we introduce an adaptive
weight wt to modify γ for different spatial locations. Here
wt is measured as the discrepancy between xt

0 and x̄t+1
0 .

In this way, when the spatial location evolves sharply (i.e.,
large discrepancy between xt

0 and x̄t+1
0 ), we will amplify

the reliance on the global moving average x̄t+1
0 to pursue

more stable denoising process. Eventually, the update func-
tion of x̄t

0 is operated as:

x̄t
0 = (1− γwt) ◦ xt

0 + γwt ◦ x̄t+1
0 , (10)

where ◦ denotes element-wise multiplication.
Moving Average in Other Solvers. For solvers [28, 41]

that explicitly define x0 in their formulations, we can di-
rectly apply Eq. (10) to integrate the moving average tech-
nique. For other solvers [18, 27] which leverage ϵθ(xt, t)
instead of x0 in updating function, we first calculate x0 us-
ing Eq. (8) and then apply moving average as in Eq. (10).
Subsequently, xt

0 is replaced with x̄t
0 to achieve a refined

ϵ̄θ(xt, t) = (xt −
√
ᾱtx̄

t
0)/

√
1− ᾱt, which can be seam-

lessly integrated into those solvers.

4.2. Moving Average in Frequency Domain

A well-known evolution law of diffusion models at de-
noising process is first focusing on the recovery of low-
frequency component in the earlier timesteps and gradu-
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(b) High-frequency Components.

Figure 4. Evolution (l2 norm) of different frequency subbands during denoising process. (a) The low-frequency subband oscillates sharply
at the beginning and stabilizes after a certain timestep. (b) In contrast, the l2 norm of high-frequency subbands drops rapidly into a small
value and then increases steadily along with the denoising process. (We use the model from ADM [8] pre-trained on ImageNet-64)

ally turning to recover high-frequency details in the later
timesteps. Taking the decomposed frequency components
in Figure 2 (c) as an example, the low-frequency compo-
nent (ll) only evolves sharply in the earlier timesteps, while
the high-frequency components (lh, hl, hh) start to evolve
significantly in the later timesteps. As such, we further ex-
tend moving average sampling into frequency domain by
executing moving average separately on different frequency
components, thereby encouraging more harmonized stabi-
lization along with frequency evolution.

Technically, MASF employs Discrete Wavelet Transfor-
mation (DWT) [14] to decompose the estimated sample
xt
0 ∈ RH×W into four wavelet subbands: xt

ll, x
t
lh, xt

hl,
xt
hh. The dimension of each subband is RH/2×W/2. Note

that here we implement DWT as the classical Haar wavelet
[43] for simplicity. Among the four wavelet subbands, xt

ll

refers to the low-frequency component that reflects the basic
object structure (resembling a downsampled image), while
xt
{lh,hl,hh} represent high-frequency components that cap-

ture texture details. After that, we separately apply moving
average over each kind of frequency subband as in Eq. (10):

x̄t
f = (1− γwt

f ) ◦ xt
f + γwt

f ◦ x̄t+1
f , (11)

where f ∈ {ll, lh, hl, hh}. As such, each frequency com-
ponent is independently augmented with the correspond-
ing moving average (denoted as x̄t

f ). This ensures that
the trajectories of these frequency components remain non-
interfering. Considering that the denoising network is fed
with samples in image space, we convert the moving av-
erage in frequency domain (x̄t

f ) back to image domain via
Inverse DWT (IDWT) at each timestep.

4.3. Frequency Weighting Scheme

The aforementioned extension of moving average from data
space to frequency domain elegantly triggers the interaction
between typical denoising process and frequency evolution.
Nevertheless, such extension leaves the inherent different
priorities for each frequency component along denoising
process under-exploited, resulting in the sub-optimal de-
noising stabilization. In particular, we conduct a compre-
hensive analysis of frequency evolution in Figure 4 by visu-

alizing the l2 norm of each frequency component at denois-
ing process. As shown in this figure, the low-frequency sub-
band xt

ll exhibits sharp oscillation in earlier timesteps and
gradually stabilizes after a certain timestep (approximately
at 100 steps). Instead, the evolution of high-frequency com-
ponents xt

f (f ∈ {ll, lh, hl, hh}) reflects a different trend.
They drop dramatically into a relatively small value, but
subsequently show a steady increase as the denoising pro-
cess progresses. Such observation reveals that the denoising
process often prioritizes reconstructing low-frequency com-
ponent in the earlier stage, and then focuses on the recovery
of high-frequency details later.

Based on these observations, we further upgrade the
moving average in frequency domain with a new dynamic
weighting scheme to better align with the evolution dy-
namics of different frequency components. This dynamic
weighting scheme prioritizes low-frequency components in
the early timesteps and gradually amplifies the weights
of high-frequency components when converting xt

f (f ∈
{ll, lh, hl, hh}) back to image domain. The detailed oper-
ation of dynamic weighting scheme is defined as follows:

x̂t = IDWT(βf (t)x
t
f |f = ll, lh, hl, hh), (12)

where βll(t) decreases linearly as denoising progresses (as
timestep evolves from t+1 to t) and β{lh,hl,hh}(t) increase
linearly. By integrating previous moving average operation
(Eq. (11)) with this dynamic weighting scheme, we can
achieve the refined version of xt

0:
x̃t

0 = IDWT
(
βf (t)

(
(1− γwt

f ) ◦ xt
f + γwt

f ◦ x̄t+1
f

))
. (13)

Finally, the refined estimated sample x̃t
0 is fed into denois-

ing network to enable a stabilized denoising process.

5. Experiments
We empirically verify the merit of MASF for image gener-
ation using diffusion models. The first experiment validates
MASF on both conditional and unconditional models across
different datasets. The second experiment integrates MASF
into recent advances of sampling techniques to examine its
impact when combining with state-of-the-art models. The
third experiment analyzes how each design in MASF influ-
ences the overall performance.
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Table 1. FID performances of 50K samples for class-conditional
generation on ImageNet with different resolutions and NFEs.

Method Resolution NFE
10 15 20 25

DDIM 64 52.19 24.56 15.18 11.04
+MASF 64 22.63 11.23 7.64 6.32

DDIM 128 20.36 14.87 12.63 11.48
+MASF 128 17.19 12.22 10.16 9.37

DDIM 256 25.68 19.49 17.23 16.56
+MASF 256 22.64 17.67 16.08 15.51

Table 2. FID performances of 30K samples for text-conditional
generation on MS-COCO with different solvers and NFEs.

Method NFE
10 15 20 25

DDIM 35.10 31.05 29.18 28.51
+MASF 25.67 23.04 22.00 21.80

DPM-Solver++ (3Fast) 6.35 6.03 6.03 5.76
+MASF 6.20 6.01 5.97 5.69

5.1. Results on Conditional/Unconditional Models
Conditional Models. Conditional generation leverages
control signals into image generation process. The typi-
cal conditional models are briefly grouped into two cate-
gories: class-conditional and text-conditional. For class-
conditional sampling, we utilize pixel-space pre-trained
models by the ADM framework [8] to sample 50K images
on different resolutions in the range of 64, 128, and 256,
and conduct the experiments on ImageNet [7] which con-
tains 1,000 distinct classes. We also execute the evaluations
with respect to the number of function evaluations (NFE).
Table 1 summarizes the Fréchet inception distance (FID)
[16] performances of applying MASF to DDIM [41] with
different NFEs on ImageNet. Overall, using MASF consis-
tently exhibits better FID scores across four NFEs on Ima-
geNet with three image resolutions. The performance gain
is larger at small NFE where the instability issue is more
severe, demonstrating the advantage of MASF to stabilize
the sampling process through moving average in the fre-
quency domain. Notably, MASF brings only 0.97% extra
computational cost to the entire sampling process, making
the overhead of the deployment of MASF to diffusion mod-
els negligible.

For text-conditional generation, we exploit the pre-learnt
diffusion model of U-ViT [3] on MS-COCO [26] dataset
to produce image samples with the resolution of 256×256.
Following the U-ViT protocol, we randomly select 30K
prompts from MS-COCO validation set for FID evaluation.
Table 2 lists FID comparisons for text-conditional genera-

Figure 5. The generated images on MS-COCO using DPM-
Solver++ (top) and DPM-Solver++ plus MASF (bottom).

tion with different solvers and NFEs. As indicated by the
results, applying MASF to DDIM reduces the FID score
from 35.10 to 25.67 at the NFE of 10, making an abso-
lute improvement of 9.43. Notably, the FID scores on MS-
COCO are generally higher than that on ImageNet. We
speculate that this may be the result of more complex struc-
tures in MS-COCO images. Furthermore, we employ a
stronger solver DPM-Solver++ [28] instead of DDIM, sig-
nificantly lowering the FID scores. Impressively, MASF
still exhibits its superiority over DPM-Solver++ across all
NFEs and MASF leads FID score by 0.07 when sampling
25 steps. To qualitatively validate our MASF, we show-
case four image examples generated by DPM-Solver++ and
DPM-Solver++ plus MASF in Figure 5. The images clearly
show that MASF by involving the utilization of moving av-
erage in the frequency domain generates higher quality im-
ages with less distortions.

Unconditional Models. Different from conditional gen-
eration which leverages some specific control signals, un-
conditional sampling produces images for a particular class
completely from pure Gaussian noise. We assess impact of
MASF by sampling 50K samples on two widely-adopted
datasets: LSUN [54] and FFHQ [21]. For the LSUN
dataset, we exploit three pre-trained pixel-space models by
the ADM framework [8] for generating 256×256 images of
Horse, Bedroom and Cat, respectively. We run these models
with 25 NFE. Table 3 details per-class FID performances of
unconditional generation on LSUN dataset. Again, DDIM
plus MASF constantly improves the FID scores across all
three categories. For the extreme case of Bedroom class,
DDIM already achieves a very competitive FID score of
4.11, but our MASF still manages to decrease the score
to 3.76. For the FFHQ face dataset, we use a latent-space
DPM [36] to sample images for FID measure. As shown
in Table 4, MASF contributes a FID decrease of 1.82, 0.89,
0.81 and 0.5 with NFE of 10, 15, 20 and 25, respectively,
demonstrating the benefit of MASF.

5.2. Integration with Other Sampling Techniques
To further verify the generalizability and effectiveness of
MASF on recent advances of diffusion models, we integrate
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Table 3. Per-class FID performances of 50K samples for uncondi-
tional generation on LSUN dataset.

Method Horse Bedroom Cat

DDIM 18.41 4.11 12.42
+MASF 16.07 3.76 11.65

Table 4. FID comparisons of 50K samples for unconditional gen-
eration on FFHQ dataset with different NFEs.

Method NFE
10 15 20 25

DDIM 11.92 6.92 5.85 5.67
+MASF 10.10 6.03 5.04 5.17

Table 5. FID comparisons of 50K samples for conditional genera-
tion on ImageNet 128×128 with different guidance scales.

Method Scale NFE
10 15 20 25

DDIM 0.0 20.36 14.87 12.63 11.48
+MASF 0.0 17.19 12.22 10.16 9.37

DDIM 0.5 13.61 9.60 8.01 7.16
+MASF 0.5 11.29 7.63 6.17 5.49

DDIM 1.0 11.18 8.07 6.86 6.14
+MASF 1.0 9.39 6.53 5.32 4.73

DDIM 2.0 10.35 8.11 7.19 6.66
+MASF 2.0 8.95 6.82 5.92 5.42

DDIM 4.0 11.61 10.01 9.26 8.94
+MASF 4.0 10.29 8.73 8.06 7.72

MASF into different sampling techniques including Classi-
fier Guidance [8] and high-order solvers [28, 60]. All the
performances here are computed on 50K sampled images
with the resolution of 128×128.

Classifier Guidance. As introduced in ADM [8], Clas-
sifier Guidance enhances generation via modeling the con-
ditional probability of images given a class by a pre-learnt
classifier. The diffusion model can take the gradients of the
classifier as the condition and a scale is used to adjust the
magnitude of the gradients. Table 5 lists the FID compar-
isons with respect to different levels of scales and NFEs.
MASF always leads to an FID decrease across all the scales
and NFEs. As expected, the scale 0 implies that Classifier
Guidance is not involved in this case, yielding inferior per-
formances. The gains of FID scores are between 1.32 and
2.32 at the NFE of 10, when the scale is set in the range
of 0.5, 1.0, 2.0 and 4.0. In particular, DDIM plus MASF
with guidance scale of 1.0 and NFE of 25 attains the best
FID score of 4.73. The results basically demonstrate the
effectiveness of our MASF on the guided diffusion models.

High-order Solvers. Next, we extend the evaluation of

Table 6. FID comparisons of 50K samples with different solvers
on ImageNet 128×128. * F-PNDM needs at least 12 NFE and is
not applicable when NFE=10.

Method NFE
10 15 20 25

DDPM 25.24 14.74 10.38 8.37
+MASF 19.03 10.60 7.33 5.87

DDIM 11.18 8.07 6.86 6.14
+MASF 9.39 6.53 5.32 4.73

DPM-Solver++(2M) 5.45 4.54 4.18 3.98
+MASF 5.25 4.30 3.96 3.79

UniPC 6.61 4.39 4.12 3.95
+MASF 6.26 3.94 3.68 3.50

F-PNDM * 5.98 4.56 3.30
+MASF * 5.60 4.13 3.26

MASF from on the basic solvers of DDPM and DDIM to
high-order solvers of DPM Solver++ [28], UniPC [60], and
F-PNDM [27]. The evaluation protocol follows Classifier
Guidance [8] with a fixed scale of 1.0. Table 6 shows the
performance comparisons across different solvers. In gen-
eral, high-order solvers are superior to basic ones, particu-
larly at small NFE. Similar to the observations in Classifier
Guidance, integrating MASF into these high-order solvers
further improves FID scores, boosting generation quality.
The results further validate the design of moving average in
frequency domain in our MASF.

5.3. Studies of MASF Designs

We perform ablation studies to examine each component’s
role in MASF. Moreover, we evaluate different γ values in
moving average, various formulations of spatial weighting
wt and frequency weighting βf (t). In view that sampling
50K images is computationally expensive, we generate 10K
ImageNet samples of resolution 128×128 with pre-trained
model by ADM to do more ablations here.

Effect of Each Component. We first study how each
particular design in MASF influences the overall perfor-
mance for image generation. We degrade MASF by remov-
ing the frequency domain transformation, termed “+MA”.
Table 7 summarizes the FID improvements by considering
one more component at each stage. The “+MA” variant
applies moving average in pixel space to stabilize the de-
noising process to some extend, thereby outperforming the
base model of DDIM. When further connecting generative
sampling and frequency evolution, MASF manifests an ap-
parent FID boost. The results basically prove the comple-
mentarity between moving average and frequency domain
transformation.

Effect of γ in Moving Average. Next, we test the effect
of γ in Eq. (10), which balances the contributions of the
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Table 7. FID comparisons of 10K samples with different compo-
nents on ImageNet 128×128.

Method NFE
10 15 20 25

DDIM 23.00 17.97 15.73 14.70
+MA 21.88 17.48 15.42 14.58
+MASF 21.76 16.11 13.70 12.80

Figure 6. FID comparisons of 10K samples with different γ on
ImageNet 128×128. The y-axis quantifies the FID improvements
over the baseline model. Each curve corresponds to a distinct NFE.

moving average term and the current predicted sample. In
general, a higher value of γ emphasizes more on the mov-
ing average term, resulting in a smoother trajectory. In con-
trast, a lower γ value prioritizes the current predicted sam-
ple, with γ = 0 downgrading to the base model. Figure 6
depicts the FID improvements over the base model through
pixel space moving average. An observation is that when
the values of γ range from 0.1 to 0.8, utilizing moving av-
erage consistently yields superior FID scores compared to
the base model. Such trend verifies the model’s robustness
to the variations of γ values. Taking a closer look at the
curves on different NFEs, a smaller NFE favors a larger γ,
indicating a greater reliance on the moving average term.
This observation elegantly corroborates our hypothesis that
shorter sampling processes are more vulnerable to instabil-
ity issues and benefit more from moving average.

Effect of wt for Adaptive Weighting.
In order to analyze the impact of adaptive weight wt in

Eq. (10), we further compare different formulations of wt
f :

Constant weight wt
f = 1, Linear weight wt

f = |xt
f − x̄t+1

f |
and Quadratic weight wt

f = |xt
f − x̄t+1

f |2. The results in
Table 8 indicate that employing Linear weight is superior to
Constant weight. The observation supports the spirit behind
that when the discrepancy between xt

f and x̄t+1
f is large,

relying more on moving average makes the denoising pro-
cess more stable, therefore leading to lower FID. Given the
fact that |xt

f − x̄t+1
f | is generally smaller than 1, Quadratic

weight is smaller than Linear weight, and obtains inferior
performances. We speculate that this might be the result of

Table 8. FID comparisons of 10K samples with different adaptive
weight wt on ImageNet 128×128.

Method NFE
10 15 20 25

wt = 1 22.05 16.24 13.84 12.85
wt = |xt

0 − x̄t+1
0 | 21.76 16.11 13.70 12.80

wt = |xt
0 − x̄t+1

0 |2 22.06 16.21 13.83 12.84

Table 9. FID comparisons of 10K samples with different fre-
quency weight βf (t) on ImageNet 128×128.

Method NFE
10 15 20 25

Low ↗ 25.49 21.08 19.27 18.34
Low ↘ 22.80 17.00 14.42 13.42

High ↘ 27.18 20.43 20.43 19.63
High ↗ 21.96 16.15 13.74 12.84

High ↗ + Low ↘ 21.76 16.11 13.70 12.80

over-reliance on the current predicted sample, making the
denoising process less stable.

Effect of βf (t) for Frequency Weighting. To ver-
ify how the frequency weighting scheme βf (t) influences
the denoising process, we detail the FID metric with dif-
ferent βf (t) variants. Based on the analysis in Section
4.3, frequency component weighting can follow two main
trends: linear increase (↗) or decrease (↘) as denoising
progresses. The performances are summarized in Table
9. We have βll(tstart) = 1.03, βll(tend) = 1, βh∗(tstart) =

1, βh∗(tend) = 1.13 for the last row in Table 9. Either de-
creasing the weight of low-frequency components (the sec-
ond row) or increasing the weight of high-frequency com-
ponents (the fourth row) in denoising process leads to no-
table FID improvements. Combining them together (the
fifth row) yields the most favorable results. This aligns
with our analysis of prioritizing low-frequency components
in the early timesteps and gradually shifting focus to high-
frequency components later in the process.

6. Conclusion
We have presented the Moving Average Sampling in Fre-
quency domain (MASF), a new technique to enhance the
stability of the diffusion process. MASF capitalizes on the
moving average mechanism, effectively harnessing all pre-
vious samples. Moreover, MASF decomposes the sample
into distinct frequency components, allowing for the dy-
namic evolution of each component during the denoising
process. Extensive experiments validate that MASF signifi-
cantly improves performance across various datasets, mod-
els, and sampling techniques. More remarkably, MASF
introduces negligible computational overhead and can be
readily integrated into existing diffusion models.
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