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Abstract

We tackle a new problem of multi-view camera and sub-
ject registration in the bird’s eye view (BEV) without pre-
given camera calibration, which promotes the multi-view
subject registration problem to a new calibration-free stage.
This greatly alleviates the limitation in many practical ap-
plications. However, this is a very challenging problem
since its only input is several RGB images from different
first-person views (FPVs), without the BEV image and the
calibration of the FPVs, while the output is a unified plane
aggregated from all views with the positions and orienta-
tions of both the subjects and cameras in a BEV. For this
purpose, we propose an end-to-end framework solving cam-
era and subject registration together by taking advantage
of their mutual dependence, whose main idea is as be-
low: i) creating a subject view-transform module (VTM) to
project each pedestrian from FPV to a virtual BEV, ii) deriv-
ing a multi-view geometry-based spatial alignment module
(SAM) to estimate the relative camera pose in a unified BEV,
iii) selecting and refining the subject and camera registra-
tion results within the unified BEV. We collect a new large-
scale synthetic dataset with rich annotations for training
and evaluation. Additionally, we also collect a real dataset
for cross-domain evaluation. The experimental results show
the remarkable effectiveness of our method. The code and
proposed datasets are available at BEVSee.

1. Introduction

There are just three problems in computer vision: registra-
tion, registration, and registration.

– Takeo Kanade
Registration is an important task in computer vision. In this
work, we study a new and challenging problem of camera
and person registration in the BEV without camera calibra-
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Figure 1. An illustration of the multi-view camera and subject
registration problem.

tion. Specifically, as shown in Figure 1, given the multi-
view images for a multi-person scene, we aim to generate
the position and orientation of every person (referred to as
subject in this paper) and camera in BEV.

This problem is practical for the multi-view camera
multi-human scene analysis, which has many applications
such as video surveillance, social scene understanding, etc.
In this case, the bird’s eye view, also called the top view, is
a good way to observe the whole scene. In BEV, we can ob-
tain the global spatial layout and trajectories of all the per-
sons in the scene without mutual occlusion, which is very
useful in many typical scenarios including the automatic
driving [15, 42, 43, 46, 57], outdoor human detection [4, 13]
and complementary-view crowd analysis [21, 22].

A popular research problem related to this task is the
multi-view human detection [4, 13, 29, 30, 53], which
projects the subjects detected from each view to their loca-
tions on the ground plane and then generate an occupancy
map in the bird’s eye view. Note that, these methods all re-
quire the pre-given camera calibration parameters among
the multi-view cameras as input, which, however, limits the
applications of the method in many scenes. Another se-
ries of research focuses on the complementary-view multi-
human analysis using a top-view camera (e.g., on a UAV)
and several first-person-view cameras [20–23]. The main
limitation of these methods is that the usage of a top-view
camera carried by a drone is not easy to deploy. Similarly,
BEV detection in the automatic driving area also relies on
the given camera calibration or depth sensor, e.g., LiDAR.
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Given the above reasons, in this work, we propose
to study a more practical yet challenging problem that
achieves not only the subject registration (human localiza-
tion and face orientation estimation), but also the camera
registration (camera localization and view direction estima-
tion) in BEV. Different from previous works, we register the
subjects in BEV but without a real bird’s-eye-view image,
where we generate a virtual BEV. Moreover, we do not use
the camera calibration as input, but we need to generate a
camera registration result, i.e., the camera location and view
direction estimation (can be regarded as a weak version of
the camera calibration) as output. This makes this problem
very difficult given the very limited input information and
multiple output results.

A straightforward idea for this problem may be the lo-
cal descriptors-based methods for multi-view camera pose
estimation [27, 48, 54]. However, these algorithms can not
handle the proposed problem since they need the input im-
ages to have enough overlapped area with textural informa-
tion. However, in our problem, the overlap may be very
limited given the large view difference (even on the oppo-
site side), and the scene (dominant by humans) is unfavor-
able for local descriptor extraction. In this work, we pro-
pose a novel framework to address this problem. Our basic
idea is the registration of the camera and subject are inter-
dependent and complementary. We alternately achieve the
camera and subject registrations to make them help each
other. Specifically, the subject distribution in the real 3D
world is fixed, which presents variously in the 2D image
given different camera poses. This way, we first restore the
subject 3D localization in BEV from the respective cam-
era, and then leverage the prior of the unified subject spatial
distribution in the 3D world to estimate the relative camera
pose (from subject to camera registration), and finally based
on the camera registration to further refine the subject reg-
istration in the BEV (from camera to subject registration).

Based on the above insights, we propose a joint frame-
work to simultaneously achieve the subject and camera reg-
istration in the BEV. Specifically, in each side view, we first
apply a view-transform subject detection module (VTM) to
obtain the subject detection results in the BEV. We then pro-
pose a computing-geometry-based spatial alignment mod-
ule (SAM) to estimate the relative pose of the multiple cam-
eras in the BEV, in which we also apply a self-supervised
multi-view human association strategy to obtain the cross-
view human corresponding among the multiple views. With
the camera pose estimation from SAM, in the final regis-
tration module, we use a camera pose selection strategy to
obtain the camera registration and subject fusion scheme to
get unified subject registration in the BEV. We summarize
the main contributions in this work:
❶ To the best of our knowledge, this is the first work to
study the camera and subject registration for the multi-view

multi-human scene, in which we alternately achieve the
camera and human registration results in a unified BEV.
This work breaks the limitations of using pre-given cam-
era calibration or real BEV images in previous works.
❷ We propose a novel solution for this problem, in which
we integrate the deep network-based VTM and a multi-view
geometry-based SAM. This framework integrates both the
generalization of the deep network for the human localiza-
tion task and the stability of the classical geometry for the
camera pose estimation task.
❸ We build a new large-scale synthetic dataset for the
proposed problem. Extensive experimental results on this
dataset show the superiority of the proposed method and the
effectiveness of the key modules. Furthermore, the cross-
domain study on the real dataset verifies the generalization
of our method.

2. Related Work
Multi-view object detection seems like the most related
work to this paper, which aims to aggregate information
about the same object from different views. The main diffi-
culty of this problem is solving the serious occlusion prob-
lem. Recent approaches for this work are mainly based on
the pre-given camera calibration to project the objects de-
tected from each view to their locations on the real-world
ground plane, and then generate an occupancy map in the
BEV. In [4, 13], researchers estimate the positions of pedes-
trians on the ground plane with corresponding anchor box
features. In [29, 30, 53], feature perspective transformation
is employed to project all view features into a shared plane
without any anchor. A couple of datasets have been devel-
oped for multi-view pedestrian detection. One is created
in a virtual environment, while the other is captured from
the real world. These datasets are proposed in [14, 30], re-
spectively. Besides the multi-view detection, some recent
related works have been employed in different fields, e.g.,
cross-view human association and tracking, multi-view 3D
human pose estimation [18, 50, 56], etc. Note that, these
works all use fixed cameras and require the prior camera
calibration as input. Differently, in this work, we not only
do not need the pre-given camera calibration but also pro-
vide the camera registration results in the BEV as output.

3D object detection in autonomous driving aims to
detect objects in traffic scenes. Existing solutions can be
broadly classified into three categories. The first category
only relies on monocular images, where the localization
is directly estimated from monocular images without any
depth sensor. For instance, general objects are modeled as
3D boxes for localization [15, 36, 38, 43, 57, 58]. For 3D
pedestrian detection works, the 3D skeleton of pedestrians
is extracted for localization instead of 3D boxes [7, 8, 28].
The second category of methods is based on multi-view im-
ages. These methods [16, 31, 33, 37, 39, 59] use camera
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Figure 2. Framework of the proposed method, which can be divided into three parts, i.e., VTM, SAM and Registration. We use hollow
camera icons to represent registered cameras and filled camera icons to represent unregistered cameras.

calibration to align different viewpoints and estimate im-
age depth to construct a unified BEV, which can be used to
achieve 3D object detection. The third category of meth-
ods [5, 6, 10, 12, 17, 44, 60–63] utilizes depth sensors such
as LiDAR to capture the 3D point cloud of the entire scene,
based on which they achieve 3D object detection. Each
of these three categories has its limitations. The monocu-
lar view cannot effectively handle occlusions and capture
global information. The second and third categories rely on
the camera calibration and depth sensor, which are costly
and have limited applicability. In contrast to the above men-
tioned methods, our method not only use the aggregated
information from multi-view images but also do not need
additional data from camera calibration and depth sensors.

Camera pose estimation is a related problem to this
work, which is a fundamental problem in computer vision.
In the long history of its exploration, many methods have
been proposed. Conventional methods to solve this prob-
lem used to be helped with some extra measuring devices.
In [40], the laser rangefinders are used to combine cameras
from different views. In [9, 19], the visual sensors are ap-
plied to bridge the huge differences between different fields
of views (FOV). In [11, 49], some structure from motion
(SfM) methods are proposed to track the movement of ob-
jects from different views. The core for recent vision-based
methods [27, 48] is to find and match the feature points from
different views, which, however, are not very useful in this
work given the large FOV difference.

Bird’s-eye-view visual analysis. Recently, some works
have proposed to associate the top view (BEV) with the
first-person views for collaborative analysis. In [51, 52],
such idea is employed to locate the first-person-view cam-
era in BEV aerial images in a large field, which is used
for GEO-localization. Later, some related works [20–
23, 25, 26] focus on the localization of humans, which aims
to associate and track the multiple humans by the spatial

reasoning based on the pre-acquired detection. Another
series of works [1–3] use graph matching-based methods
to locate camera wearers by combining information from
FPVs and BEV. The main difference between the previous
works and this work is that they require a BEV image (e.g.,
captured by a UAV) as input, which is not practical in many
real applications.

3. Proposed Method
3.1. Overview

We first give an overview of the proposed method mainly
containing three stages, as shown in Figure 2. 1) Given mul-
tiple images simultaneously captured from different views
for a multi-human scene, we apply a view-transform sub-
ject detection module (VTM) to get the position and the
face orientation estimation of each person in the BEV (Sec-
tion 3.2). 2) We then apply a geometric transformation
based spatial alignment module (SAM) to estimate the rel-
ative camera pose candidates in the BEV (Section 3.3). 3)
We next use a centroid distance based candidate selection
strategy to choose the final camera pose estimation result
(camera registration) from the candidates obtained by the
SAM. For the subject registration task, we take both spatial
and appearance information to aggregate the same person in
the BEV for multi-view subject registration (Section 3.4).
Besides, with the subject registration results, we propose
a backward training strategy to learn subject similarity for
human association in SAM using a self-supervised manner
(Section 3.5).

3.2. View-Transform Detection Module (VTM)

For the input of multiple images captured in a multi-human
scene, we first get the subject position and face orientation
of each person in the BEV. For this purpose, we develop a
LocoNet using a lightweight FC-based structure with three
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Figure 3. The structure of LocoNet. Here ×512 means the 512
feature channels, Fc means fully connected layer, BN means batch
normalization layer, ReLU is an activation function, DP0.2 is the
dropout layer with ratio 0.2.

heads. Before that, we first apply an existing human pose
detector called PifPaf[34] to predict the 2D skeleton joints
of each person from the original RGB image, which will
be inputted into the LocoNet, whose structure is shown in
Figure 3. At the end of LocoNet, we use a human 3D local-
ization head composed of simple MLP layers to predict the
position and face orientation of each person. The process of
the network can be represented as

pv
i ≜ (xv

i , y
v
i , r

v
i ) = LocoNet(kv

i ), (1)

where v denotes the v-th view and i denotes the i-th person
in v-th view, kv

i is the 2D skeleton joints belonging to the
person i in view v. pv

i is the output prediction of LocoNet,
which is composed of (xv

i , y
v
i ) representing the subject po-

sition in the BEV and rvi representing the face orientation.

3.3. Spatial Alignment Module (SAM)

We then show the relative camera pose estimation (in the
BEV) via the subject localization alignment. For conve-
nience, we first present the case of two views. Our ba-
sic idea is that the human position and face orientation are
unique in the real-world 3D coordinate system, which can
be used for aligning the cameras to generate multiple 2D
images. In the BEV maps with human position and face
orientation generated from different first-person view (FPV)
images, we can obtain the camera pose in the BEV by align-
ing the corresponding human position and facing orienta-
tion (as aligned points) as shown in SAM of Figure 2.

For this purpose, the first step is to find the same subject
from different views. We identify the subjects in the in-
put images through the human appearance features, and the
corresponding subjects in the BEV are then matched across
different views. We use a ResNet-50 network to extract
the feature of every person and apply Euclidean distance
and sigmoid function to create a similarity matrix (Mpred),
which indicates the subject similarities among the subjects
from two views. Then we sort the similarities of each sub-
ject pair and select the top-K pairs as the matching pairs.

After that, we apply the geometric transformation to
align two BEVs (containing all subjects and cameras on
them), which are denoted as a reference BEV map and an
unregistered one. Specifically, for a pair of matching points,
we apply a geometric transformation, as shown in Figure 4,
to rotate and move the camera position and orientation in
the unregistered BEV to that in the reference BEV.

R and T（fig）

Rotation(��)

��
��

Translation(�)  and (��) (�)

��

Reference BEV Unregistered BEVMatching pair

�� �

Figure 4. An illustration of the rotation and translation transfor-
mation for two BEVs with a matching pair.

We calculate the relative pose (in the BEV) between
two points in a matching pair as discussed above, which
are denoted as pref = (xref , yref , rref) and punr =
(xunr, yunr, runr). Specifically, the relative pose transfor-
mation between them can be formulated asxref

yref
1

 = TRθ

xunr

yunr
1

 ,

rref = δθ + runr,

(2)

where Rθ =

cos δθ − sin δθ 0
sin δθ cos δθ 0
0 0 1

, T =

1 0 δx
0 1 δy
0 0 1

.

We denote Rθ as the rotation matrix with a rotation angle
δθ, and T is the translation matrix, in which (δx, δy) is the
translation vector.

The corresponding matching pair can be aligned after ap-
plying this transformation. This means the transformation
matrix is just the relative camera pose between the two cam-
eras in the BEV. Note that, this relative camera pose only
contains three degrees of freedom, i.e., the translation and
rotation projected into the BEV plane. This way, we can
obtain the relative camera pose (δx, δy, δθ) by solving the
above Eq. (2) and get

δx = xref − xunr cos δθ + yunr sin δθ

δy = yref − xunr sin δθ − yunr cos δθ

δθ = rref − runr

. (3)

As discussed above, we use K point pairs to estimate the
relative pose, each of which can generate a relative pose es-
timation result as shown in SAM in Figure 2. We use the
camera pose estimation loss function for training the Lo-
coNet as

LCam =

K∑
k=1

(∥(δkx, δky )− (δgtx , δgty )∥+ ∥δkθ − δgtθ ∥), (4)

where (δkx, δ
k
y , δ

k
θ ) is the k-th candidate relative camera

pose estimation generated from the k-th point pair, and
(δgtx , δgty , δgtθ ) is the ground-truth camera pose. Note that,
we apply the supervision on the camera position, i.e., δx, δy ,
and the view direction, i.e., δθ in our method. However, the
camera view direction is very hard to measure and annotate
in real-world applications. In the experiments, we show that
our method is not very sensitive to the supervision of δθ.
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3.4. Camera and Subject Registration

Camera Registration. Based on the relative camera pose
(δkx, δ

k
y , δ

k
θ ) obtained in Section 3.3, we have got K candi-

dates of relative camera pose estimation between the refer-
ence and unregistered BEVs. Here we denote the camera
pose on the reference BEV as (0, 0, 0). We then get a cam-
era pose of the unregistered BEV on the coordinate system
of the reference BEV as

ck = (ckx, c
k
y , c

k
θ) = (0, 0, 0) + (δkx, δ

k
y , δ

k
θ ) = (δkx, δ

k
y , δ

k
θ ),
(5)

which denotes the k-th candidate camera pose from
(δkx, δ

k
y , δ

k
θ ), as shown in Figure 5.

Figure 5. Candidate camera poses in the coordinate system.

The next step is to find the selected camera pose from the
K candidates, i.e., achieving the camera registration task.

We calculate cx =
∑K

k=1 ckx
K , cy =

∑K
k=1 cky
K , where (ckx, c

k
y)

is the candidate position of the unregistered camera, (cx, cy)
is the centroid point. We then compute the distance of each
candidate position to the centroid point as

dkcentroid = ∥(ckx, cky)− (cx, cy)∥, (6)

The candidate with the minimum distance will be selected,
which is used to register the unregistered BEV into the ref-
erence BEV, then we can get a unified BEV as shown in the
left part of Registration in Figure 2.

Subject Registration. With the camera registration re-
sult, we can register the camera position and its view di-
rection, together with the subject localization and face ori-
entation of the unregistered BEV, into the reference BEV.
Note that, for multiple views, we select one as the reference
BEV and others as the unregistered BEVs, all of which can
be registered into the reference BEV, respectively. The next
step is aggregating the same person from different views in
the unified BEV, which can be achieved by two steps, i.e.,
subject matching and fusion.

1) Subject Matching. To match the subjects from multi-
ple views, we create a person spatial distance matrix Mdis

and an angle difference matrix Mang in the unified BEV,
which measure the distance and angle differences of all per-
sons from different views. We then combine it with similar-
ity matrix Mpred provided in Section 3.3. We first employ
three thresholds as filters to select potential matching sub-
ject pairs, whereby only pairs that fall within the distance

and angle thresholds and surpass the similarity threshold
will be identified as the same subject. Besides, we further
consider two constraints for accurate matching. The first
one is cycle consistency [32], which means the connection
of the same subject from all views should form a loop. The
second one is uniqueness, which means one subject should
not be connected to more than one subject in another view.

For the above constraints, first, we use a classical data
structure, i.e., union-find, to aggregate the transitive rela-
tions, which makes all the subjects with direct and indirect
connections in a union of union-find to be clustered as a
sub-graph, as shown in Figure 6(b), which solves the prob-
lem of cycle consistency for all the subject connected as a
loop. Second, we define the problem as a hierarchical maxi-
mum spanning subgraph problem, the layer-by-layer (view-
by-view) spanning constrains that a subject is connected at
most one node in each view to avoid the uniqueness con-
flict, as shown in Figure 6(c). To solve this problem, we
propose an algorithm referenced from the Prim algorithm
[45]. We provide more details and the algorithm flow of the
above strategy in the supplementary material.

Figure 6. Solving the cycle consistency and uniqueness.

2) Subject Fusion. For the subjects from multiple views
to be regarded as the same person using the above subject
matching method, we then estimate the final registration re-
sult of a subject using the same strategy in Eq. (6). The
position and orientation of the subject with the minimum
centroid distance will be retained, and other same subject
will be removed. Especially, if there are only two views, we
use the mean position and orientation between two subjects
as the fused result. Finally, we can get the unified BEV with
the camera and subject registration from multiple views.

3.5. Self-supervision for Subject Association

Based on the above subject registration results, we further
consider to use them for supervising the appearance-based
subject association network with a back-propagation strat-
egy. As shown in the bottom of Figure 2, we propose to train
the appearance feature extraction network, e.g., ResNet-50,
for similarity matrix calculating in a self-supervised man-
ner, to make full use of the spatial information from Sec-
tion 3.4. Specifically, we inversely normalize each row of
the spatial distance matrix Mdis and angle difference ma-
trix Mang discussed above, to get the spatial-aware similar-
ity matrixes as Mspatial = αMdis + (1 − α)Mang, where
α is the hyper-parameter, Mdis and the Mang are the nor-
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malized similarity matrix obtained from Mdis and Mang,
respectively. After that, we apply a self-supervised loss to
train the appearance feature extraction network as below

LApp = ∥Mpred −Mspatial∥. (7)

3.6. Implementation Details

We pretrain the LocoNet using the camera location and view
direction labels in our other synthetic data with MSE loss
and use the pretrained model of ResNet-50 in [24]. We
use the camera pose loss function and the self-supervised
appearance learning loss function as the total loss function
L = LCam + LApp. We set the number of candidate K as
3 in Section 3.3 and the similarity matrix threshold as 0.25,
distance threshold as 2.0 m and angle threshold as 15◦ in
Section 3.4. We set the hyper-parameters of the pseudo ma-
trix in Section 3.5 as α = 0.5. We use a pair of FPVs to
train our framework. In the inference stage, the number of
FPVs is not limited, in which one FPV will be selected as
the reference view and others can be registered in that refer-
ence view. We use Pytorch as our main framework and the
work runs on the server with RTX 3090 GPU.

4. Experiments
4.1. Proposed Dataset

To our best knowledge, there is no available dataset that can
be used for the task in this work, which requires the multi-
view relative camera poses, the 3D position and the face
orientation of each person. Even with expensive hardware,
it is also very hard to obtain accurate annotations of them in
the real world. So we consider using the modeling engine
to create a synthetic dataset.
• Flexible data controlling. We use a 3D game develop-
ment Unity 3D [47] to build a city scene and apply open-
source 3D human model library PersonX [55] containing
more than 1,000 different persons to generate subjects in
the scene. Through the flexible development platform, we
can create various scenes to simulate the real world. The
cover area is set as 25m× 25m, in which all the objects are
simulated to the real environment with a scaling.
• Diverse subject settings. For data diversity, the number
of subjects in each frame is different, where the range of
subjects in the scene is from 10 to 25, containing 5-20 peo-
ple walking free and 5 camera-wears. Further, we generate
every frame by random function, which means camera reg-
istration and subject registration are various in each frame.
• Large scale. We create two Camera Subject Registration
Datasets, i.e., CSRD-II and CSRD-V, which contain two
views and five views, respectively. In total, CSRD-II in-
cludes 2,000 pairs of images, with 1,000 for training and
another 1,000 for testing. CSRD-V includes 1,000 groups
of images, in which each group contains 5 synchronous im-
ages. CSRD-V is only used for testing in our experiments.

• Rich and accurate annotations. Our annotations contain
the position (in meters) and face orientation of each subject
in the BEV, as well as the camera poses. Besides, we also
provide the bounding box with the unified ID number of
each subject in all views. More details about the proposed
datasets can be obtained in the supplementary material.

4.2. Setup

Evaluation Metrics. Metric-I: We first evaluate the accu-
racy of the camera registration results, including the po-
sition and orientation results in the BEV. For the posi-
tion, we calculate the distance between the predicted and
ground-truth positions. Then we count the average error
(Cam.Pos.Avg) and the percentages of the error within a list
of a certain distance, including 0.5, 1, and 1.5 meters. Simi-
larly, we calculate the angle error in average (Cam.Ori.Avg)
and percentages of degree errors within certain ranges, in-
cluding 5, 10 and 15 degrees. Metric-II: We also evaluate
the subject registration results. It is similar to the metric-
I, which evaluates the position distance and orientation er-
ror of the subjects. Metric-III: We finally evaluate the
multi-view multiple human association (identification) re-
sults. We use precision, recall, and F1 scores as the metrics.

Comparison Methods. As discussed above, there is no
method that can directly handle the proposed problem. We
include the following comparison methods for the camera
registration task: DMHA [23] achieves the task of camera
registration by using a real BEV image. We provide the
FPV images and the corresponding BEV image to DMHA.
SIFT [41] + KNN and other deep-learning-based methods
[35, 48, 54, 65] are local descriptor (key point) matching
based methods, which are combined with the classical cam-
era pose estimation method with the matched key points
for relative camera estimation. For the second task of sub-
ject registration, we include the following three methods.
Monoloco++ [8] is a network predict 3D-localization and
face orientation of each person in the view. We concate-
nate it with our geometric transformation and subject fusion
methods for comparison. MVDet and MVDetr [29, 30] are
used for multi-view object detection with the camera cali-
brations. We provide more details about the implementation
details of the comparison methods in the supplementary ma-
terial.

4.3. Comparative Results

Camera Registration Results. We first evaluate the cam-
era registration results on CSRD-II as shown at the top half
in Table 1. We can first see that all the comparison meth-
ods provide very poor results. Among them, we provide the
ground-truth BEV image to DMHA, which is used to find
the camera wearer from the BEV instead of our position re-
gression. The key point matching based methods almost fail
because of the huge view differences. Monoloco++ gener-
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Table 1. Camera registration results. The top half is comparison experiments, the bottom half is ablation study, in which ‘Cam.Pos.Avg’
and ‘Cam.Ori.Avg’ present the average error in meters of the camera position and the orientation error in degrees in BEV, ‘Cam.Pos@d’
represents the percentage of distance error within d meters and ‘Cam.Ori.@r’ represents the percentage of angle error within r degrees.

Methods Cam.Pos.Avg Cam.Ori.Avg Cam.Pos@0.5 Cam.Pos.@1 Cam.Pos.@1.5 Cam.Ori.@5 Cam.Ori.@10 Cam.Ori.@15
Monoloco++ [8] 3.00 21.84 7.60% 21.60% 36.40% 17.50% 34.60% 47.10%
DMHA [23] 5.99 47.43 46.50% 47.60% 48.60% 46.20% 50.00% 53.60%
SIFT [41] 7.11 144.46 1.26% 2.34% 3.60% 4.80% 8.20% 11.10%
LoFTR [54] 11.50 90.11 0.70% 1.20% 1.70% 3.70% 6.50% 8.50%
SuperGlue [48] 11.17 89.74 0.60% 1.10% 1.50% 3.70% 6.50% 8.60%
CVNet [35] 11.38 115.10 0.88% 1.25% 1.75% 3.10% 5.5% 7.40%
R2Former [65] 13.55 102.52 0.35% 0.47% 0.83% 3.90% 7.20% 9.50%

Max 2.27 15.22 20.00% 42.30% 59.60% 33.90% 60.30% 76.00%
Random 1.91 12.62 21.60% 47.30% 65.00% 37.50% 65.80% 81.20%
w/o pre-train 6.98 33.02 0.50% 1.40% 3.20% 10.20% 20.90% 29.50%
w/o GT δθ 0.93 5.91 37.80% 71.80% 85.60% 59.10% 85.60% 94.30%

Ours 0.89 5.78 42.20% 72.40% 88.40% 59.50% 86.50% 94.80%

Table 2. Subject registration results. The expression of metrics of subject here is in the same way as Table 1.
Methods Sub.Pos.Avg Sub.Ori.Avg Sub.Pos.@0.5 Sub.Pos.@1 Sub.Pos.@1.5 Sub.Ori.@5 Sub.Ori.@10 Sub.Ori.@15
Monoloco++ [8] 1.32 32.50 26.05% 61.47% 77.65% 13.21% 26.05% 38.17%
MVDetr [29] 2.41 - 11.18% 29.54% 46.07% - - -
MVDet [30] 2.44 - 11.28% 29.19% 45.65% - - -

w/o pre-train 6.35 89.29 1.62% 6.62% 11.41% 2.29% 4.74% 6.97%
w/o GT δθ 0.83 16.36 41.15% 77.89% 89.31% 32.30% 56.79% 72.77%
Max 1.27 21.56 37.39% 72.38% 82.87% 30.46% 54.95% 69.13%
Random 1.06 17.19 39.19% 74.62% 85.07% 33.61% 59.01% 73.39%

Ours 0.75 14.67 43.23% 81.43% 92.12% 35.07% 63.24% 79.15%

ates a relatively acceptable result since it’s equipped with
the proposed geometric transformation methods. For our
method, the mean distance error is only 0.89 meters, less
than 1. The most remarkable thing is the accuracy under
camera angle error ≤ 15 degrees is more than 94%, even
≤ 5 degrees is up to 59%, and the mean error is less than
6 degrees. This is promising for many real-world applica-
tions.

Subject Registration Results. We also evaluate the
subject registration in CSRD-II using Metric-II as shown in
Table 2. Even MVDet and MVDetr take the camera calibra-
tion as prior, our method achieves much superior results in
all metrics. At the same time, our method keeps the average
distance error within 0.8 meters and the average orientation
error within 15 degrees.

4.4. Ablation Study

• w/o pre-train.: Removing the pre-training of LocoNet.
• w/o GT δθ: Removing the supervision of the camera ori-
entation in Eq. (4).
• Max/Random: In the candidate camera selection strategy,
we choose the max confidence pair or choose randomly in-
stead of our method in Eq. (6).

As shown at the bottom half of Table 1, the ablation
study, i.e., ‘ w/o pre-train’, verifies the necessity of the pre-
trained LocoNet in VTM. We can also see from the next row

that, when removing the camera orientation supervision in
SAM, i.e., ‘w/o GT δθ’, the performance only drops a little.
This demonstrates that our method is not heavily dependent
on the camera orientation supervision, which is not easy to
obtain in the real world. For camera pose selection in Reg-
istration module, we can see that no matter whether using
the strategy of the max confidence one or the random one,
which, not considering the spatial-aware selecting strategy,
both provide a relatively poor performance than our cen-
troid strategy. We also conduct the ablation study on the
subject registration task, as shown in Table 2. Similar to the
above results, we can see the effectiveness of the pretrained
LocoNet in VTM, camera orientation supervision in SAM,
and the centroid strategy in Registration module.

We further evaluate the results of multi-view human as-
sociation in CSRD-II, which can verify the effectiveness
of the proposed backward self-supervised training strategy
in SAM. As shown in Table 3, the baseline is the ResNet-
50 model pre-trained on the person Re-ID dataset named
Market-1501 [64], on which we apply the self-supervised
training strategy as discussed in Section 3.5. ‘w GT re-id’
denotes that we provide the ground-truth assignment matrix
to supervise the result of the similarity matrix. We can see
from Table 3 that our self-supervision strategy improves the
F1 score from the original 66.78% to 85.98% with a large
margin. We can also see that our results are very close to
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Table 4. Multi-view camera and subject registration, and multi-view subject association results.
Methods Cam.Pos.Avg Cam.Ori.Avg Cam.Pos.@1 Cam.Ori.@10 Sub.Pos.Avg Sub.Ori.Avg Sub.Pos.@1 Sub.Ori.@10 F1

Pair-wise 1.06 6.96 62.71% 79.61% 0.75 14.67 80.76% 58.81% 83.85%
Multi-view w/o constraints 1.06 6.93 63.55% 80.60% 1.10 15.64 63.78% 50.47% 85.64%
Multi-view w constraints 1.06 6.93 63.55% 80.60% 0.94 13.45 70.57% 57.73% 86.12%

the result of supervised training, with only a small gap of
0.45%. The results of the association verify the effective-
ness of the proposed self-supervision strategy.

Table 3. Cross-view subject association results.
Methods Precision Recall F1

Baseline [24] 57.48% 82.98% 66.78%

Ours 79.33% 95.45% 85.98%

w GT re-id (oracle) 77.97% 98.18% 86.43%

We further evaluate the proposed method on the scenes
using multiple cameras for camera and subject registration
on CSRD-V, as shown in Table 4. The first row shows the
results that we split the 5 views into C2

5 = 10 pair-wise
views, on which we apply the proposed method for two
views as above. The second and third rows are the results
of multi-view subject and camera registration without or
with the constraints during subject matching in Section 3.4.
We can see that using the proposed constraints effectively
improves the results on subject registration and multi-view
subject association, which demonstrates the effectiveness of
the subject registration strategy in the Registration module.
With respect to the results of two views registration, we
can see that even though the results are slightly worse in
5 views, the overall results are still very impressive, which
demonstrates the stability of our method in multiple views.

4.5. In-depth Analysis

Real-world Dataset Evaluation. We propose a large-scale
real-world evaluation dataset CSRD-R, to test the perfor-
mance of the cross-domain of our method, which includes
15,490 frames and five different scenes. There are 1,500
synchronous frame groups for the two-view scene, 830 syn-
chronous frame groups for the three-view scene, and 2,500
synchronous frame groups for the four-view scene. In addi-
tion to the first-person views provided by the wearing cam-
eras, we also capture the real BEV using a UAV. For all the
first-person-view and BEV videos in the dataset, we anno-
tate the bounding boxes for each subject and label the uni-
fied ID for same subject in all views. Next, we conducted
cross-domain experiments where we train our model on the
synthetic dataset CSRD-II and performed a cross-domain
evaluation on the real dataset, CSRD-R.

As shown in Table 5, we provide the detection perfor-
mance of our method. Note that, considering the gap be-
tween the BEV generated by our method and the real BEV,
we define the new detection metric on CSRD-R, which
is provided in the supplementary material. The results
demonstrate the effectiveness of our method on real data
and its reliable cross-domain generalization ability.

Table 5. Results on CSRD-R for different numbers of views.

Two Views Three Views Four Views
Ours 82.50% 85.07% 86.31%

Qualitative Analysis. Figure 7 shows a case, in which
we can see that the prediction of both camera and subject
registration can achieve a good coincidence with the ground
truth, thanks to the high accuracy of our method. We also
provide the real-world case, as shown in Figure 8. Note
that, we directly apply our method to the real-world case
without any additional annotation. We can see that, except
for a wrong fusion coming from the incorrect matching, the
prediction of the subject and camera distributions are very
close to the real BEV. This demonstrates the robustness and
generalization of the proposed method. More visualization
results with special conditions and analyses on sensitivity
and complexity are available in the supplementary material.

Figure 7. Qualitative case analysis. We add a white rectangle
around every ground-truth subject.

Figure 8. Real-world case study.

5. Conclusion
In this paper, we have studied a new problem of multi-
view camera and subject registration tasks in BEV with-
out camera calibrations. For this problem, we develop a
new approach that can simultaneously handle these two
tasks. Specifically, the proposed method uses an end-to-end
framework, which makes full use of deep network based
appearance information and multiple view geometry based
spatial knowledge to complement each other’s advantages.
We also create new synthetic and real-world datasets with
various settings and rich annotations. Experimental results
show the superior performance of our method.
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