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Abstract

Recently, subject-driven generation has garnered signif-
icant interest due to its ability to personalize text-to-image
generation. Typical works focus on learning the new sub-
ject’s private attributes. However, an important fact has not
been taken seriously that a subject is not an isolated new
concept but should be a specialization of a certain category
in the pre-trained model. This results in the subject fail-
ing to comprehensively inherit the attributes in its category,
causing poor attribute-related generations. In this paper,
motivated by object-oriented programming, we model the
subject as a derived class whose base class is its seman-
tic category. This modeling enables the subject to inherit
public attributes from its category while learning its private
attributes from the user-provided example. Specifically, we
propose a plug-and-play method, Subject-Derived regular-
ization (SuDe). It constructs the base-derived class mod-
eling by constraining the subject-driven generated images
to semantically belong to the subject’s category. Extensive
experiments under three baselines and two backbones on
various subjects show that our SuDe enables imaginative
attribute-related generations while maintaining subject fi-
delity. For the codes, please refer to FaceChain.

1. Introduction

Recently, with the fast development of text-to-image dif-
fusion models [21, 26, 29, 32], people can easily use text
prompts to generate high-quality, photorealistic, and imagi-
native images. This gives people an outlook on AI painting
in various fields such as game design, film shooting, etc.

Among them, subject-driven generation is an interesting
application that aims at customizing generation for a spe-
cific subject. For example, something that interests you like

*Equal contribution.
†Corresponding author.

Figure 1. (a) The subject is a golden retriever ‘Spike’, and the
baseline is DreamBooth [30]. The baseline’s failure is because the
example image cannot provide the needed attributes like ‘running’.
Our method tackles it by inheriting these attributes from the ‘Dog’
category to ‘Spike’. (b) We build ‘Spike’ as a derived class of the
base class ‘Dog’. In this paper, we record the general properties
of the base class from the pre-trained model as public attributes,
while subject-specific properties as private attributes. The part
marked with a red wavy line is the ‘Inherit’ syntax in C++ [37].

pets, pendants, anime characters, etc. These subjects are
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specific to each natural person (user) and do not exist in
the large-scale training of pre-trained diffusion models. To
achieve this application, users need to provide a few exam-
ple images to bind the subject with a special token ({S∗}),
which could then be used to guide further customizations.

Existing methods can be classified into two types: of-
fline ones and online ones. The former [31, 41] employs an
offline trained encoder to directly encode the subject exam-
ples into text embedding, achieving high testing efficiency.
But the training of their encoders depends on an additional
large-scale image dataset, and even the pixel-level annota-
tions are also needed for better performances [41]. The lat-
ter [12, 13, 17, 30] adopts a test-time fine-tuning strategy
to obtain the text embedding representing a specific subject.
Despite sacrificing testing efficiency, this kind of method
eliminates reliance on additional data and is more conve-
nient for application deployment. Due to its flexibility, we
focus on improving the online methods in this paper.

In deployment, the most user-friendly manner only re-
quires users to upload one example image, called one-
shot subject-driven generation. However, we find existing
methods do not always perform satisfactorily in this chal-
lenging but valuable scene, especially for attribute-related
prompts. As shown in Fig. 1 (a), the baseline method fails
to make the ‘Spike’ run, jump, or open its mouth, which
are natural attributes of dogs. Interestingly, the pre-trained
model can generate these attributes for non-customized
‘Dogs’ [21, 26, 29, 32]. From this, we infer that the failure
in Fig. 1 is because the single example image is not enough
to provide the attributes required for customizing the sub-
ject, and these attributes cannot be automatically completed
by the pre-trained model. With the above considerations,
we propose to tackle this problem by making the subject
(‘Spike’) explicitly inherit these attributes from its seman-
tic category (‘Dog’). Specifically, motivated by the defi-
nitions in Object-Oriented Programming (OOP), we model
the subject as a derived class of its category. As shown
in Fig. 1 (b), the semantic category (‘Dog’) is viewed as a
base class, containing public attributes provided by the pre-
trained model. The subject (‘Spike’) is modeled as a derived
class of ‘Dog’ to inherit its public attributes while learning
private attributes from the user-provided example. From the
visualization in Fig. 1 (a), our modeling significantly im-
proves the baseline for attribute-related generations.

From the perspective of human understanding, the above
modeling, i.e., subject (‘Spike’) is a derived class of its cat-
egory (‘Dog’), is a natural fact. But it is unnatural for the
generative model (e.g., diffusion model) since it has no prior
concept of the subject ‘Spike’. Therefore, to achieve this
modeling, we propose a Subject Derivation regulariza-
tion (SuDe) to constrain that the generations of a subject
could be classified into its corresponding semantic category.
Using the example above, generated images of ‘photo of a

Spike’ should have a high probability of belonging to ‘photo
of a Dog’. This regularization cannot be easily realized by
adding a classifier since its semantics may misalign with
that in the pre-trained diffusion model. Thus, we propose to
explicitly reveal the implicit classifier in the diffusion model
to regularize the above classification.

Our SuDe is a plug-and-play method that can com-
bine with existing subject-driven methods conveniently.
We evaluate this on three well-designed baselines, Dream-
Booth [30], Custom Diffusion [17], and ViCo [13]. Results
show that our method can significantly improve attributes-
related generations while maintaining subject fidelity.
Our main contributions are as follows:
• We provide a new perspective for subject-driven genera-

tion, that is, modeling a subject as a derived class of its
semantic category, the base class.

• We propose a subject-derived regularization (SuDe) to
build the base-derived class relationship between a sub-
ject and its category with the implicit diffusion classifier.

• Our SuDe can be conveniently combined with existing
baselines and significantly improve attributes-related gen-
erations while keeping fidelity in a plug-and-play manner.

2. Related Work
2.1. Object-Oriented Programming

Object-Oriented Programming (OOP) is a programming
paradigm with the concept of objects [23, 28, 40], including
four important definitions: class, attribute, derivation, and
inheritance. A class is a template for creating objects con-
taining some attributes, which include public and private
ones. The former can be accessed outside the class, while
the latter cannot. Derivation is to define a new class that
belongs to an existing class, e.g., a new ‘Golden Retriever’
class could be derived from the ‘Dog’ class, where the for-
mer is called derived class and the latter is called base class.
Inheritance means that the derived class should inherit some
attributes of the base class, e.g., ‘Golden Retriever’ should
inherit attributes like ‘running’ and ‘jumping’ from ‘Dog’.

In this paper, we model the subject-driven generation as
class derivation, where the subject is a derived class and
its semantic category is the corresponding base class. To
adapt to this task, we use public attributes to represent gen-
eral properties like ‘running’, and private attributes to rep-
resent specific properties like the subject identity. The base
class (category) contains public attributes provided by the
pre-trained diffusion model and the derived class (subject)
learns private attributes from the example image while in-
heriting its category’s public attributes.

2.2. Text-to-image generation

Text-to-image generation aims to generate high-quality
images with the guidance of the input text, which is re-
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alized by combining generative models with pre-trained
vision-language models, e.g., CLIP [24]. From the per-
spective of generators, they can be roughly categorized
into three groups: GAN-based, VAE-based, and Diffusion-
based methods. The GAN-based methods [8, 27, 38, 42, 44]
employ the Generative Adversarial Network as the genera-
tor and perform well on structural images like human faces.
But they struggle in complex scenes with varied compo-
nents. The VAE-based methods [5, 9, 11, 25] generate im-
ages with Variational Auto-encoder, which can synthesize
diverse images but sometimes cannot match the texts well.
Recently, Diffusion-based methods [3, 10, 21, 26, 29, 32]
obtain SOTA performances and can generate photo-realistic
images according to the text prompts. In this paper, we
focus on deploying the pre-trained text-to-image diffusion
models into the application of subject-customization.

2.3. Subject-driven generation

Given a specific subject, subject-driven generation aims
to generate new images of this subject with text guidance.
Pioneer works can be divided into two types according to
training strategies, the offline and the online ones. Offline
methods [6, 7, 31, 41] directly encode the example image
of the subject into text embeddings, for which they need to
train an additional encoder. Though high testing efficiency,
they are of high cost since a large-scale dataset is needed for
offline training. Online methods [12, 13, 17, 30, 39] learn
a new subject in a test-time tuning manner. They repre-
sent the subject with a specific token ‘{S∗}’ by fine-tuning
the pre-trained model in several epochs. Despite sacrificing
some test efficiency, they don’t need additional datasets and
networks. But for the most user-friendly one-shot scene,
these methods cannot customize attribute-related genera-
tions well. To this end, we propose to build the subject as a
derived class of its category to inherit public attributes while
learning private attributes. Some previous works [17, 30]
partly consider this problem by prompt engineering, but not
as satisfactory as our SuDe, as discussed in the appendix.

3. Method
3.1. Preliminaries

3.1.1 Text-to-image diffusion models

Diffusion models [14, 34] approximate real data distri-
bution by restoring images from Gaussian noise. They use
a forward process gradually adding noise ϵ ∼ N (0, I) on
the clear image (or its latent code) x0 to obtain a series of
noisy variables x1 to xT , where T usually equals 1000, as:

xt =
√
αtx0 +

√
1− αtϵ, (1)

where αt is a t-related variable that controls the noise
schedule. In text-to-image generation, a generated image

is guided by a text description P . Given a noisy variable xt

at step t, the model is trained to denoise the xt gradually as:

Ex,c,ϵ,t[wt||xt−1 − xθ(xt, c, t)||2], (2)

where xθ is the model prediction, wt is the loss weight at
step t, c = Γ(P ) is the embedding of text prompt, and the
Γ(·) is a pre-trained text encoder, such as BERT [16]. In our
experiments, we use Stable Diffusion [2] built on LDM [29]
with the CLIP [24] text encoder as our backbone model.

3.1.2 Subject-driven finetuning

Overview: The core of the subject-driven generation is
to implant the new concept of a subject into the pre-trained
diffusion model. Existing works [12, 13, 17, 30, 43] realize
this via finetuning partial or all parameters of the diffusion
model, or text embeddings, or adapters, by:

Lsub = ||xt−1 − xθ(xt, csub, t)||2, (3)

where the xt−1 here is the noised user-provided example at
step t − 1, csub is the embedding of subject prompt (e.g.,
‘photo of a {S∗}’). The ‘{S∗}’ represents the subject token.

Motivation: With Eq. 3 above, existing methods can
learn the specific attributes of a subject. However, the at-
tributes in the user-provided single example are not enough
for imaginative customizations. Existing methods haven’t
made designs to address this issue, only relying on the pre-
trained diffusion model to fill in the missing attributes au-
tomatically. But we find this is not satisfactory enough,
e.g., in Fig. 1, baselines fail to customize the subject ‘Spike’
dog to ‘running’ and ‘jumping’. To this end, we propose to
model a subject as a derived class of its semantic category,
the base class. This helps the subject inherit the public at-
tributes of its category while learning its private attributes
and thus improves attribute-related generation while keep-
ing subject fidelity. Specifically, as shown in Fig. 2 (a), the
private attributes are captured by reconstructing the subject
example. And the public attributes are inherited via encour-
aging the subject prompt ({S∗}) guided xt−1 to semanti-
cally belong to its category (e.g., ‘Dog’), as Fig. 2 (b).

3.2. Subject Derivation Regularization

Derived class is a definition in object-oriented program-
ming, not a proposition. Hence there is no sufficient con-
dition that can be directly used to constrain a subject to be
a derived class of its category. However, according to the
definition of derivation, there is naturally a necessary con-
dition: a derived class should be a subclass of its base class.
We find that constraining this necessary condition is very
effective for helping a subject to inherit the attributes of its
category. Specifically, we regularize the subject-driven gen-
erated images to belong to the subject’s category as:

Lsude = − log[p(ccate|xθ(xt, csub, t))], (4)
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Figure 2. The pipeline of SuDe. (a) Learn private attributes by reconstructing the subject example with the Lsub in Eq. 3. (b) Inherit
public attributes by constraining the subject-driven xt−1 semantically belongs to its category (e.g., dog), with the Lsude in Eq. 4.

where ccate and csub are conditions of category and subject.
The Eq. 4 builds a subject as a derived class well for two
reasons: (1) The attributes of a category are reflected in its
embedding ccate, most of which are public ones that should
be inherited. This is because the embedding is obtained
by a pre-trained large language model (LLM) [16], which
mainly involves general attributes in its training. (2) As an-
alyzed in Sec. 4, optimizing Lsude combined with the Eq. 3
is equivalent to increasing p(xt−1|xt, csub, ccate), which
means generating a sample with the conditions of both csub
(private attributes) and ccate (public attributes). Though the
form is simple, Eq. 4 cannot be directly optimized. In the
following, we describe how to compute it in Sec. 3.2.1, and
a necessary strategy to prevent training crashes in Sec. 3.2.2.

3.2.1 Subject Derivation Loss

The probability in Eq. 4 cannot be easily obtained by an
additional classifier since its semantics may misalign with
that in the pre-trained diffusion model. To ensure semantics
alignment, we propose to reveal the implicit classifier in the
diffusion model itself. With the Bayes’ theorem [15]:

p(ccate|xθ(xt, csub, t)) = Ct ·
p(xθ(xt, csub, t)|xt, ccate)

p(xθ(xt, csub, t)|xt)
,

(5)
where the Ct = p(ccate|xt) is unrelated to t − 1, thus can
be ignored in backpropagation. In the Stable Diffusion [2],
predictions of adjacent steps (i.e., t− 1 and t) are designed
as a conditional Gaussian distribution:

p(xt−1|xt, c) ∼ N (xt−1;xθ(xt, c, t), σ
2
t I)

∝ exp(−||xt−1 − xθ(xt, c, t)||2/2σ2
t ),

(6)

where the mean value is the prediction at step t and the stan-
dard deviation is a function of t. From Eq. 5 and 6, we can

convert Eq. 4 into a computable form:

Lsude =
1

2σ2
t

[||xθ(xt, csub, t)− xθ̄(xt, ccate, t)||2

− ||xθ(xt, csub, t)− xθ̄(xt, t)||2],
(7)

where the xθ̄(xt, ccate, t) is the prediction conditioned on
ccate, the xθ̄(xt, t) is the unconditioned prediction. The
θ̄ means detached in training, indicating that only the
xθ(xt, csub, t) is gradient passable, and the xθ̄(xt, ccate, t)
and xθ̄(xt, t) are gradient truncated. This is because they
are priors in the pre-trained model that we want to reserve.

3.2.2 Loss Truncation

Optimizing Eq. 4 will leads the p(ccate|xθ(xt, csub, t))
to increase until close to 1. However, this term represents
the classification probability of a noisy image at step t− 1.
It should not be close to 1 due to the influence of noise.
Therefore, we propose to provide a threshold to truncate
Lsude. Specifically, for generations conditioned on ccate,
their probability of belonging to ccate can be used as a ref-
erence. It represents the proper classification probability of
noisy images at step t− 1. Hence, we use the negative log-
likelihood of this probability as the threshold τ , which can
be computed by replacing the csub with ccate in Eq. 7:

τt = − log[p(ccate|xθ(xt, ccate, t))]

= − 1

2σ2
t

||xθ̄(xt, ccate, t)− xθ̄(xt, t)||2.
(8)

The Eq. 8 represents the lower bound of Lsude at step t.
When the loss value is less than or equal to τt, optimization
should stop. Thus, we truncate Lsude as:

Lsude = λτ · Lsude, λτ =

{
0, Lsude ≤ τt

1, else.
(9)
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Figure 3. (a), (b), and (c) are generated images using DreamBooth [30], Custom Diffusion [17], and ViCo [13] as the baselines, respectively.
Results are obtained using the DDIM [36] sampler with 100 steps. In prompts, we mark the subject token in orange and attributes in red.

In practice, this truncation is important for maintaining
training stability. Details are provided in Sec. 5.4.2.

3.3. Overall Optimization Objective

Our method only introduces a new loss function Lsude,
thus it can be conveniently implanted into existing pipelines
in a plug-and-play manner as:

L = Ex,c,ϵ,t[Lsub + wsLsude + wrLreg], (10)

where Lsub is the reconstruction loss to learn the subject’s
private attributes as described in Eq. 3. The Lreg is a regu-
larization loss usually used to prevent the model from over-
fitting to the subject example. Commonly, it is not rele-
vant to csub and has flexible definitions [13, 30] in various
baselines. Using the DreamBooth as an example, we have
discussed the difference between Lreg and our Lsude in
Sec. 5.4.4. The ws and wr are used to control loss weights.
In practice, we keep the Lsub, Lreg follow baselines, only
changing the training process by adding our Lsude.

4. Theoretical Analysis

Here we analyze that SuDe works well since it mod-
els the p(xt−1|xt, csub, ccate). According to Eq. 3, 4 and

DDPM [14], we can express Lsub and Lsude as:

Lsub = − log[p(xt−1|xt, csub)],

Lsude = − log[p(ccate|xt−1, csub)].
(11)

Here we first simplify the ws to 1 for easy understanding:

Lsub + Lsude = − log[p(xt−1|xt, csub) · p(ccate|xt−1, csub)]

= − log[p(xt−1|xt, csub, ccate) · p(ccate|xt, csub)]

= − log[p(xt−1|xt, csub, ccate)] + St,
(12)

where St = − log[p(ccate|xt, csub)] is unrelated to t − 1.
From the Eq. 12, we find that our method models the dis-
tribution of p(xt−1|xt, csub, ccate), which takes both csub
and ccate as conditions, thus generates images with both
private attributes from csub and public attributes from ccate.

In practice, ws is a changed hyperparameter on various
baselines. This does not change the above conclusion since:

ws · Lsude = − log[pws(ccate|xt−1, csub)],

pws(ccate|xt−1, csub) ∝ p(ccate|xt−1, csub),
(13)

where the a ∝ b means a is positively related to b. Based
on Eq. 13, we can see that the Lsub + wsLsude is posi-
tively related to − log[p(xt−1|xt, csub, ccate)]. This means
that optimizing our Lsude with Lsub can still increase
p(xt−1|xt, csub, ccate) when ws is not equal to 1.
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Table 1. Quantitative results. These results are average on 4 generated images for each prompt with a DDIM [36] sampler with 50 steps.
The † means performances obtained with a flexible ws. The improvements our SuDe brought on the baseline are marked in red.

Method Results on Stable diffusion v1.4 (%) Results on Stable diffusion v1.5 (%)
CLIP-I DINO-I CLIP-T BLIP-T CLIP-I DINO-I CLIP-T BLIP-T

ViCo [13] 75.4 53.5 27.1 39.1 78.5 55.7 28.5 40.7
ViCo w/ SuDe 76.1 56.8 29.7 (+2.6) 43.3 (+4.2) 78.2 59.4 29.6 (+1.1) 43.3 (+2.6)
ViCo w/ SuDe† 75.8 57.5 30.3 (+3.2) 44.4 (+5.3) 77.3 58.4 30.2 (+1.7) 44.6 (+3.9)
Custom Diffusion [17] 76.5 59.6 30.1 45.2 76.5 59.8 30.0 44.6
Custom Diffusion w/ SuDe 76.3 59.1 30.4 (+0.3) 46.1 (+0.9) 76.0 60.0 30.3 (+0.3) 46.6 (+2.0)
Custom Diffusion w/ SuDe† 76.4 59.7 30.5 (+0.4) 46.3 (+1.1) 76.2 60.3 30.3 (+0.3) 46.9 (+2.3)
DreamBooth [30] 77.4 59.7 29.0 42.1 79.5 64.5 29.0 41.8
DreamBooth w/ SuDe 77.4 59.9 29.5 (+0.5) 43.3 (+1.2) 78.8 63.3 29.7 (+0.7) 43.3 (+1.5)
DreamBooth w/ SuDe† 77.1 59.7 30.5 (+1.5) 45.3 (+3.2) 78.8 64.0 29.9 (+0.9) 43.8 (+2.0)

5. Experiments

5.1. Implementation Details

Frameworks: We evaluate that our SuDe works well
in a plug-and-play manner on three well-designed frame-
works, DreamBooth [30], Custom Diffusion [17], and
ViCo [13] under two backbones, Stable-diffusion v1.4 (SD-
v1.4) and Stable-diffusion v1.5 (SD-v1.5) [2]. In practice,
we keep all designs and hyperparameters of the baseline un-
changed and only add our Lsude to the training loss. For
the hyperparameter ws, since these baselines have various
training paradigms (e.g., optimizable parameters, learning
rates, etc), it’s hard to find a fixed ws for all these base-
lines. We set it to 0.4 on DreamBooth, 1.5 on ViCo, and 2.0
on Custom Diffusion. A noteworthy point is that users can
adjust ws according to different subjects in practical appli-
cations. This comes at a very small cost because our SuDe
is a plugin for test-time tuning baselines, which are of high
efficiency (e.g., ∼ 7 min for ViCo on a single 3090 GPU).

Dataset: For quantitative experiments, we use the
DreamBench dataset provided by DreamBooth [30], con-
taining 30 subjects from 15 categories, where each subject
has 5 example images. Since we focus on one-shot cus-
tomization here, we only use one example image (num-
bered ‘00.jpg’) in all our experiments. In previous works,
their most collected prompts are attribute-unrelated, such as
‘photo of a {S∗} in beach/snow/forest/...’, only changing the
image background. To better study the effectiveness of our
method, we collect 5 attribute-related prompts for each sub-
ject. Examples are like ‘photo of a running {S∗}’ (for dog),
‘photo of a burning {S∗}’ (for candle). Moreover, various
baselines have their unique prompt templates. Specifically,
for ViCo, its template is ‘photo of a {S∗}’, while for Dream-
Booth and Custom Diffusion, the template is ‘photo of a
{S∗} [category]’. In practice, we use the default template
of various baselines. In this paper, for the convenience of
writing, we uniformly record {S∗} and {S∗} [category] as
{S∗}. Besides, we also show other qualitative examples in

appendix, which are collected from Unsplash [1].
Metrics: For the subject-driven generation task, two im-

portant aspects are subject fidelity and text alignment. For
the first aspect, we refer to previous works and use DINO-I
and CLIP-I as the metrics. They are the average pairwise
cosine similarity between DINO [4] (or CLIP [24]) embed-
dings of generated and real images. As noted in [13, 30],
the DINO-I is better at reflecting fidelity than CLIP-I since
DINO can capture differences between subjects of the same
category. For the second aspect, we refer to previous works
that use CLIP-T as the metric, which is the average cosine
similarity between CLIP [24] embeddings of prompts and
generated images. Additionally, we propose a new metric
to evaluate the text alignment about attributes, abbreviated
as attribute alignment. This cannot be reflected by CLIP-
T since CLIP is only coarsely trained at the classification
level, being insensitive to attributes like actions and materi-
als. Specifically, we use BLIP-T, the average cosine simi-
larity between BLIP [18] embeddings of prompts and gen-
erated images. It can measure the attribute alignment better
since the BLIP is trained to handle the image caption task.

5.2. Qualitative Results

Here, we visualize the generated images on three base-
lines with and without our method in Fig. 3.

Attribute alignment: Qualitatively, we see that genera-
tions with our SuDe align the attribute-related texts better.
For example, in the 1st row, Custom Diffusion cannot make
the dog playing ball, in the 2nd row, DreamBooth cannot
let the cartoon character running, and in the 3rd row, ViCo
cannot give the teapot a golden material. In contrast, af-
ter combining with our SuDe, their generations can reflect
these attributes well. This is because our SuDe helps each
subject inherit the public attributes in its semantic category.

Image fidelity: Besides, our method still maintains sub-
ject fidelity while generating attribute-rich images. For ex-
ample, in the 1st row, the dog generated with SuDe is in
a very different pose than the example image, but we still
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Figure 4. Visual comparisons by using different values of ws. Results are from DreamBooth w/ SuDe, where the default ws is 0.4.

Figure 5. Loss truncation. SuDe-generations with and without
truncation using Custom Diffusion as the baseline.

can be sure that they are the same dog due to their private
attributes, e.g., the golden hair, facial features, etc.

5.3. Quantitative Results

Here we quantitatively verify the conclusion in Sec. 5.2.
As shown in Table 1, our SuDe achieves stable improve-
ment on attribute alignment, i.e., BLIP-T under SD-v1.4
and SD-v1.5 of 4.2% and 2.6% on ViCo, 0.9% and 2.0% on
Custom Diffusion, and 1.2% and 1.5% on Dreambooth. Be-
sides, we show the performances (marked by †) of a flexible
ws (best results from the [0.5, 1.0, 2.0] · ws). We see that
this low-cost adjustment could further expand the improve-
ments, i.e., BLIP-T under SD-v1.4 and SD-v1.5 of 5.3%
and 3.9% on ViCo, 1.1% and 2.3% on Custom Diffusion,
and 3.2% and 2.0% on Dreambooth. More analysis about
the ws is in Sec. 5.4.1. For the subject fidelity, SuDe only
brings a slight fluctuation to the baseline’s DINO-I, indicat-
ing that our method will not sacrifice the subject fidelity.

5.4. Empirical Study

5.4.1 Training weight ws

The ws affects the weight proportion of Lsude. We vi-
sualize the generated image under different ws in Fig. 4,
by which we can summarize that: 1) As the ws increases,
the subject (e.g., teapot) can inherit public attributes (e.g.,
clear) more comprehensively. A ws within an appropriate
range (e.g., [0.5, 2] · ws for the teapot) could preserve the
subject fidelity well. But a too-large ws causes our model
to lose subject fidelity (e.g., 4 ·ws for the bowl) since it di-
lutes the Lsub for learning private attributes. 2) A small ws

is more proper for an attribute-simple subject (e.g., bowl),
while a large ws is more proper for an attribute-complex
subject (e.g., dog). Another interesting phenomenon in
Fig. 4 1st line is that the baseline generates images with
berries, but our SuDe does not. This is because though the
berry appears in the example, it is not an attribute of the
bowl, thus it is not captured by our derived class model-
ing. Further, in Sec. 5.4.3, we show that our method can
also combine attribute-related and attribute-unrelated gen-
erations with the help of prompts, where one can make cus-
tomizations like ‘photo of a metal {S∗} with cherry’.

5.4.2 Ablation of loss truncation

In Sec. 3.2.2, the loss truncation is designed to prevent
the p(ccate|xθ(xt, csub, t)) from over-optimization. Here
we verify that this truncation is important for preventing the
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Figure 6. Combine with attribute-unrelated prompts. Genera-
tions with both attribute-related and attribute-unrelated prompts.

training from collapsing. As Fig. 5 shows, without trunca-
tion, the generations exhibit distortion at epoch 2 and com-
pletely collapse at epoch 3. This is because over-optimizing
p(ccate|xθ(xt, csub, t)) makes a noisy image have an ex-
orbitant classification probability. An extreme example is
classifying a pure noise into a certain category with a prob-
ability of 1. This damages the semantic space of the pre-
trained diffusion model, leading to generation collapse.

5.4.3 Combine with attribute-unrelated prompts

In the above sections, we mainly demonstrated the ad-
vantages of our SuDe for attribute-related generations. Here
we show that our approach’s advantage can also be com-
bined with attribute-unrelated prompts for more imagina-
tive customizations. As shown in Fig. 6, our method can
generate images harmoniously like, a {S∗} (dog) running
in various backgrounds, a {S∗} (candle) burning in various
backgrounds, and a {S∗} metal (bowl) with various fruits.

5.4.4 Compare with class image regularization

In existing subject-driven generation methods [13, 17,
30], as mentioned in Eq. 10, a regularization item Lreg is
usually used to prevent the model overfitting to the subject
example. Here we discuss the difference between the roles
of Lreg and our Lsude. Using the class image regularization
Lreg in DreamBooth as an example, it is defined as:

Lreg = ||xθ̄pr (xt, ccate, t)− xθ(xt, ccate, t)||2, (14)

where the xθ̄pr is the frozen pre-trained diffusion model. It
can be seen that Eq. 14 enforces the generation conditioned
on ccate to keep the same before and after subject-driven

Figure 7. ‘CIR’ is the abbreviation for class image regularization.

finetuning. Visually, based on Fig. 7, we find that the Lreg

mainly benefits background editing. But it only uses the
‘category prompt’ (ccate) alone, ignoring modeling the af-
filiation between csub and ccate. Thus it cannot benefit at-
tribute editing like our SuDe.

6. Conclusion

In this paper, we creatively model subject-driven genera-
tion as building a derived class. Specifically, we propose
subject-derived regularization (SuDe) to make a subject
inherit public attributes from its semantic category while
learning its private attributes from the subject example. As
a plugin-and-play method, our SuDe can conveniently com-
bined with existing baselines and improve attribute-related
generations. Our SuDe faces the most challenging but
valuable one-shot scene and can generate imaginative cus-
tomizations, showcasing attractive application prospects.

Broader Impact. Subject-driven generation is a newly
emerging application, most works of which currently focus
on image customizations with attribute-unrelated prompts.
But a foreseeable and valuable scenario is to make more
modal customizations with the user-provided image, where
attribute-related generation will be widely needed. This pa-
per proposes the modeling that builds a subject as a de-
rived class of its semantic category, enabling good attribute-
related generations, and thereby providing a promising so-
lution for future subject-driven applications.
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