This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

MP5: A Multi-modal Open-ended Embodied System
in Minecraft via Active Perception

Yiran Qin'-?;
Lu Sheng?}

Enshen Zhou!3*
Ruimao Zhang?*}

Qichang Liu'#;

Zhenfei Yin'?,

Yu Qiao', Jing Shao'*

!Shanghai Artificial Intelligence Laboratory 2The Chinese University of Hong Kong, Shenzhen

3School of Software, Beihang University *Tsinghua University °The University of Sydney

yvirangin@link.cuhk.edu.cn

lsheng@buaa.edu.cn

Task: Kill a pig with a stone sword during the
nexttoit.

near the with

Process
Os:pig

O : stone sword)(

Og: stone ‘

Os: wooden pickaxe 24
04 crafting table ()
Os: stick /
Os:plank .

O1:log .

ruimao.zhang@ieee.org

QUi+« E09®

Process

(a) (b)

P8 / B9 e

zhouenshen@buaa.edu.cn

shaojing@pjleb.org.cn

Day

©

Figure 1. The process of finishing the task “kill a pig with a stone sword during the daytime near the water with grass next to it.”. (a)
To achieve the final goal (i.e., Og: “kill a pig @#”), a player should accomplish a list of sub-objectives {O; }7—; sequentially. During this

process, the player should also be aware of some items in the environment, e.g., “grass #”, “day

” and etc. (b) This diagram shows

the number of these necessary items in the context that should be perceived for each sub-objective, during the task execution process. (c)
Images marked by O1 and Og show the observed ego-centric views in the process of achieving the corresponding sub-objectives. Images
marked by OF and O3 indicate how the player executes the action about the last sub-objective “kill a pig &#”. This process tells that such
long-horizon open-world embodied tasks in Minecraft should be solved both in the process-dependent and context-dependent way.

Abstract

It is a long-lasting goal to design an embodied system
that can solve long-horizon open-world tasks in human-like
ways. However, existing approaches usually struggle with
compound difficulties caused by the logic-aware decompo-
sition and context-aware execution of these tasks. To this
end, we introduce MPS5, an open-ended multimodal em-
bodied system built upon the challenging Minecraft sim-
ulator, which can decompose feasible sub-objectives, de-
sign sophisticated situation-aware plans, and perform em-
bodied action control, with frequent communication with

* Equal contribution T Corresponding author # Project leader

a goal-conditioned active perception scheme. Specifically,
MP5 is developed on top of recent advances in Multimodal
Large Language Models (MLLMs), and the system is mod-
ulated into functional modules that can be scheduled and
collaborated to ultimately solve pre-defined context- and
process-dependent tasks. Extensive experiments prove that
MP5 can achieve a 22% success rate on difficult process-
dependent tasks and a 91% success rate on tasks that heav-
ily depend on the context. Moreover, MP5 exhibits a re-
markable ability to address many open-ended tasks that are
entirely novel. Please see the project page at https :
//irangin.github.io/MP5.github.i0o/.

16307

1. Introduction

One of the core objectives of current embodied intelligence
is to construct generalist agents that can solve long-horizon
open-world embodied tasks, approaching the behavior pat-
terns of human beings [1, 16, 19, 27]. However, the process
dependency and context dependency in these tasks, such as
those in Minecraft depicted in Fig. 1, hinder recent agents
from achieving the aforementioned goal. To be specific, the
former emphasizes the inherent dependency among the sub-
objectives of one task or an action sequence to fulfill one
sub-objective (such as “craft a stone sword #” should be
solved before “kill a pig %#”). The latter highlights that the
execution of each sub-objective or even each action depends
on the contextual information of the environment (such as
“kill a pig @%#” requires to find the target “pig %®” and its sur-
rounding items “grass #” and “water @ during the “day-
time | " in the observed images, as shown in Fig. 1).

The recent success of Large Language Models (LLMs)
has attempted to solve the process-dependent chal-
lenge, by using LLMs to break down a long-horizon
process-dependent task into a sequence of feasible sub-
objectives [30, 31, 37]. These methods [30, 37] simplify
the context-dependent challenge by assuming the agents are
all-seeing, i.e., knowing everything about their state and the
environment it locates in. However, to solve the context-
dependent challenge, an embodied agent should addition-
ally have: (1) the perception capability is open-ended, se-
lective and give results tailored to diverse purposes (e.g.,
for task planning or action execution), (2) the perception
module can be compatibly scheduled along with the other
modules (e.g., planning and execution modules) by a uni-
fied interface, as an integrated system.

To this end, we introduce MP5, a novel embodied sys-
tem developed within Minecraft, to meet the above expec-
tations. Specifically, MP5 comprises five interacting mod-
ules, i.e., Parser decomposes a long-horizon task into a
sequence of sub-objectives that should be completed one
by one; Percipient answers various questions about the ob-
served images, as the reference for the other modules; Plan-
ner schedules the action sequences of a sub-objective, as
well as refines the following sub-objectives, given the cur-
rent situation; Performer executes the actions along with
frequent interaction with the environment; and Patroller
checks the responses from the Percipient, Planner, and Per-
former, for the purpose of verifying current plans/actions, or
feedback on potential better strategies. In our work, Percipi-
ent is a LoRA-enabled Multimodal LLM (MLLM). Among
the pre-trained LLMs, Parser and Planner are augmented
with external Memory, while Patroller is not.

Notably, MP5 includes an active perception scheme by
means of multi-round interaction between Percipient and
Patroller, which is to actively perceive the contextual in-
formation in the observed images, with respect to vari-

ous queries raised by Planner and Performer. It is the
key enabler to solve context-dependent tasks. Patroller
in this scheme relays compatible feedback to Planner and
Performer accordingly, while eventually strengthening the
planning skill in awareness of the situations and improving
the action execution correctness in an embodied manner.
Extensive experiments prove that MP5 can robustly
complete tasks needed for long-horizon reasoning and com-
plex context understanding. It achieved a 22% success rate
on diamond-level tasks (i.e., one of the hardest long-horizon
tasks) and a 91% success rate on tasks requiring complex
scene understanding (i.e., need to perceive around 4 ~ 6
key items in the observed images). Moreover, in Sec. 4.2.3,
MP5 can surprisingly address more open-end tasks both
with heavy process dependency and context dependency.

2. Related Work
2.1. Multi-modal Large Language Models

With the development of Large Language Models (LLMs)
like the GPT series [2, 23, 25], as well as open-source LLLMs
such as the LLaMA series [28, 29] and Vicuna [5], Multi-
modal Large Language Models (MLLMs) have emerged.
Examples of such MLLMs include LLaVA [18], Instruct-
BLIP [6], and LAMM [33], among others [4, 9, 14, 24, 32,

]. In this work, we introduce MineLLM, which is specif-
ically designed and trained for Minecraft, and leverage its
perception, interaction, and analysis capabilities to build
up Percipient for MP5, and further enable an objective-
conditioned active perception scheme.

2.2. Agents in Minecraft

Previous works[3, 7, 8, 10, 16, 19, 34, 35] attempt to use
approaches such as hierarchical RL, goal-based RL, and re-
ward shaping to train an agent in Minecraft. MineCLIP [&]
enables the resolution of various open-ended tasks speci-
fied in free language, even without any manually designed
dense rewards. DreamerV3 [11] succeeds in training agents
in Minecraft with a learned world model. VPT [1] builds
a foundation model for Minecraft by learning from massive
videos. Based on VPT, Steve-1 [15] also explores bring-
ing in MineCLIP [8] to get an instruction following policy
with high performance. The development of recent large
language model-related work Voyager [30], DEPS [31],
GITM [37] further promote the advancement of agents
in long-horizon tasks. These works use pre-trained large
language models as the zero-shot planners[13] for agents,
leveraging the powerful reasoning capabilities of large lan-
guage models to obtain continuous operation instructions or
executable policy lists.

We take advantage of the reasoning capability of LLM
to build up our own agent. Existing LLM agents [37, 37] in
Minecraft feed scene data from simulation platforms [8, 10]

16308

Obtain Env. Task: Kill a pig with a wooden sword during the daytime near

Info. for ledge | the water with grass next to it.
Planning /
e = ® Sub-Objectives
- 3
parser — { @>@>/> @ > 30> 4} o
Obtain Env. :
Info. for :4b Performer Memory
<Sub-0i ve>
Performer ective *
..... P
e
e
&)
Multi-round ‘_t?_ Move e
................ t? Equip
Single-round ‘ p ‘ Craft
: 7—{' Mine
" Fight
A Find
HE

<Sub-Objective> gl

Planner: Can you tell me what important environmental information I need to know? - +

Patroller: | conduct Active Perception with
there is no pig based on the scene.

Performer: Having completed a move in “Find” action, based on my current view, tell
me if | should continue this action or if the next action is ready to execute.

. Patroller: | conduct Active Perception with
you must continue with the current action since there is no river near the pig.

» Performer: Continue executing “Find”.

Performer: Having completed a move in “Find” action, based on my current view, tell
me if | should continue this action or if the next action is ready to execute.

Patroller: | conduct Active Perception with
you can execute the next action since all conditions are satisfied.

with your current observation,

1
1
«'¥

!> Planner: 1. Equip(!) 2. Find(*) 3. Move(*) 4. Fight(*) —> Performer: Start executing “Equip”.

with your current observation,

-« _

with your current observation, P

Figure 2. Overview of module interaction in MP5. After receiving the task instruction, MP5 first utilizes Parser to generate a sub-objective
list. Once a sub-objective is passed to the Planner, the Planner Obtaining Env. Info. for Perception-aware Planning. The performer takes
frequently Perception-aware Execution to interact with the environment by interacting with the Patroller. Both Perception-aware Planning
and Execution rely on the Active Perception between the Percipient and the Patroller. Once there are execution failures, the Planner will
re-schedule the action sequence of the current sub-objective. Mechanisms for collaboration and inspection of multiple modules guarantee
the correctness and robustness when MP5 is solving an open-ended embodied task.

into large language models for task planning. However, for
embodied agents in real scenes, it is clearly unrealistic to
use accurate scene data directly. Therefore, agents need to
be robust to make decision corrections despite inaccurate or
erroneous perception information. Moreover, open-ended
tasks need hierarchical reasoning [19] and complex open-
ended context understanding [1, &], classical perception net-
works can only output fixed perception results and cannot
provide corresponding perception information according to
the task, making it impossible to understand open-ended
scenarios. Therefore, we design MP5, an embodied agent
with open-ended capabilities that can solve the problem of
open-ended tasks.

3. Method

In this section, we first give an overview of our proposed
MPS5, for solving context-dependent and process-dependent
tasks in an open-world and embodied environment, such as
Minecraft (Sec. 3.1). Next, we elaborate on how to imple-
ment an active perception scheme (Sec. 3.2). This scheme
plays a vital role in MP5 to solve context-dependent tasks,
since it reliably grounds the visual content according to dif-
ferent kinds of objectives, and thus strengthens the plan-
ning skill and execution correctness with respect to context-
dependent tasks. Then, we show how to plan and update
action sequences in awareness of the situations, and how to
reliably execute these actions in an embodied environment
(Sec. 3.3). Finally, we give necessary implementation de-
tails about MP5 in Sec. 3.4.

3.1. Overview

As demonstrated in Fig. 2, our MP5 includes five major
modules, i.e., Parser, Percipient, Planner, Performer, and
Patroller. Specifically, Percipient is a parameter-efficiently
fine-tuned Multimodal Large Language Model (MLLM)
that is specified to the Minecraft environment. The Parser,
Planner, and Patroller are pre-trained Large-language Mod-
els (LLMs). We also include retrieval-augmented genera-
tion (RAG) to enhance the quality of responses generated
by Parser and Planner. Performer is an interface that ex-
plains each action from the action sequence into executable
commands that directly control the game character.

Why can MP5 solve context-dependent and process-
dependent tasks? MP5 includes an active perception
scheme by means of multi-round interactions between Per-
cipient and Patroller, which is to actively perceive the envi-
ronmental information in the observed images, with respect
to various objectives raised by Planner or Performer. With
the help of this scheme, Planner can schedule or update ac-
tion sequences in awareness of the observed images, inven-
tory status and etc., resulting in a situation-aware planning;
Performer can execute actions that are adapted to the em-
bodied environment, resulting in a embodied action execu-
tion. Patroller in this scheme can also feedback on better
choices of plans/actions based on the visual evidence so that
the process-dependent tasks are solved with fewer chances
of context-dependent execution failures. Moreover, Percip-
ient can understand open-ended visual concepts, therefore
it allows MP5 to solve tasks that are never seen before.

How does MP5 function? In Fig. 2, upon receiving a

16309

Performer : Current sub-objective <Kill a pig with a wooden sword during the

Response
The blocks shown in the image
are

Response
This picture is showing a pig,
types of Minecraft mobs.

> Env. Info. Env. Info.

................. » Patroller Patroller

v v
Question Question
What types of blocks are shown in
the given <image> ?

Question
What types of Minecraft mobs is
this <image> showing?

+

What time of day does the <image>
depict in the Minecraft world?

near the with nexttoit> & Currentexecution action: Find (*)
l Env. Info. Temporary Env. Info. Set
Env. Info. M . . Env. Info. porary
. The image depicts in X

the Minecraft world. Ask question(s) of

significant necessity

Patroller Patroller

v i
Result v
I have seen a pig during the

nearthe with

Add answer to Env. Info.

Query Env. Info.
Or Return

next to it. You can execute
the next action.

Figure 3. A demonstration of the process of Active Perception scheme. Temporary Env. Info. Set saves information collected in the current
scenario, so it should be reset at the beginning of Active Perception scheme. Performer then invokes Patroller to start asking Percipient
questions with respect to the description of the sub-objective and the current execution action round by round. The responses of Percipient
are saved in Temporary Env. Info. Set and are also gathered as the context for the next question-answering round. After finishing asking all
significant necessary questions, Patroller will check whether the current execution action is complete by analyzing the current sub-objective
with Perceived env info. saved in Temporary Env. Info. Set, therefore complex Context-Dependent Tasks could be solved smoothly.

high-level task, MP5 first utilizes the Parser to generate a
sequence of short-horizon sub-objectives, as a list of rich
instructions in natural languages. The feasibility of the gen-
erated sub-objectives is augmented by retrieving an external
Knowledge Memory. This knowledge mainly comes from
three sources: part of it is from the online wiki, another part
is from the crafting recipes of items in MineDojo [], and
some are user tips from Reddit. To one sub-objective, Plan-
ner schedules the action sequence that is grounded by the
environmental information gathered by the active percep-
tion scheme. In this case, Performer will execute the actual
actions by explaining the action sequence that is adapted
to the embodied environment, via frequent interaction with
the active perception scheme. Once there are execution fail-
ures (determined by Patroller), Planner will re-schedule the
action sequence of the current sub-objective, or even up-
date the following sub-objectives if some necessary sub-
objectives are missing. Otherwise, the agent will go to
the next sub-objective and schedule new action sequences,
whilst the successful action sequence of the current sub-
objective will be stored in the external memory of Planner
(called Performer Memory), along with the agent situation
when it was planned. In the end, the agent will stop when
the final sub-objective of the task has been reached.

3.2. Active Perception

Let’s take the example shown in Fig. 3 to demonstrate how
the active perception scheme works. In this example, the
active perception scheme is communicated with Performer
to enable an embodied action execution.

At first, Performer invokes Patroller to start asking Per-
cipient questions with respect to the description of the
sub-objective and the current execution action, while si-
multaneously resetting the set of environmental informa-

tion to be gathered. Then Patroller progressively asks
Percipient whether the observed image contains neces-
sary items/factors (e.g., mobs & # @, blocks @@y,
time [l related to recent sub-objective (e.g., pig ¥®) and
the executing action (e.g., “find pig %¥”). The responses
of Percipient are also progressively gathered and act as the
context for the next question-answering round. Note that in
each round, Patroller also checks whether all the necessary
items/factors have been collected - If yes, Patroller stops
the interaction and returns all the environmental informa-
tion as natural language, and invokes Performer to execute
the next action. If Patroller eventually fails to gather enough
items/factors, it will tell Performer what items/factors are
missing in the observed images, which suggests Performer
keeps executing the current action. Please also check the
example shown in Fig. 2.

Similarly, active perception used in situation-aware plan-
ning is similar to what is explained here, except that the ap-
plied instructions do not contain the executable action. For
more details please check the Sup. E.

3.3. Perception-aware Planning and Execution

Situation-aware Planning. Given one sub-objective, Plan-
ner will generate the action sequence based on the descrip-
tion of the situation, such as the objective-conditioned envi-
ronmental information from the active perception scheme,
the inventory status and localization, and efc. Moreover,
Planner will retrieve previous successful action sequences
as the demonstration prompt to augment the aforemen-
tioned planning results. If the active perception scheme fails
to find the key items/factors about the current sub-objective
in the observed image, the generated action sequences will
include more actions to reach them. Moreover, if Performer
encounters execution failures determined by Patroller (such

16310

Response
This picture is showing a pig,

® Finetune

& Frozen types of Minecraft mobs.
LR)
& &
LoRA Large Language Model
T 4 4 1
Instruction
® Alignment Net What types of Minecraft mobs is
this showing?

! —

& Image Encoder

Figure 4. The model architecture of MineLLM. Image is encoded
by a pre-trained vision encoder and decoded by LLM. Only the
parameters of Alignment Net and LoRA are trainable.

as failure of “equip wooden sword @), Planner will re-
schedule the action sequence or even update the following
sub-objectives, with the help of external memories.

Embodied Action Perception. As indicated in Sec. 3.2,
Performer would like to communicate with the active per-
ception scheme in every round of action execution, so as
to enhance the ego-centric awareness of the agent. The new
action will be executed if Patroller identifies necessary envi-
ronmental information in the observed images that matches
both the sub-objective and the goal of the current action.
Otherwise, the current action is kept executing until en-
countering execution failures or the end of the episode. The
successful action sequence about one sub-objective will be
stored in the Performer Memory, together with necessary
situational information of the agent when it was planned.
For more details about the planning and execution process,
please check Sup. G.2 and Sup. B.2.

3.4. Implementation Details

Percipient. The network of Percipient is depicted in
Fig. 4. Images are processed by a frozen vision encoder
MineCLIP [8], whose features are projected by an Align-
ment Net(we use two-layer MLP like LLaVA-1.5 [17]) to
the same feature space as the text embeddings of the ap-
plied LLM (we use Vicuna-13B-v1.5 [5]). Then the vision
and text tokens are concatenated to feed into a LoRA-based
fine-tuned LLM [12]. We add LoRA [12] parameters to
all projection layers of the self-attention layers in the LLM.
Only the parameters of the Alignment Net and the LoRA
module are optimized during training. The construction of
the training data with respect to Percipient is in the Sup. B.1.

Parser, Planner, and Patroller. We utilize OpenAl's GPT-
4 122] as LLMs in Parser, Patroller, and Planner. We also
evaluate other alternatives of GPT-4 [22], such as open-
source models like Vicuna-13B-v1.5 [5] and LLaMA2-
70B-Chat [29] in Sup.D.3.

Performer. It is important to clarify that the actions gen-
erated by Planner are not low-level commands such as key-
board and mouse operations [1], but a set of simple actions

(such as equip, move, craft). Inspired by GITM [37], we
implement these actions appropriately through basic oper-
ations provided by the MineDojo [§] simulator. For more
details, please check the Sup. B.2.

4. Experiments

At first, we depict the setup of the Minecraft simulation en-
vironment that we build and validate MP5, and give the
definition of the evaluated tasks and how to set them in
Sec. 4.1. In Sec. 4.2, we present the quantitative and quali-
tative performance of MP5, as well as in-depth discussions
on these tasks, and demonstrate that MP5 can even success-
fully accomplish tasks that are morc open-ended and never
seen before. At last, we investigate how different modules
affect the performance of MP5 and analyze the impact of
various module choices within our system in Sec. 4.3.

4.1. Experimental Setup

Environment Setting. We employ MineDojo [§] as our
simulation environment to build and validate MP5. We cap-
ture player ego-view images provided by MineDojo [&] as
input of MP5, and further construct a dataset for training
MineLLM. As for the output of MP5, we encapsulate Mine-
Dojo’s [8] actions to create our own action space.

Task Setting. To cvaluate how our MP5 can integrate per-
ception information with planning and execution, we define
two types of tasks: Context-Dependent Tasks and Process-
Dependent Tasks as illustrated in Tab. 1 and Tab. 2.

1) Context-Dependent Tasks primarily study how Active
Perception enables the agent to better perceive low-level
context information in the environment. We first estab-
lish 6 aspects of environmental information derived from
the Minecraft game environment: [Object, Mob, Ecology,
Time, Weather, Brightness]. Each aspect has multiple op-
tions. For example, pigs 8, cows A, and sheep '@ are
all elements belonging to Mob. Based on this, we de-
fine 16 tasks and organize their difficulty into four levels
by taking into account the number of information elements
that require perception, as is shown in Tab. 1. For exam-
ple, Easy tasks necessitate the perception of only one el-
ement, whereas Complex tasks involve the perception of
4 to 6 elements. We rigorously assess MP5’s proficiency
in environmental context perception across these 16 tasks.
In Context-Dependent Tasks, our environment details are
predetermined (e.g., biomes [, 5%, weather | Jlllll, and
efc.), as certain targets are exclusive to specific environ-
ments. Without this environmental specificity, the agent
might never encounter the intended target. We retain each
observation of active perception throughout the task, using
them as references to ascertain the agent’s successful com-
pletion of the task.

2) Process-Dependent Tasks focus on exploring the con-

16311

Table 1. Context-Dependent Tasks. 16 tasks are defined and di-
vided into 4 difficulty levels based on the minimum number of
information types needed. Underlines label the environmental in-
formation, reflecting the complexity varies at each level.

Task Level Example Task
Easy Find a trec ¥
Mid Find a tree 4 in the forest Ml
Find a tree # in the forest ¥
Hard : A
during the nighttime [- |
Complex Find a pig @ near a grass #

in the forest ¥ during the daytime

tributions of situation-aware planning, embodied action ex-
ecution, and the integration with Active Perception in ac-
complishing long-term tasks while constantly perceiving
the environment and dynamically adjusting actions. We se-
lect 25 tasks from the technology tree and define their diffi-
culty levels as Basic level @ to Diamond level @ based
on the number of reasoning steps required to complete
the tasks. All environmental factors (e.g., biomes #E, g,
weather | [l and efc.) are randomized in Process-
Dependent Tasks. More details can be found in Sup.D.1.

Evaluation Metrics. For different tasks, the agent’s initial
position and environment seed are randomized. The agent
begins in survival mode, commencing with an empty inven-
tory, and faces the challenge of hostile mob generation. It
starts from scratch, with a game time limit of 10 minutes, a
time period equivalent to 12,000 steps at a control frequency
of 20Hz. More details can be found in Sup. C.

For the Context-Dependency Tasks, each assignment is
open-ended. Therefore, we conduct manual evaluations
when the agent determines it has completed the task or
exceeds the time limit. Two cases are ruled as failures:
1)There is an observation that meets all the conditions, but
the agent does not end the task; 2) The last observation
does not meet all the conditions, yet the agent ends the task.
Otherwise, we believe that the agent correctly perceives all
the context according to the task and determines that the
task is successfully completed. For the Process-Dependent
Tasks, any accidental deaths of the agent during the game
are counted as failures, as are instances where the agent
does not accomplish the task within the time limit.

In practice, we conduct 50 games on Context-Dependent
Tasks and 30 games on Process-Dependent Tasks, averaging
the success rates for both. The results are grouped accord-
ing to the previously defined difficulty levels, and report
the group means. For detailed definitions of the evaluation,
please refer to Sup. D.

4.2. Main Results
4.2.1 Results of Context-Dependent Tasks

In Context-Dependent Tasks, we primarily investigate how
to enhance an agent’s perception of context information

Table 2. Process-Dependent Tasks. 25 tasks are defined and di-
vided into 5 difficulty levels based on increasingly increasing rea-
soning steps. A higher difficulty level implies that the agent needs
to engage in longer reasoning and planning.

Task Level ~ Reasoning Step Example Task

Basic i 1-3 craft crafting table f
Wooden ¢ 4-5 craft wooden sword 3¢

Stonc @ 6-9 mine stonc @

Iron & 10-11 smelt iron ingot &
Diamond @ >11 obtain diamond @

within the environment. We demonstrate the performance
difference between Active Perception and other percep-
tion methods. We compare them with pre-trained multi-
modal large language models LLaVA-1.5 [17] and GPT-
4V [21], and analyze the performance of both active and
fine-grained global perception on the tasks in Tab. 3. Al-
though fine-grained global perception can obtain compre-
hensive perceptual information, due to the lack of objective-
conditioned attention, the objective-related information ob-
tained may be lacking or incorrect. Active perception only
focuses on objective-related information and ignores other
useless information, so that more accurate objective-related
information can be obtained and better performance in
Context-Dependent Tasks can be achieved. For the compari-
son, we use MineLLLLM, which is fine-tuned on the Minecraft
instruction dataset we collect, slightly better than GPT-
4V [21], which is trained on massive data, and substantially
better than LLaVA-1.5 [17], which is not fine-tuned on in-
struction data. The complete results of Context-Dependent
Tasks can be found in Sup.D.2.

4.2.2 Results of Process-Dependent Tasks

In Process-Dependent Tasks, we report the performance
of the agent in completing long-horizon tasks by contin-
uously perceiving the environment context and dynami-
cally adjusting its actions. We also investigate the agent’s
behavior in scenarios of non-situation-aware planning and
non-embodied action execution. The complete results of
Process-Dependent Tasks can be found in Sup.D.2.
Considered the landscape of related works [1, 11, 30,
, 37], we refrain from making direct comparisons due to
the substantial variations in the observation space, action
space, environmental setup, and game termination con-
ditions. Notably, VPT [1] emulates human players’ key-
board and mouse controls, DreamerV3 [11] is trained from
scratch for diamond collection @ in a modified Minecraft
environment with altered block-breaking mechanics using
world models, DEPS [31] integrates LLM planning and a
learning-based control policy based on MineDojo [8] ac-
tions, GITM [37] employs privileged information such as
lidar perception, and Voyager [30] utilizes purely text-based

16312

Table 3. Performance on Context-Dependent Tasks. We com-
pare the success rate of different Methods and different Perception
strategies. We set up special prompt to make the output of the cap-
tion as comprehensive as possible, this perception method is called
Fine-Grained Global Perception. We use A to denote Active Per-
ception, and G to denote Fine-Grained Global Perception.

Method Strategy EasyAver;\l/%iedSucile:rstme((;Zﬁlplex
wavasi |8 S8 50 00
GPTVEL X | e oas s s
MPSOws Y| gis aas ss ot

information perception in collaboration with the Mineflayer
API for action. It is crucial to note that in Voyager [30],
items are not dropped upon the agent’s death. Given that
our experiments aim to showcase the system’s capability
to adapt both process-dependent reasoning and complex
context-understanding tasks, our focus turns to presenting
the following two key insights:

Embodied action execution is critical for open-ended
tasks. Comparing MP5 w/o E. and MP5 in Tab. 4, we
can observe that when an agent is unable to interact with
the environment and access low-level environment contex-
tual information during action execution, it essentially be-
comes “blind”, unable to determine the termination of its
actions based on environment. Therefore, the success rate
in Process-Dependent Tasks is 0.00%.

Situation-aware planning leads to more scenario-
appropriate strategies. Comparing MP5 w/o P. and MP5
in Tab. 4, we observe that the lack of environment con-
textual information during the agent’s planning process can
lead to erroneous or redundant actions, thereby reducing the
success rate (for example, the success rate in diamond-level
& tasks decrease from 22.00% to 14.00%). Consider a sce-
nario where the current sub-objective is “kill a pig &#”. If
a pig @M is already present, the agent should directly ex-
ecute “move” to approach without the need to first “find”
then “move”. However, the relatively small decrease in the
success rate can be attributed to the dynamic adjustment of
perception and action execution offered by embodied ac-
tion execution. Simultaneously, when errors are detected,
the perceived environmental information and the erroneous
actions can be fed back to the planner for re-planning.

4.2.3 Open-Ended Tasks

Processing long-horizon reasoning and understanding com-
plex contexts are interconnected in the real world. For sim-
plicity and comparability of the experimental setup, the first
two task settings do not consider the intersection of pro-
cess and context, as we cannot exhaust all combinations

Table 4. Performance on Process-Dependent Tasks. We compare
the success rate when interacting or not with the environment dur-
ing the planning or execution. w/o P. and w/o E. indicates non-
situation-aware planning and non-embodied action execution.

Average Success Rate(%)

Method Basic Wooden Stone Iron Diamond
MP5 w/oP. 0.00 0.00 0.00 0.00 0.00
MP5 w/oE. | 92.00 86.00 68.67 4533 14.00
MP5 96.00 88.67 76.00 52.00 22.00

1. Mine2logs 2. Craft 8 planks Task: Dig a block of sand
near the at ;

with a wooden shovel

3. Craft 4 sticks
3

e/
®e /879

Process

4. Crafta 5. Craft 1 wooden
Crafting table shovel

6. Dig a block of sand near the at
, with a wooden shovel

Figure 5. Screenshots of “Dig a block of sand "8 near the water
@® at night B vith a wooden shovel #7. Tn Open-Ended Tasks,
the agent needs to better integrate low-level context information
and high-level decision-making, making it extremely challenging.

that these two task dimensions can form. Therefore, we
refer to tasks that incorporate both Process-Dependent and
Context-Dependent elements as Open-Ended Tasks. Specif-
ically, these tasks require the agent to perceive different in-
formation of the environment at multiple stages of complet-
ing sub-objectives. As shown in Fig. 5, we present an exam-
ple of an Open-Ended Task, named “Dig a block of sand s
near the water @ at night- with a wooden shovel #”. We
conduct extensive validations on this type of task, proving
that MP5 can complete long-sequential tasks in challeng-
ing environments. More demonstrations and experimental
results of Open-Ended Tasks can be found in Sup.F.3.

4.3. Ablation Study

We conduct ablation studies to evaluate the effectiveness of
various modules. The experimental setup and the associated
success rates are in Sec. 4.1. More detailed ablation studies
are listed in Sup.D.3. The following paragraphs present the
analyses derived from our ablation studies.

Model pre-trained on massive data of Minecraft can bet-
ter comprehend the Minecraft appearance styles. Wec
conduct ablation studies on the multi-modal large language
model (MLLM) part within Context-Dependent Tasks in
Tab. 5, comparing the performance outcomes of different
MLLMs and different pre-trained visual encoders in the
percipient. We find the performance of the open-source
model LLaVA-1.5 [17] to be relatively weak, with a suc-
cess rate of merely 50.00% at the Mid level and 11.00% on
the Hard level. This is primarily due to the model’s train-

16313

Table 5. Success rates for different MLLMs and pre-trained visual
encoders in the percipient on Context-Dependent Tasks

Visual Average Success Rate(%)
Method Encoder Easy Mid Hard Complex
LLaVA-1.5[17] CLIP [26] 7250 50.00 11.00 0.00
MineLLM CLIP [26] 95.00 90.00 87.00 80.00
MineLLM MineCLIP [8] | 98.50 9450 93.00 91.00

Table 6. Success rates for different LLMs as zero-shot Planner on
Process-Dependent Tasks

Planner Average Success Rate(%)]

Basic Wooden Stone Iron Diamond
Vicuna-13B-v1.5 [5] 1.33 0.00 0.00 0.00 0.00
GPT-3.5-turbo [20] 95.33 86.67 42.00 2.67 0.00
GPT-4 [22] 96.00 88.67 76.00 52.00 22.00

ing predominantly on real-world data, causing it to strug-
gle with the pixel-style image recognition characteristic of
Minecraft. We also discover that, when the visual encoder is
frozen, the MineLLLM with CLIP [26] as its visual encoder
consistently performs worse across all levels compared to
MineLLM with MineCLIP’s [8] pre-trained single image
visual encoder. It may caused by, in the case of a frozen vi-
sual encoder, a visual encoder pretrained on massive data of
Minecraft can align with pixel-style images more rapidly.

Enhanced reasoning ability results in improved plan-
ning. We compare the performance of open-source
large language models, OpenAI’s GPT-3.5-turbo [20] in
Tab. 6, and GPT-4 [22] as zero-shot Planners on Process-
Dependent Tasks. We find that as the models’ inferential
capabilities increase, the Planner produces better results
by planning in a situation-aware method, yielding more
concise and accurate execution actions. The Vicuna-13B-
v1.5 [5] model, when used as a Planner, struggles to pro-
duce effective plans, achieving only a 1.33% accuracy rate
at the Basic level @. GPT-4 [22] exhibits the best per-
formance, attaining a 22.00% success rate at the Diamond
level @, whereas both Vicuna-13B-v1.5 [5] and GPT-3.5-
turbo [20] score 0.00%.

Leveraging memory leads to better planning. In our
Performer Memory, we store previously successful sub-
objectives and their corresponding execution actions. When
planning in similar scenarios, Performer Memory can pro-
vide the Planner with similar execution action plans for
completing the sub-objectives. While the plans may not be
identical, they can effectively assist the Planner in perform-
ing situation-aware planning. Comparing the first and last
rows of Tab. 7, we find that without the Performer Memory,
the success rate of tasks at all levels decreases (Diamond
level @ drops from 22.00% to 16.67%). However, the de-
crease is not significant as the Performer Memory primarily
serves a reference function, with specific action planning
still heavily reliant on the Planner’s capabilities.

Robustness is essential in open-world settings. To en-
hance the robustness evaluation of our system, we introduce

Table 7. Success rates on different modules within Process-
Dependent Tasks: We study the roles of the Performer Mem-
ory (PM) and the check part of Patroller (P), with "RD’ denoting
“Random Drop” setting. vdenotes the inclusion of the module or
setting, and X indicates its absence.

Average Success Rate(%)

PM P | RD Basic Wooden Stone Iron Diamond
X v X 96.00 87.33 67.33 4733 16.67
v X v 70.00 7.33 0.67 0.00 0.00
v v v 87.33 76.67 4533 18.67 1.33
v v X 96.00 88.67 76.00 52.00 22.00

a “Random Drop” setting. In this setting, we randomly dis-
card one complete sub-objective from the inventory at the
start of each new sub-objective, which deliberately induces
execution errors for the agent. Comparing the second and
third lines in Tab. 7, we observe the critical role of the Pa-
troller in recognizing feedback errors. The Patroller’s abil-
ity to integrate current environmental information with error
information is essential for enabling the planner to re-plan.
The significance of this robustness is evident when exam-
ining the success rates. Without the Patroller’s robustness,

the agent’s success rate on the Wooden level)(plummets
from 76.67% to 7.33%, while success rates on the Iron &=,
and Diamond @ levels drop to 0.00%. Details regarding
the “Random Drop” setting can be found in Sup.D.3.

5. Conclusion

In this paper, we propose a novel multi-modal embodied
system termed MP5 which is driven by frequently ego-
centric scene perception for task planning and execution. In
practice, it is designed by integrating five functional mod-
ules to accomplish task planning and execution via actively
acquiring essential visual information from the scene. The
experimental results suggest that our system represents an
effective integration of perception, planning, and execu-
tion, skillfully crafted to handle both context- and process-
dependent tasks within an open-ended environment.

Limitation and Future Work. Two major limitations need
to be clarified. Firstly, the reliance on GPT-3.5-turbo [20]
or GPT-4 [22] limits the system’s usability, as not everyone
has access to these APIs. Secondly, the scope of the applied
simulation platform is limited. Despite showing promising
performance in Minecraft, we haven’t extended our explo-
ration to other simulation platforms, which is a potential
area for further research.

Acknowledgement. This work was supported by the Na-
tional Key R&D Program of China (2021 YFB1714300), the
National Natural Science Foundation of China (62106154,
62132001), the Natural Science Foundation of Guangdong
Province, China (2022A1515011524).

16314

References

(1]

(2]

(3]

[4]

[5

[t}

[6

—_

[7

[

(8]

[9

—

[10]

[11]

Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga,
Jie Tang, Adrien Ecoffet, Brandon Houghton, Raul Sampe-
dro, and Jeff Clune. Video pretraining (vpt): Learning to act
by watching unlabeled online videos. Advances in Neural
Information Processing Systems, 35:24639-24654, 2022. 2,
3,5,6

Tom Brown, Benjamin Mann, Nick Ryder. Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural in-
formation processing systems, 33:1877-1901, 2020. 2
Shaofei Cai, Zihao Wang, Xiaojian Ma, Anji Liu, and Yitao
Liang. Open-world multi-task control through goal-aware
representation learning and adaptive horizon prediction. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 13734-13744, 2023. 2

Kegin Chen, Zhao Zhang, Weili Zeng, Richong Zhang,
Feng Zhu, and Rui Zhao. Shikra: Unleashing multi-
modal llm’s referential dialogue magic. arXiv preprint
arXiv:2306.15195, 2023. 2

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao
Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang, Yonghao
Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source
chatbot impressing gpt-4 with 90%* chatgpt quality. See
https://vicuna. lmsys. org (accessed 14 April 2023), 2023.
2,5,8

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat
Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale
Fung, and Steven Hoi. Instructblip: Towards general-
purpose vision-language models with instruction tuning,
2023. 2

Ziluo Ding, Hao Luo, Ke Li, Junpeng Yue, Tiejun Huang,
and Zongqing Lu. Clip4mc: An rl-friendly vision-language
model for minecraft. arXiv preprint arXiv:2303.10571,
2023. 2

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar,
Yuncong Yang, Haoyi Zhu, Andrew Tang, De-An Huang,
Yuke Zhu, and Anima Anandkumar. Minedojo: Building
open-ended embodied agents with internet-scale knowledge.
Advances in Neural Information Processing Systems, 35:
18343-18362, 2022. 2, 3,4,5,6, 8

Peng Gao, Jiaming Han, Renrui Zhang, Ziyi Lin, Shijie
Geng, Aojun Zhou, Wei Zhang, Pan Lu, Conghui He, Xi-
angyu Yue, et al. Llama-adapter v2: Parameter-efficient vi-
sual instruction model. arXiv preprint arXiv:2304.15010,
2023. 2

William H Guss, Brandon Houghton, Nicholay Topin,
Phillip Wang, Cayden Codel, Manuela Veloso, and Ruslan
Salakhutdinov. Minerl: a large-scale dataset of minecraft
demonstrations. In Proceedings of the 28th International
Joint Conference on Artificial Intelligence, pages 2442—
2448,2019. 2

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy
Lillicrap. Mastering diverse domains through world models.
arXiv preprint arXiv:2301.04104, 2023. 2, 6

[12]

[13]

[14]

[15]

[16]

(7]

(18]

[19]

[20]
[21]
[22]

(23]

[24]

[25]

[26]

(27]

16315

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021. 5

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor
Mordatch. Language models as zero-shot planners: Extract-
ing actionable knowledge for embodied agents. In Interna-
tional Conference on Machine Learning, pages 9118-9147.
PMLR, 2022. 2

Yuzhou Huang, Liangbin Xie, Xintao Wang, Ziyang Yuan,
Xiaodong Cun, Yixiao Ge, Jiantao Zhou, Chao Dong, Rui
Huang, Ruimao Zhang, et al. Smartedit: Exploring com-
plex instruction-based image editing with multimodal large
language models. arXiv preprint arXiv:2312.06739, 2023. 2
Shalev Lifshitz, Keiran Paster, Harris Chan, Jimmy Ba, and
Sheila Mcllraith. Steve-1: A generative model for text-to-
behavior in minecraft. arXiv preprint arXiv:2306.00937,
2023. 2

Zichuan Lin, Junyou Li, Jianing Shi, Deheng Ye, Qiang Fu,
and Wei Yang. Juewu-mc: Playing minecraft with sample-
efficient hierarchical reinforcement learning. arXiv preprint
arXiv:2112.04907, 2021. 2

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee.
Improved baselines with visual instruction tuning. arXiv
preprint arXiv:2310.03744,2023. 5,6,7, 8

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee.
Visual instruction tuning. arXiv preprint arXiv:2304.08485,
2023. 2

Junhyuk Oh, Satinder Singh, Honglak Lee, and Pushmeet
Kohli. Zero-shot task generalization with multi-task deep
reinforcement learning. In International Conference on Ma-
chine Learning, pages 2661-2670. PMLR, 2017. 2, 3
OpenAl Introducing chatgpt. 2022. 8

OpenAl Gpt-4v(ision) system card. 2023. 6, 7

R OpenAl. Gpt-4 technical report. arXiv, pages 2303—
08774, 2023. 5, 8

Long Ouyang. Jeffrey Wu, Xu Jiang, Diogo Almeida, Car-
roll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini
Agarwal, Katarina Slama, Alex Ray, et al. Training lan-
guage models to follow instructions with human feedback.
Advances in Neural Information Processing Systems, 35:
27730-27744,2022. 2

Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan
Huang, Shuming Ma, and Furu Wei. Kosmos-2: Ground-
ing multimodal large language models to the world. arXiv
preprint arXiv:2306.14824, 2023. 2

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, Ilya Sutskever, et al. Language models are unsu-
pervised multitask learners. OpenAl blog, 1(8):9, 2019. 2
Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748-8763. PMLR, 2021. 8

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez
Colmenarejo, Alexander Novikov, Gabriel Barth-Maron,

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[36]

[37]

Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Sprin-
genberg, et al. A generalist agent. arXiv preprint
arXiv:2205.06175,2022. 2

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al.
Llama: Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971, 2023. 2

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023. 2, 5

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar,
Chaowei Xiao, Yuke Zhu, Linxi Fan, and Anima Anandku-
mar. Voyager: An open-ended embodied agent with large
language models. arXiv preprint arXiv:2305.16291, 2023.
2,6,7

Zihao Wang, Shaofei Cai, Anji Liu, Xiaojian Ma, and Yitao
Liang. Describe, explain, plan and select: Interactive plan-
ning with large language models enables open-world multi-
task agents. arXiv preprint arXiv:2302.01560, 2023. 2, 6
Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan,
Yiyang Zhou, Junyang Wang, Anwen Hu, Pengcheng Shi,
Yaya Shi, et al. mplug-owl: Modularization empowers
large language models with multimodality. arXiv preprint
arXiv:2304.14178, 2023. 2

Zhenfei Yin, Jiong Wang, Jianjian Cao, Zhelun Shi, Dingn-
ing Liu, Mukai Li, Lu Sheng, Lei Bai, Xiaoshui Huang,
Zhiyong Wang, et al. Lamm: Language-assisted multi-
modal instruction-tuning dataset, framework, and bench-
mark. arXiv preprint arXiv:2306.06687, 2023. 2

Haoqi Yuan, Chi Zhang, Hongcheng Wang, Feiyang Xie,
Penglin Cai, Hao Dong, and Zongqing Lu. Plan4mc:
Skill reinforcement learning and planning for open-world
minecraft tasks. arXiv preprint arXiv:2303.16563, 2023. 2
Enshen Zhou, Yiran Qin, Zhenfei Yin, Yuzhou Huang,
Ruimao Zhang, Lu Sheng, Yu Qiao, and Jing Shao. Mine-
dreamer: Learning to follow instructions via chain-of-
imagination for simulated-world control. arXiv preprint
arXiv:2403.12037, 2024. 2

Deyao Zhu, Jun Chen, Xiaoqgian Shen, Xiang Li, and Mo-
hamed Elhoseiny. Minigpt-4: Enhancing vision-language
understanding with advanced large language models. arXiv
preprint arXiv:2304.10592, 2023. 2

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Wei-
jie Su, Chenyu Yang, Gao Huang, Bin Li, Lewei Lu, Xiao-
gang Wang, et al. Ghost in the minecraft: Generally capable
agents for open-world enviroments via large language mod-
els with text-based knowledge and memory. arXiv preprint
arXiv:2305.17144,2023. 2,5, 6

16316

