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Abstract

Despite diffusion models having shown powerful abil-
ities to generate photorealistic images, generating videos
that are realistic and diverse still remains in its infancy.
One of the key reasons is that current methods intertwine
spatial content and temporal dynamics together, leading to
a notably increased complexity of text-to-video generation
(T2V). In this work, we propose HiGen, a diffusion model-
based method that improves performance by decoupling the
spatial and temporal factors of videos from two perspec-
tives, i.e., structure level and content level. At the structure
level, we decompose the T2V task into two steps, including
spatial reasoning and temporal reasoning, using a unified
denoiser. Specifically, we generate spatially coherent pri-
ors using text during spatial reasoning and then generate
temporally coherent motions from these priors during tem-
poral reasoning. At the content level, we extract two subtle
cues from the content of the input video that can express
motion and appearance changes, respectively. These two
cues then guide the model’s training for generating videos,
enabling flexible content variations and enhancing tempo-
ral stability. Through the decoupled paradigm, HiGen can
effectively reduce the complexity of this task and generate
realistic videos with semantics accuracy and motion stabil-
ity. Extensive experiments demonstrate the superior perfor-
mance of HiGen over the state-of-the-art T2V methods. We
have released our source code and models.

1. Introduction
The purpose of text-to-video generation (T2V) is to gener-
ate corresponding photorealistic videos based on input text
prompts. These generated videos possess tremendous po-
tential in revolutionizing video content creation, particu-
larly in movies, games, entertainment short videos, and be-
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Prompt: Batman turns his head from right to left.
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Prompt: Tiny plant sprout coming out of the ground.

Figure 1. Visual comparison with ModelScopeT2V [53] and Gen-
2 [10]. The videos generated by ModelScopeT2V exhibit notice-
able motion but suffer from lower spatial quality. However, while
Gen-2 produces realistic frames, they are mostly static with min-
imal motion. In contrast, the results of our HiGen demonstrate
both realistic frames and rich temporal variations.

yond, where their application possibilities are vast. Existing
methods primarily tackle the T2V task by leveraging pow-
erful diffusion models, leading to substantial advancements
in this domain.

Typically, mainstream approaches [5, 8, 17, 53, 55] at-
tempt to generate videos by extending text-to-image (T2I)
models by designing suitable 3D-UNet architectures. How-
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Prompt: A video of a duckling wearing a medieval soldier helmet and riding a skateboard.

Prompt: Astronaut riding a horse.

Temporal Consistency=0.966

Temporal Consistency=0.954

Temporal Consistency=0.926

Temporal Consistency=0.938

Temporal Consistency=0.941

Temporal Consistency=0.889

Appearance Factor=0.00

Appearance Factor=1.00

Motion Factor=500

Motion Factor=500

Appearance Factor=0.00
Motion Factor=300

Appearance Factor=0.00

Appearance Factor=1.00

Motion Factor=500

Motion Factor=500

Appearance Factor=0.00
Motion Factor=300

Figure 2. The impact of motion factors and appearance factors. Larger motion factors introduce dynamic motions to the videos instead of
static scenes, while larger appearance factors contribute to richer temporal semantic variations in the generated videos.

ever, due to the complex distribution of high-dimensional
video data, directly generating videos with both realistic
spatial contents and diverse temporal dynamics jointly is
in fact exceedingly challenging, which often leads to un-
satisfactory results produced by the model. For example, as
shown in Fig. 1, videos generated by ModelScopeT2V [53]
exhibit dynamics but suffer from lower spatial quality. Con-
versely, videos from Gen-2 [10] showcase superior spa-
tial quality but with minimal motions. On the other hand,
VideoFusion [32] considers spatial redundancy and tempo-
ral correlation from the noise perspective by decomposing
input noise into base noise and residual noise. However, it
remains challenging to directly denoise videos with spatio-
temporal fidelity from the noise space.

Based on the above observations, we propose a new dif-
fusion model-based HiGen approach that decouples videos
into spatial and temporal factors from two perspectives,
namely structure level and content level. For the structure
level, in light of the separability of space and time [11, 54]
in video data, we decompose the T2V task into distinct spa-
tial reasoning and temporal reasoning processes, all pred-
icated on a unified model. During spatial reasoning, we
utilize text prompts to generate spatial priors that are se-
mantically coherent. These priors are then used in tempo-
ral reasoning to generate temporally coherent motions. For
the content level, we extract two cues that respectively rep-

resent the motion and appearance variations in videos and
utilize them as conditions for training the model. By this
means, we can enhance the stability and diversity of gen-
erated videos by flexibly controlling the spatial and tempo-
ral variations through manipulating the two conditions, as
shown in Fig. 2. Thanks to this hierarchically decoupled
paradigm, HiGen ensures simultaneous high spatial qual-
ity and motion diversity in the generated videos.

To validate HiGen, we extensively conduct qualitative
and quantitative analyses, comparing it with state-of-the-art
methods on the public dataset, i.e., MSR-VTT [61]. The ex-
perimental results demonstrate the effectiveness of HiGen
and its superior performance compared to current methods.

2. Related Works

Diffusion-based Text-to-Image Generation. Recently,
diffusion models have greatly advanced the progress of
text-driven photorealistic image synthesis. Initially, due to
the substantial computational burden associated with per-
forming iterative denoising on high-resolution images, early
works [16, 48] predominantly concentrated on the genera-
tion of low-resolution images. To generate high-resolution
images, a series of methods [3, 18, 34, 40, 43] have em-
ployed super-resolution techniques on low-resolution im-
ages, while others [13, 37, 41] have utilized decoders to de-
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Figure 3. The overall framework of HiGen. Left: The structure-level spatio-temporal decoupling. Firstly, spatial reasoning is performed
to obtain latent embeddings of spatial priors. Then, these spatial priors are used for temporal reasoning to generate videos. Right: The
content-level motion-appearance decoupling. Motion analysis and appearance analysis refer to the calculations of motion and appearance
guidance, respectively.

code features from the latent space. Besides, exploring how
to achieve flexible and controllable image generation is also
an important research direction, such as ControlNet [64],
Composer [24], DreamBooth [42], etc. Building upon state-
of-the-art image generation methods, numerous advanced
video generation [14, 63] or editing [4, 7, 33, 38, 59, 67]
approaches have been developed by fine-tuning with ad-
ditional temporal transformer layers or controlling the in-
ference process. In this work, we fine-tune a high-quality
text-to-video model by leveraging the powerful and efficient
text-to-image model, i.e., Stable Diffusion [41].

Diffusion-based Text-to-Video Generation. Video syn-
thesis methods strive to explore the generation of tempo-
rally coherent videos. Early works primarily relied on Gen-
erative Adversarial Networks (GANs) [2, 21, 45, 47, 49,
52, 62, 66]. Recently, breakthroughs have been achieved
through diffusion-based methods, which can be broadly
categorized into two paradigms: (i) introducing additional
temporal layers [5, 12, 14, 15, 30, 32, 53, 55, 59, 60, 69]
or operations [1] for fine-tuning. To reduce the complexity
of video generation, some works [5, 17, 28, 46, 57, 63, 69]
employ a series of big diffusion models for generating and
upsampling videos given the input text. Besides, another
line [12, 32] alleviates the training difficulty by increasing
temporal correlations between frame-wise noise, but this
may limit the temporal diversity of the generated videos.
(ii) Controlling the inference process through training-free
designs [9, 20, 23, 25, 29]. This paradigm does not require
training but typically yields lower temporal continuity com-
pared to fine-tuning-based methods.

Unlike existing approaches, in this work, we explore a
hierarchical spatio-temporal decoupling paradigm based on
the more promising fine-tuning strategy to train T2V mod-
els that exhibits both rich temporal variations and high-
quality spatial content.

3. Approach
3.1. Preliminaries

In this work, we use x0 = [x1
0, . . . ,x

F
0 ] to denote a video

with F frames. Following Stable Diffusion [41], we map
the video frames into the latent space by a Variational Auto-
Encoder (VAE) [26] as z0 = [E(x1

0), . . . , E(xF
0 )], where

E denotes the encoder, and z0 can be decoded by the de-
coder D to reconstruct RGB pixels. With the video latent
embedding z0, the diffusion process involves gradually add
random noises into z0 using a T -Step Markov chain [27]:

q(zt|zt−1) = N (zt;
√
1− βt−1zt−1, βtI), (1)

where βt refers to the noise schedule, and N (·; ·) indi-
cates the Gaussian noise. After being corrupted by noise,
the obtained zt is fed into a 3D-UNet for noise estimation,
enabling progressive denoising process to restore a clean
video latent embedding.

In both the training and inference phase of the 3D-UNet,
we adopt the same approach as in Stable Diffusion to inject
the text condition and diffusion time t separately into the
spatial Transformer layer and residual block. For brevity,
we omit the details of these two components in Fig. 3.

3.2. Structure-level Decoupling

From a model structure perspective, we divide the T2V gen-
eration into two steps: spatial reasoning and temporal rea-
soning. Spatial reasoning aims to maximize the utilization
of the knowledge in T2I models, thereby providing high-
quality spatial priors for temporal reasoning. Specifically,
as shown in the Spatial Reasoning card in Fig. 3, we only
leverage the spatial layers in 3D-UNet while disregarding
its temporal components for spatial generation. After T
steps of denoising, the spatial prior is represented as zs

0. It
is worth noting that zs

0 does not need to be decoded by D
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Figure 4. The spatial prior for temporal reasoning.

to reconstruct its pixel values. This allows for an efficient
input of zs

0 into the subsequent temporal reasoning.
The core idea of temporal reasoning is to synthesis di-

verse temporal dynamics for video generation on top of
the spatial prior zs

0. Specifically, as shown in shown in
Fig. 4, we initialize a convolutional layer with all zeros
(i.e., ConvStemt(·)) for zs

0 separately. The structure of
ConvStemt(·) is identical to the image pre-trained convolu-
tional stem in the UNet (i.e., ConvStems(·)). After passing
through ConvStemt(·), we repeat the spatial prior F times
and add it to the noisy video embeddings zt for UNet.

Besides, we further clarify some details of the proposed
structure-level decoupling from the following three aspects:
(i) Merging the spatial prior after the first convolutional
stem enables effective guidance for all the spatial and tem-
poral layers in the 3D-UNet, which maximizes the utiliza-
tion of the rich semantic priors present in the spatial prior.
(ii) Our temporal reasoning and spatial reasoning share the
same spatial layers. This allows the temporal reasoning
phase to leverage the pre-trained knowledge in the spa-
tial layers, facilitating more accurate temporal synthesizing.
(iii) The temporal layers consist of a series of temporal con-
volutions and temporal self-attention layers following [53].
Despite similar structures, our temporal layers can be freed
from intricate spatial contents and can solely focus on gen-
erating fine-grained temporal motions between consecutive
frames, as demonstrated in Fig. 7.

3.3. Content-level Decoupling

Based on the structure-level decoupling, our paradigm is al-
ready capable of generating spatially realistic frames. How-
ever, in the temporal case, it still faces two challenges:
nearly static video frames (e.g., Gen-2 [10]) and unstable
temporal variations (e.g., the 2nd row in Fig. 5). Hence,
we further propose motion and appearance decoupling for
video content level to enhance the vividness and stability of
synthesized videos.
Motion Analysis. For motion decoupling, we present mo-
tion analysis to quantify the magnitude of motion between
frames, providing motion guidance for 3D-UNet. FPS
(frames per second), which reflects the playback speed of
the video, may seem like an intuitive choice [69]. How-
ever, FPS alone does not accurately reflect the motion in a
video (e.g., static videos may also have a high FPS). In-
spired by video understanding tasks [54, 68], frame dif-

ferencing with negligible computational cost is an effec-
tive method for measuring video motion. Therefore, for
a sequence of F frames, we define the motion factor as
γm
f = ||zf0 − zf+1

0 ||, which indicates the magnitude of the
pixel differences between adjacent frames. By computing
γm
f for F frames, we can obtain F − 1 motion factors:

r̃m = [γm
1 , . . . , γ

m
F−1] ∈ RF−1.

To incorporate r̃m into the 3D-UNet, we first round γm
f

and then utilize sinusoidal positional encoding [51] and a
zero-initialized MLP (Multi-Layer Perceptron) to map it
into a C-dimensional space:

rm = Interpolate(MLP(Sin(Round(r̃m)))) ∈ RF×C , (2)

where Interpolate(·) is a linear interpolation function that
aligns the F − 1 motion factors with the actual number of
frames (i.e., F ). Next, the motion guidance rm is added to
the time-step embedding vector of the diffusion sampling
step t [16]. Therefore, rm is integrated with features in each
residual block.
Appearance Analysis. The motion factor describes pixel-
level variations between adjacent frames while it cannot
measure the appearance changes. To address this, we lever-
age existing visual semantic models such as, DINO [6, 35],
CLIP [39], for appearance analysis between frames:

g = Norm(Ω(x0)), r̃
a = g ⊗ T (g) ∈ RF×F , (3)

where Ω(·) and Norm(·) refer to the semantic model and
normalization operation, respectively. ⊗ is matrix multipli-
cation, and T (·) means the transpose operation. Therefore,
r̃a represents the cosine similarities between all frames,
which is then transformed using a zero-initialized MLP to
obtain the appearance guidance: ra = MLP(r̃a) ∈ RF×C .
Afterwards, ra is inputted into the 3D-UNet in the same way
as the motion guidance rm.

In general, a video clip with large appearance variations
will have a lower cosine similarity value between the first
and last frames, i.e., r̃a

0,F−1. To align with intuition, we
further define the appearance factor as γa = 1 − r̃a

0,F−1.
In this case, a larger appearance factor γa corresponds to
significant appearance variations in the generated videos.
In training, we calculate the appearance guidance from real
videos using Eq. 3. In inference, we manually construct
the variation matrix (r̃a) based on the appearance factor γa,
which will be discussed in the next section.

3.4. Training and Inference

Training. We train our 3D-UNet through image-video joint
training [19, 56]. Specifically, we allocate one-fourth of the
GPUs for image fine-tuning (i.e., spatial reasoning), while
the remaining GPUs are utilized for video fine-tuning (i.e.,
temporal reasoning). For image GPUs, we only optimize
the spatial parameters that were pre-trained by Stable Diffu-
sion [41] to preserve its spatial generative capability. On the
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Prompt: A man is riding a horse in sunset.
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Figure 5. Visualization for the effect of Structure-Level (SL) de-
coupling and Content-Level (CL) decoupling.

other hand, for video fine-tuning, we optimize all parame-
ters based on strong spatial priors. To ensure efficiency, we
utilize the middle frame of the input videos as the spatial
prior during training.
Inference. Our inference process starts by performing a
standard T2I process [41] using only the textual conditions,
resulting in the high-quality spatial prior. Then, this spatial
prior, along with the motion and appearance guidances, will
be inputted into the 3D-UNet for temporal reasoning. Next,
let’s explain how to construct the guidance features that
correspond to the specified motion and appearance factors.
Firstly, for a given motion factor γm, we set all elements in
the vector r̃m to γm, and construct the motion guidance rm

by Eq. 2. For a stable video, the recommended range for
γm is [300, 600]. Secondly, for appearance guidance, we
can manually construct the variation matrix r̃a based on the
given appearance factor γa:

r̃
a
=



0k + 1, 1k + 1, · · · (F − 1)k + 1,
1k + 1, 0k + 1, · · · (F − 2)k + 1,

...
...

. . .
...

(F − 2)k + 1, (F − 3)k + 1, · · · 1k + 1,
(F − 1)k + 1, (F − 2)k + 1, · · · 0k + 1,


,

(4)

where k = −γa

F−1 . The variation matrix r̃a is obtained by lin-
ear interpolation, resulting in smooth appearance changes
between consecutive frames.

4. Experiments

4.1. Implementation Details

Optimization. In this work, all modules are trained using
the AdamW [31] optimizer with a learning rate of 5e-5. The
weight decay is set to 0, and our default training iteration is
25,000. The spatial resolution of the videos is 448×256.
During the image-video joint training, the batch size for
images is 512 (distributed across 2 GPUs), the number of
video frames F is 32, and the batch size for videos is 72
(distributed across 6 GPUs). Therefore, we use 8×A100
GPUs to fine-tune the denoiser. Besides, for the pre-trained

SL CL
Temporal

Consistency
↑ CLIPSIM↑

ModelScope [53] ✗ ✗ 0.931 0.292
↓ ✓ ✗ 0.889 0.313

HiGen ✓ ✓ 0.944 0.318
Table 1. Ablation studies for Structure-Level (SL) decoupling and
Content-Level (CL) decoupling.

parameters from Stable Diffusion (i.e., the spatial layers),
we apply a decay of 0.2 to their gradients.
Datasets. The dataset used in our study consists of two
types: video-text pairs and image-text pairs. For the video
dataset, following previous works [17, 46, 69], we also se-
lect a subset of watermark-free video from our internal data,
amounting to a total of 17 million video-text pairs. The
image dataset primarily consists of LAION-400M [44] and
similar private image-text pairs, comprising around 60 mil-
lion images. In the ablation experiments, for efficiency, we
gathered 69 commonly used imaginative prompts from re-
cent works for testing, which will be included in our Ap-
pendix. For the comparison of Fréchet Inception Distance
(FID) [36], Fréchet Video Distance (FVD) [50] and CLIP
Similarity (CLIPSIM) [58] metrics with state-of-the-art in
Tab. 3, we evaluated the same MSR-VTT dataset [61] as
previous works. Besides, Temporal Consistency [10] refers
to the average CLIP cosine similarity between consecutive
frames.

4.2. Ablation Studies

In this section, we will analyze our hierarchical spatio-
temporal decoupling mechanism. Our baseline is Mod-
elScopeT2V [53]. Here, all comparisons with the baseline
method were conducted using the same dataset and training
for the same number of steps. Unless otherwise specified,
we default to setting the motion factor γm to 500 and the
appearance factor γa to 1.0.
The effect of hierarchical decoupling. Comparing the first
two rows of Tab. 1, the structure-level decoupling signifi-
cantly improves the spatial quality (i.e., CLIPSIM), but it
severely compromises temporal consistency. The first two
rows of Fig. 5 also provide a more intuitive demonstration
of this effect. Content-level decoupling, as shown in the
third row of Tab. 1 and Fig. 5, ensures superior spatial qual-
ity and improved temporal stability of the video frames.
Temporal reasoning analysis. In Fig. 7, we visualize
videos generated without spatial priors, showing a decou-
pling between temporal and spatial synthesis. The absence
of additional spatial priors results in videos that primarily
exhibit motion correlated with the text. Combining tempo-
ral reasoning with spatial priors reduces the complexity of
video synthesis and enables high-quality results. Addition-
ally, in Fig. 6, we synthesize videos using the same spatial
prior but different textual prompts, observing that the tem-
poral reasoning stage effectively utilizes the motion knowl-
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A cute fire dog stands on the sea.
Prompt1: A cute fire dog walks on the sea.

Prompt2: A cute fire dog jumps high on the sea.

Prompt3: A yellow robot.

Prompt4: A yellow robot grows a pair of yellow wings.

A yellow robot.

Spatial Prior

Spatial Reasoning

Temporal Reasoning

+ Prompt1

Temporal Reasoning+ Prompt2
Spatial Prior

Spatial Reasoning

Temporal Reasoning

+ Prompt3

Temporal Reasoning+ Prompt4

Figure 6. Combining the same spatial prior with different textual prompts allows dynamic control over the generated videos during the
temporal reasoning stage.

Prompt: Close up coffee being poured into a glass.

HiGen w/o Spatial Prior

Prompt: A fire is buring on a candle.

HiGen

HiGen w/o Spatial Prior

HiGen

Figure 7. Visualization for structure-level decoupling. “HiGen
w/o Spatial Prior” refers to our temporal reasoning without in-
putting any spatial priors.

edge provided by the text prompts.
Content-level decoupling analysis. In Fig. 8, the curves
demonstrate the impact of motion and appearance factors
on the generated videos. Higher values of the motion factor
(300 to 600) and appearance factor (0 to 1.0) decrease tem-
poral consistency, while the spatial semantic remains stable
according to the CLIPSIM metric. The dashed line repre-
sents using FPS as an alternative to our content-level decou-
pling strategy. Notably, changing the FPS has minimal in-
fluence on the temporal dynamics of the videos, validating
the superiority of our decoupling strategy as a more effec-
tive design choice.

In addition, Fig. 2 visually illustrates the impacts of these
two factors. The motion factor governs scene movement,
while the appearance factor enables diverse semantic varia-
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Motion Factor Appearance Factor

Figure 8. Parameter sensitivity analysis of the motion factor γm

and appearance factor γa.

tions in the generated videos. Interestingly, lower temporal
consistency scores lead to livelier and more dynamic videos.
This suggests that overly prioritizing temporal consistency
may hinder the potential for vibrant and engaging videos.
Semantic model analysis. To achieve content-level decou-
pling, we aim to ensure high independence between the mo-
tion and appearance factors. To accomplish this, we explore
self-supervised models such as DINO [6, 35] and the mul-
timodal model CLIP [39] as semantic models. We evaluate
the Pearson Correlation Coefficients (PCC) between these
two factors. In Fig. 10, we observe that although the PCC
between the DINO-based appearance factor and motion fac-
tor is only slightly lower (0.03) than that of CLIP, the dis-
tribution of DINO is more uniform. This indicates that self-
supervised models, specifically DINO, are more sensitive to
appearance variations. Based on this finding, we default to
using DINO as our semantic model.
Training efficiency. The structure-level decoupling of spa-
tial and temporal aspects mitigates the difficulties in joint
spatio-temporal denoising. Fig. 11 compares the generated
videos at different iterations with the baseline method. It
is clear that HiGen consistently outperforms the baseline
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Prompt: An iron man surfing in the sea.

Prompt: A stylized octopus swimming in an underwater cave system.

Prompt: A female mandalorian in forest green mandalorian armour with helmet.

Prompt: A teddy bear wearing sunglasses playing guitar next to a cactus.

Prompt: A yellow tiger with lightning around it.

Prompt: A robot girl.

Prompt: Wooden figurine surfing on a surfboard in space.

Figure 9. Sample visualization of generated videos.

(a) (b)

r = 0.40 r = 0.43

𝛾!Motion Factor 𝛾!Motion Factor

A
pp
ea
ra
nc
e
Fa
ct
or
𝛾"

DINO as Semantic Model CLIP as Semantic Model

A
pp
ea
ra
nc
e
Fa
ct
or
𝛾"

Figure 10. Correlation analysis between the motion factor and
appearance factor with DINO [6, 35] and CLIP [39] as semantic
models. Here, we measure these factors based on the first and last
frames of 8000 random videos.

Method
Visual
Quality

Temporal
Quality

Text
Alignment

ModelScopeT2V [53] 32.4% 43.2% 54.8%
Text2Video-Zero [25] 63.6% 26.0% 53.8%

VideoCrafter [8] 81.2% 55.2% 76.8%
HiGen 84.4% 74.0% 81.2%

Table 2. Human evaluations with open-sourced methods.

regarding visual quality throughout various training stages.
More visualizations. Fig. 9 demonstrates the generation of

2000 10000 25000

Prompt: A 3D model of an elephant origami. Studio lighting.

Training Iterations

2000 10000 25000

Training Iterations

(a) Baseline

(b) HiGen
Figure 11. Comparison with baseline at various training stages.

8 different styles of videos, such as humans, animals, and
marine settings. The generated videos using HiGen show-
case consistent, high-quality frames comparable to Stable
Diffusion-generated images. When played in sequence,
these frames exhibit both smooth temporal content and di-
verse semantic variations, enhancing the richness and vivid-
ness of the videos.
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VideoCrafter

Gen-2

ModelScopeT2V

HiGen

Prompt: A girl with long curly blonde hair and sunglasses, camera pan from left to right.Prompt: Pikachu turned his back towards me.

HiGen
+ I2VGen-XL

AnimateDiff v3

Figure 12. Qualitative comparison with ModelScopeT2V [53], Text-2-Video Zero [25], VideoCrafter [8] and Gen-2 [10]. In the last row,
we utilize the Video-to-Video model from the open-sourced I2VGen-XL [65] to enhance the spatial resolution of our videos, resulting in
further improvement in spatial quality.

Human evaluations. In Tab. 2, we conducted a human
evaluation of three recent open-source methods, consider-
ing spatial, temporal, and textual aspects. Notably, HiGen
exhibits the most substantial improvement in temporal per-
formance, surpassing VideoCrafter [8] by 18.8% (increas-
ing from 55.2% to 74.0%). These findings further reinforce
the superiority of our approach.

4.3. Comparison with State-of-the-art

Tab. 3 compares HiGen with existing approaches using
FID, FVD, and CLIPSIM metrics on MSR-VTT [61]. Our
method shows significant improvements in FID and FVD
metrics. However, as noted in previous works [37], these
metrics may not accurately represent the generated quality.
To further evaluate, we visually compare our results with
recent state-of-the-art methods in Fig. 12. It is evident that
our HiGen achieves a better balance between spatial qual-
ity and temporal motion in the generated videos.

5. Discussions

This work presents HiGen, a diffusion model-based ap-
proach for video generation that decouples spatial and tem-
poral factors at both the structure-level and content-level.
With a unified denoiser, HiGen generates spatially pho-
torealistic priors and temporally coherent motions, while
extracting subtle cues from the video content to express

Method FID ↓ FVD↓ CLIPSIM↑
CogVideo (English) [22] 23.59 1294 0.2631

Latent-Shift [1] 15.23 - 0.2773
Make-A-Video [46] 13.17 - 0.3049

Video LDM [5] - - 0.2929
MagicVideo [69] - 998 -

VideoComposer [56] 10.77 580 0.2932
ModelScopeT2V [53] 11.09 550 0.2930

PYoCo [12] 9.73 - -
HiGen 8.60 406 0.2947

Table 3. T2V generation performance on MSR-VTT [61].

appearance and motion changes for denoising guidance.
Through this design, HiGen successfully reduces the com-
plexity of T2V task, synthesizes realistic videos with se-
mantic accuracy and motion stability, and outperforms
state-of-the-art T2V methods in extensive experiments.
Limitations. Due to limitations in computational resources
and data quality, our HiGen’s ability to generate object de-
tails lags behind that of current image synthesis models.
Additionally, accurately modeling human and animal ac-
tions that adhere to common sense proves challenging, par-
ticularly in cases of substantial motion. To address these
challenges, our future research will delve into improving
model design and data selection.
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