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Abstract

Multimodal summarization with multimodal output
(MSMO) has emerged as a promising research direction.
Nonetheless, numerous limitations exist within existing pub-
lic MSMO datasets, including insufficient maintenance,
data inaccessibility, limited size, and the absence of proper
categorization, which pose significant challenges. To ad-
dress these challenges and provide a comprehensive dataset
for this new direction, we have meticulously curated the
MMSum dataset. Our new dataset features (1) Human-
validated summaries for both video and textual content,
providing superior human instruction and labels for mul-
timodal learning. (2) Comprehensively and meticulously
arranged categorization, spanning 17 principal categories
and 170 subcategories to encapsulate a diverse array of
real-world scenarios. (3) Benchmark tests performed on
the proposed dataset to assess various tasks and methods,
including video summarization, text summarization, and
multimodal summarization. To champion accessibility and
collaboration, we released the MMSum dataset and the
data collection tool as fully open-source resources, foster-
ing transparency and accelerating future developments, at
https://mmsum-dataset.github.io/.

1. Introduction
Multimodal summarization with multimodal output

(MSMO) is an emerging research topic spurred by advance-
ments in multimodal learning [10, 30, 36, 62, 130] and the
increasing demand for real-world applications such as med-
ical reporting [49], educational materials [81], and social
behavior analysis [51]. Most MSMO studies focus on video
data and text data, aiming to select the most informative
visual keyframes and condense the text content into key
points. In this study, we focus on MSMO, which integrates
both visual and textual information to provide users with
comprehensive and representative summaries to enhance

Figure 1. Task comparison of traditional video summarization,
text summarization, and MSMO tasks.

user experience [19, 43, 130].
Despite the respective accomplishments of conventional

unimodal summarization techniques on video data [35, 69,
83,118,123,127,131] and text data [14,55,60,61,125], mul-
timodal summarization continues to pose challenges due to
a number of complexities. (1) The intricate nature of multi-
modal learning necessitates an algorithm capable of exploit-
ing correlated information across different modalities, (2)
There is a scarcity of appropriate multimodal datasets that
reliably exhibit cross-modal correlations across diverse cat-
egories, and (3) There exists a gap in comprehensive evalu-
ation protocols that accurately reflect the efficacy of MSMO
methods in terms of their performance on both intermediate
interpretations and downstream tasks.

Merging existing video and text datasets appears to be a
feasible approach. However, assuring the presence of cross-
modal correlations proves challenging [62], not to mention
the absence of necessary human verification [67], a vital el-
ement in machine learning research. Furthermore, the exist-
ing datasets pose several issues, such as inadequate mainte-
nance leading to data unavailability, limited size, and lack of
categorization. To address these concerns and offer a com-
prehensive dataset for this area of study, we have undertaken
the task of collecting a new dataset, named MMSum. Our
contributions are summarised as follows:

• A new MSMO dataset Introducing MMSum, our
newly curated MSMO dataset, specifically designed to
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Figure 2. The design of the proposed MMSum dataset is driven by research and application needs.

cater to a wide range of tasks, with a particular empha-
sis on MSMO. This extensive dataset offers abundant
information that serves as solid support for various re-
search endeavors.

• Diverse categorization Within the MMSum dataset,
we have meticulously gathered videos spanning 17 pri-
mary categories. Each of these main categories fur-
ther comprises 10 distinct subcategories, culminating
in a grand total of 170 subcategories. This comprehen-
sive categorization ensures that the MMSum dataset is
exceptionally representative and encompasses a wide
range of content.

• New benchmark Across a diverse array of tasks, our
results can be regarded as a benchmark on this novel
real-world dataset.

• Accessibility We will open-source the MMSum
dataset and the corresponding data collection tool with
CC BY-NC-SA License.

2. Related Work
Unimodal Summarization typically comprises video
summarization and text summarization. Video summariza-
tion involves extracting key moments that summarize the
content of a video by selecting the most informative and
essential parts. Traditional video summarization methods
primarily rely on visual information. However, recent ad-
vancements have introduced category-driven or supervised
approaches that generate video summaries by incorporat-
ing video-level labels, thereby enhancing the summariza-
tion process [25,63,94,107,127,128]. Text Summarization
involves processing textual metadata, such as documents,
articles, tweets, and more, as input, and generating concise
textual summaries. The quality of generated summaries has
recently been significant improved through fine-tuning pre-
trained language models [48, 121].

Multimodal Summarization explored multiple modali-
ties for summary generation. [19, 66, 105, 112] learned the

relevance or mapping in the latent space between different
modalities. In addition to only generating visual summaries,
[3, 42, 130] generated textual summaries by taking audio,
transcripts, or documents as input along with videos or im-
ages, using seq2seq model [96] or attention mechanism [5].
The methods above explored using multiple modalities’ in-
formation to generate single modality output, either tex-
tual or visual summary. Recent trends on the MSMO task
have also drawn much attention [19, 20, 29, 57, 77, 78, 99,
119, 122, 130]. Specifically, [99] summarized a video and
text document into a cover frame and a one-sentence sum-
mary. The most significant difference between multimodal
summarization and MSMO lies in the inclusion of multiple
modalities in the output. (More related work can be found
in Appendix G.)

3. Angle I: Types of data

3.1. Data Collection

In light of the aforementioned challenges inherent in the
existing MSMO datasets, we propose a novel dataset named
MMSum to address these issues comprehensively and ef-
fectively. Our approach involved the collection of a multi-
modal dataset, primarily sourced from a diverse range of
untrimmed videos from YouTube. The collected dataset
comprises a rich set of information, including video files
and transcripts, accompanied by corresponding video meta-
data. Additionally, temporal boundaries were meticulously
recorded for each segment within the videos. Furthermore,
for each segment, we obtained both video summaries and
text summaries. It is worth noting that these summaries
were directly provided by the authors of the respective
videos, ensuring their authenticity and reliability. More-
over, the dataset incorporates comprehensive video meta-
data, such as titles, authors, URLs, categories, subcate-
gories, and so on. By gathering this diverse range of mul-
timodal data and leveraging the ground-truth video and text
summaries provided by the original content creators, we
aim to create a valuable and reliable resource.
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Table 1. Comparison of the modality of different summarization tasks and datasets. Difference between traditional multimodal summariza-
tion and MSMO: traditional multimodal summarization still outputs a single-modality summary, while MSMO outputs both modalities’
summaries. Public Availability means whether the data is still publicly available and valid. Structural Summaries means available sum-
maries of each segment, not just for the whole video.

Tasks Datasets
Input Output

Public Availability Categorization Structural SummariesVisual Textual Visual Textual

Video
TVSum [95] ✓ ✗ ✓ ✗ ✓ ✗ ✓

SumMe [23] ✓ ✗ ✓ ✗ ✓ ✗ ✓

VSUMM [16] ✓ ✗ ✓ ✗ ✓ ✗ ✓

Textual
X-Sum [64] ✗ ✓ ✗ ✓ ✓ ✗ ✗

Pubmed [90] ✗ ✓ ✗ ✓ ✓ ✗ ✗

Multimodal
How2 [86] ✓ ✓ ✓ ✗ ✓ ✗ ✗

AVIATE [3] ✓ ✓ ✗ ✓ ✓ ✗ ✗

Daily Mail [130] ✓ ✓ ✗ ✗ ✓ ✗ ✗

MSMO
VMSMO [57] ✓ ✓ ✓ ✓ ✗ ✗ ✗

MM-AVS [19] ✓ ✓ ✓ ✓ ✓ ✗ ✗

MMSum (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fidelity Given the limited availability of fully annotated
videos with complete and non-missing video summaries
and text summaries, we resorted to a manual collection of
videos that satisfied all the specified criteria. The meticu-
lous nature of this process ensured that only videos meeting
the stringent requirements were included in the dataset. To
illustrate the disparities between different tasks and datasets
in terms of modalities, we provide a comprehensive com-
parison in Table 1. Traditional video or text summariza-
tion datasets typically encompass either visual or textual
information exclusively. While there are datasets avail-
able for traditional multimodal summarization, where mul-
tiple modalities are used as input, they still produce single-
modality summaries. In contrast, the MSMO dataset holds
significant value in real-world applications, as it requires
multimodal inputs and provides summaries containing both
visual and textual elements. Consequently, the collection
process for this dataset necessitates acquiring all the requi-
site information, resulting in a time-consuming endeavor.

Human Verification Notably, every video in the MM-
Sum dataset undergoes manual verification to ensure high-
quality data that fulfills all the specified requirements. For
the fidelity verification process, five human experts (3 male
and 2 female) each spent 30 days watching the collected
videos, understanding the content, and verifying the anno-
tations. The annotators were instructed to pay specific at-
tention to the quality of segmentation boundaries, visual
keyframes, and textual summaries. The pre-filtered size of
the dataset is 6,800 (40 videos per subcategory). After man-
ual verification and filtering, only 30 of 40 are preserved to
ensure the quality, resulting in the current size of 5,100 (30
videos per subcategory).

Diversity During the dataset creation process, we exten-
sively examined existing video datasets such as [53, 129]

for reference. Subsequently, we carefully selected 17 main
categories to ensure comprehensive coverage of diverse top-
ics. These main categories encompass a wide range of sub-
jects, including animals, education, health, travel, movies,
cooking, job, electronics, art, personal style, clothes, sports,
house, food, holiday, transportation, and hobbies. Each
main category is further divided into 10 subcategories based
on the popularity of Wikipedia, resulting in a total of 170
subcategories. To illustrate the subcategories associated
with each main category, please refer to Figure 3 and Ta-
ble 6 (in the Appendix). For a more detailed view, a high-
resolution version of Figure 3 can be found in Appendix B.
To ensure the dataset’s representativeness and practicality,
we imposed certain criteria for video inclusion. Specif-
ically, we only collected videos that were longer than 1
minute in duration while also ensuring that the maximum
video duration did not exceed 120 minutes. Adhering to
these guidelines allows a balance between capturing suf-
ficient content in each video and preventing excessively
lengthy videos from dominating the dataset. In total, our
dataset comprises 170 subcategories and a grand total of
5,100 videos, all carefully selected to encompass a wide
range of topics and characteristics.

3.2. Statistics of the Dataset

Figure 4 presents a comprehensive analysis of the MM-
Sum dataset’s statistics. Figure 4(a) delves into the distribu-
tion of video durations, revealing the average duration spans
approximately 15 minutes. In Figure 4(b), we show the dis-
tribution of the number of segments per video. The graph in
Figure 4(c) captures the distribution of segment durations,
showcasing an intriguing resemblance to the Gaussian dis-
tribution with an approximate mean of 80 seconds. Fig-
ure 4(d) shows the distribution of the number of words per
sentence.
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Figure 3. The 17 main categories of the MMSum dataset, where
each main category contains 10 subcategories, resulting in 170 sub-
categories in total. More details are listed in Table 6.

Figure 4. The statistics of the MMSum dataset, which show the
distribution of (a) video duration; (b) number of segments per
video; (c) segment duration; (d) number of words per sentence.

Table 2. Comparison with existing video summarization and multimodal summarization datasets.

SumMe [23] TVSum [95] OVP [4] CNN [20] Daily Mail [20] Ours

Source YouTube YouTube YouTube News News YouTube
Number of Data 25 50 50 203 1,970 5,100
Total Video Duration (Hours) 1.0 3.5 1.3 7.1 44.2 1229.9
Average Video Duration (mins) 2.4 3.9 1.6 2.1 1.4 14.5
Max Video Duration (mins) 5.4 10.8 3.5 6.9 4.8 115.4
Min Video Duration (mins) 0.5 1.4 0.8 0.3 0.4 1.0
Total Number of Text Tokens – – – 0.2M 1.3M 11.2M
Avg. Keyframes per video 44 70 9.6 7.1 2.9 7.8
Avg. Text Summary Length – – – 29.7 59.6 21.69
Number of Classes 25 10 7 – – 170

3.3. Comparison with Existing Datasets

Table 2 presents a comparison between our MMSum
dataset and existing video datasets. In contrast to standard
video summarization datasets such as SumMe [23], TV-
Sum [95], and OVP [4], our dataset, MMSum, stands out
in several aspects. Firstly, the existing datasets lack textual
data, whereas MMSum incorporates both video and tex-
tual information. Additionally, while the number of videos
in SumMe, TVSum, and OVP is under 50, MMSum con-
tains a substantial collection of 5,100 videos. Furthermore,
the average duration of the videos in the aforementioned
datasets is less than 4 minutes, whereas the videos in MM-
Sum have an average duration of 14.5 minutes. More-
over, MMSum provides a significantly larger number of

segments/keyframes per video compared to these standard
datasets, making it more suitable for real-world applica-
tions. Comparing MMSum with other MSMO datasets like
CNN and Daily Mail [20], we find that our dataset first
surpasses them in terms of the number of videos. Further-
more, CNN and Daily Mail datasets were not curated based
on specific classes; instead, the data was randomly down-
loaded, resulting in a lack of representativeness. In con-
trast, MMSum was carefully designed with 17 main cate-
gories and 170 subcategories, making it highly representa-
tive and practical. Although there are other MSMO datasets
like VMSMO [57], we did not include them in the com-
parison table due to a large portion of the video links no
longer be valid. Therefore, MMSum stands out as a com-
prehensive and reliable dataset for multimodal summariza-
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tion tasks. The key distinguishing features of MMSum can
be summarized as follows:

• MMSum offers an extensive and large-scale dataset,
comprising an impressive collection of 5,100 human-
annotated videos.

• The dataset showcases a remarkable range of
untrimmed videos, varying in duration from concise
1-minute clips to extensive recordings spanning up to
115 minutes. This diversity allows for a comprehen-
sive exploration of different video lengths and content
complexities.

• MMSum’s strength lies in its meticulously crafted
main category and subcategory groups, which exhibit
an exceptional level of richness and granularity. With a
keen focus on real-world applicability, these categories
are thoughtfully designed to encapsulate the diverse
facets and contexts of video data, ensuring relevance
across a wide array of domains.

• To guarantee the highest quality and integrity of the
dataset, MMSum undergoes rigorous manual verifica-
tion. This meticulous process ensures that all modal-
ities and information within the dataset are accurately
annotated and readily accessible.

4. Angle II: Benchmark
4.1. Problem Formulation

The formulation of the MSMO task can be expressed as
follows. A video and its corresponding transcripts are de-
noted as a pair (V,X). The video input, represented by V ,
consists of a sequence of frames: V = (v1, v2, . . . , vN ).
The corresponding transcripts, denoted as X , are a se-
quence of sentences: X = (x1, x2, . . . , xM ),. Note that M
may not equal N due to one sentence per frame is not guar-
anteed in real-world videos. It is assumed that each video
has a sequence of ground-truth textual summary, denoted
as Y = (y1, y2, . . . , yL), and a sequence of ground-truth
keyframe represented by P = (p1, p2, . . . , pL), where L is
the number of segments. The objective of the MSMO task
is to generate textual summaries Ŷ that capture the main
points of the video, and select keyframes P̂ from V to be
the visual summaries.

4.2. Existing Methods

In order to conduct a thorough performance evaluation,
we selected a set of established methods as our baselines.
These baselines are chosen based on the public availabil-
ity of official implementations, ensuring reliable and repro-
ducible results. The selected baseline methods encompass:

• For Video Summarization: Uniform Sampling [33], K-
means Clustering [26], VSUMM [16], and Keyframe
Extraction [33].

• For Text Summarization: BERT2BERT [100], BART
[41] (BART-large-CNN and BART-large-XSUM),
Distilbart [91], T5 [80], Pegasus [117], and LED [6].

More details of the baselines within the benchmark can be
found in Appendix E. However, due to the absence of pub-
licly available implementations for MSMO methods in the
existing literature, there are no suitable methods that can be
used as MSMO baselines.

4.3. Our Method

To solve the problem mentioned above and provide a
MSMO baseline for the collected MMSum dataset, we pro-
pose a novel and practical approach to augment the MSMO
baseline. Our method, which we have made accessible
on our website, comprises two modules: segmentation and
summarization. Our model is depicted in Figure 5.

Segmentation Module The primary objective of the seg-
mentation module is to partition a given video into smaller
segments based on the underlying content. This module op-
erates by leveraging the entire transcript associated with the
video, employing a contextual understanding of the text.
For the segmentation module, we adopted a hierarchical
BERT architecture, which has demonstrated state-of-the-art
performance [50]. It comprises two transformer encoders.
The first encoder focuses on sentence-level encoding, while
the second encoder handles paragraph-level encoding. The
first encoder encodes each sentence independently using
BERTLARGE and then feeds the encoded embeddings into
the second encoder. Notably, all sequences commence with
a special token [CLS] to facilitate encoding at the sentence
level. If a segmentation decision is made at the sentence
level, the [CLS] token is utilized as input for the second en-
coder, which enables inter-sentence relationships to be cap-
tured through cross-attention mechanisms. This enables a
cohesive representation of the entire transcript, taking into
account the contextual dependencies between sentences.

Summarization Module Upon segmenting the video,
each video segment becomes the input to the summariza-
tion module. In line with the model architecture proposed
in [37], we construct our summarization module. The sum-
marization module incorporates three main encoders: a
frame encoder, a video encoder, and a text encoder. These
encoders are responsible for processing the video frames,
video content, and corresponding text, respectively, to ex-
tract relevant feature representations. Once the features
have been extracted, multi-head attention is employed to
fuse the learned features from the different encoders, which
allows for the integration of information across the modal-
ities, enabling a holistic understanding of the video and
its textual content. Following the fusion of features, a
score calculation step is performed to select the keyframe,
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Figure 5. Our model comprises two modules: the segmentation module and the summarization module.

identifying the most salient frame within each video seg-
ment. Additionally, a text decoder is utilized to generate
the textual summary, leveraging the extracted features and
the fused representations. Considering our primary focus
on providing a benchmark in this work, we have included
model details in Appendix D due to page limit.

5. Angle III: Tasks and Results
5.1. Types of tasks

Within our dataset, a wealth of information is avail-
able, enabling the exploration of various downstream tasks.
These tasks encompass video summarization (VS), text
summarization (TS), and multimodal video summarization
with multimodal output (MSMO). To provide a comprehen-
sive understanding of each task and highlight their distinc-
tions, we have compiled detailed descriptions and compar-
isons in Appendix C. For the train/val/test split, since our
dataset is already randomly collected from YouTube, we
designate the last 30% of videos within each subcategory
(indexed 21-29) as the testing set. The remaining videos
are then assigned to the training set (indexed 00-20) in each
subcategory. More results are shown in Appendix F.

5.2. Evaluation of Traditional Tasks

Video Summarization Evaluation The quality of the
chosen keyframe is evaluated by Root Mean Squared Er-
ror (RMSE), Structural Similarity Index (SSIM), Signal re-
construction error ratio (SRE), and Spectral angle mapper
(SAM), between image references and the extracted video
frames [59]. In addition, we also adopted precision, recall,
and F1 score based on SSIM for evaluation.

Text Summarization Evaluation The quality of gener-
ated textual summary is evaluated by standard evaluation
metrics, including BLEU [68], METEOR [17], ROUGE-
L [45], CIDEr [102], and BertScore [120], following pre-
vious works [13, 57, 89]. ROUGE-1, ROUGE-2, and
ROUGE-L refer to the overlap of unigram, bigrams, and the
longest common subsequence between the decoded sum-
mary and the reference, respectively [45].

5.3. Results and Discussion

Supervised methods outperform unsupervised methods
on video summarization In our video summarization
study, we have chosen the following methods as our base-
line comparisons: Uniform Sampling [33], K-means Clus-
tering [26], and VSUMM [16]. The results, presented in Ta-
ble 3, are under various evaluation metrics. For RMSE and
SRE, lower values indicate better performance, whereas, for
the remaining metrics, higher values are desirable. From
Table 3, we can observe that VSUMM showcases the
strongest performance among the baseline methods, yet it
still falls short compared to our proposed method. But we
can conclude that supervised methods outperform unsuper-
vised methods.

Pretrained large language models can still do well in text
summarization In the context of textual summarization,
we have considered a set of representative models as our
baseline comparisons: BERT2BERT [100], BART [41] (in-
cluding BART-large-CNN and BART-large-XSUM), Distil-
bart [91], T5 [80], Pegasus [117], and Longformer Encoder-
Decoder (LED) [6]. The performance of these models is
summarized in Table 4. Among the baselines, T5, BART-
large-XSUM, BART-large-CNN, and BERT2BERT exhibit
superior performance, with T5 demonstrating relatively bet-
ter results across various text evaluation metrics. In ad-
dition, the ROUGE score may not effectively capture per-
formance differences compared to other evaluation metrics,
because ROUGE does not take into account the semantic
meaning and the factual accuracy of the summaries.

MSMO results may depend on segmentation results and
summarization methods In the field of MSMO, we en-
countered limitations in accessing the codebases of existing
works such as [10, 19, 20, 30, 113, 130]. Therefore, we in-
dependently implemented several baselines to evaluate their
performance on the MMSum dataset. For this purpose, we
utilized LGSS as the segmentation backbone, VSUMM as
the video summarizer, and selected text summarizers that
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Table 3. Comparison of video summarization results (whole-video setting and segment-level setting).

Setting Model RMSE ↓ PSNR ↑ SSIM ↑ SRE ↓ Precision ↑ Recall ↑ F1 Score ↑

Whole-video

Uniform [33] 0.479 4.044 0.076 49.808 0.077 0.100 0.049
K-means [26] 0.348 8.234 0.055 46.438 0.072 0.182 0.103
VSUMM [16] 0.279 9.226 0.053 44.862 0.054 0.259 0.088
Ours 0.112 25.280 0.697 23.550 0.320 0.290 0.321

Segment-level

Uniform [33] 0.237 6.307 0.085 42.495 0.186 0.179 0.105
K-means [26] 0.167 10.123 0.144 46.533 0.123 0.172 0.143
VSUMM [16] 0.122 18.818 0.258 41.601 0.160 0.207 0.171
Ours 0.091 36.370 0.698 23.430 0.333 0.275 0.255

Table 4. Comparison of textual summarization results (whole-video setting and segment-level setting).

Setting Model BLEU-1 ↑ ROUGE-1 ↑ ROUGE-2 ↑ ROUGE-L ↑ METEOR ↑ CIDEr ↑ SPICE ↑ BertScore ↑

Whole-video

BERT2BERT [100] 22.59 3.75 0.45 3.41 5.65 1.76 2.91 71.12
BART-large-CNN [41] 29.17 3.19 0.51 3.04 2.99 2.28 11.27 68.84
BART-large-XSUM [41] 30.91 3.83 0.57 3.59 3.99 2.56 3.71 69.56
Distilbart [91] 26.46 3.87 3.87 0.47 3.59 2.25 4.16 69.37
T5 [80] 25.39 3.51 0.43 3.21 4.51 1.97 5.66 70.38
Pegasus [117] 26.73 3.75 0.52 3.40 4.52 2.38 7.82 68.92
LED [6] 26.47 3.81 0.25 3.51 3.45 1.78 6.72 68.45
Ours 32.61 9.41 2.86 9.15 4.01 4.01 10.11 74.46

Segment-level

BERT2BERT [100] 13.58 4.70 1.95 4.53 28.59 11.73 10.13 71.76
BART-large-CNN [41] 22.79 6.45 2.46 6.32 26.21 20.64 10.13 71.44
BART-large-XSUM [41] 20.89 7.31 2.77 7.13 29.36 20.90 10.20 71.42
Distilbart [91] 14.77 1.95 0.15 1.87 23.52 11.83 10.53 66.46
T5 [80] 16.48 6.17 3.03 5.99 28.22 20.96 10.35 71.95
Pegasus [117] 16.17 3.41 0.96 3.29 29.82 17.26 10.39 67.81
LED [6] 16.03 3.80 0.60 3.64 29.81 15.85 10.99 68.46
Ours 23.36 13.61 4.58 13.24 30.01 21.06 10.28 85.19

exhibited the best performance in text summarization. The
results are presented in Table 5. Based on the findings, it
is evident that the aforementioned combination approaches
still fall short in comparison to our proposed method. This
also indicates that the accuracy of temporal segmentation is
crucial prior to generating summaries, highlighting it as a
critical step and task preceding MSMO.

5.4. Thumbnail Generation

One direct and practical application of the MSMO task
is to automatically generate thumbnails for a given video,
which has become increasingly valuable in various real-
world applications. With the exponential growth of online
videos, effective and efficient methods are required to ex-
tract visually appealing and informative thumbnail repre-
sentations. In addition, many author-generated thumbnails
involve words or titles that describe the whole video to at-
tract more users. In the context of online platforms, such
as video-sharing websites or social media platforms, com-
pelling thumbnails can significantly impact user engage-
ment, content discoverability, and overall user experience.
The benefits of automated thumbnail generation extend be-
yond user engagement and content discoverability. In e-
commerce, for instance, thumbnails can play a vital role in
attracting potential buyers by effectively showcasing prod-

ucts or services. Similarly, in video editing workflows,
quick and accurate thumbnail generation can aid content
creators in managing and organizing large video libraries
efficiently.

In our setting, we take advantage of the results by
MSMO, which contains both visual summary and text sum-
mary, and combine them to generate thumbnails for a given
video. In summary, the selected keyframes and generated
textual summaries from the MSMO task are subsequently
utilized to create the thumbnail. To ensure an aesthetically
pleasing appearance, we randomly sample from a corpus of
fonts from Google Fonts and font sizes to utilize in the gen-
erated thumbnails. Moreover, a random set of coordinates
on the selected keyframe is sampled for the placement of
the text. Finally, the text is pasted onto the keyframe from
the outputted set of coordinates to complete thumbnail gen-
eration.

More specifically, the font is randomly selected from 100
fonts, and the size of the font varies by 175 font sizes. Here
we list 20 examples of fonts we used in our experiments:
[Roboto, Open Sans, Lato, Montserrat, Raleway, Oswald,
Source Sans Pro, Poppins, Noto Sans, Roboto Slab, Mer-
riweather, Ubuntu, PT Sans, Playfair Display, Fira Sans,
Nunito, Roboto Condensed, Zilla Slab, Arvo, Muli]. We
randomly select one font and a random font size. Given
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Table 5. Comparison of MSMO results.

Methods
Text Video

BLEU ↑ METEOR ↑ CIDEr ↑ SPICE ↑ BertScore ↑ PSNR ↑ SSIM ↑ Precision ↑ Recall ↑ F1 Score ↑

LGSS + VSUMM + T5 27.35 24.32 3.94 5.57 62.77 16.234 0.198 0.143 0.152 0.147
LGSS + VSUMM + BART-large-XSUM 24.83 24.12 3.97 8.86 39.20 16.234 0.198 0.143 0.152 0.147
LGSS + VSUMM + BERT2BERT 13.26 24.83 3.68 9.23 64.34 16.234 0.198 0.143 0.152 0.147
LGSS + VSUMM + BART-large-CNN 24.93 28.61 3.78 9.84 64.44 16.234 0.198 0.143 0.152 0.147
Ours 33.36 30.31 4.06 10.28 85.19 36.370 0.298 0.233 0.275 0.155

Figure 6. Comparison of GT thumbnails and our generated ones.

the image size of the selected keyframes, we also randomly
select coordinates for where the text should be pasted onto
the selected keyframes. We then paste the generated tex-
tual summary, which is modified by the randomly selected
font and font size, onto the selected keyframes. Some ex-
amples are shown in Figure 6. More results can be found in
Appendix H.

Limitations and Future Work Directions The lack of
publicly available MSMO baselines in existing literature
underscores a significant gap, emphasizing the need for fu-
ture efforts in this area. Advancing the field requires tack-
ling the complex task of creating a diverse and extensive
collection of baselines.

Despite the progress made in automated thumbnail gen-
eration, challenges remain. These include enhancing the
accuracy of thumbnail selection, accommodating various
video genres and content types, and taking into account user
preferences and context-specific requirements.

Moreover, addressing ethical concerns related to poten-
tial biases, representation, and content moderation is crucial
to ensuring fair and inclusive thumbnail generation. Explor-
ing new quantitative evaluation metrics for the thumbnail
generation task could also pave the way for valuable ad-
vancements in this domain.

6. Conclusion
In this research, our main goal was to overcome the lim-

itations of existing MSMO datasets by creating a compre-
hensive dataset called MMSum. MMSum was meticulously
curated to ensure top-notch quality of MSMO data, making
it a valuable resource for tasks like video summarization,
text summarization, and multimodal summarization. Ad-
ditionally, we introduced a novel benchmark based on the
MMSum dataset. This benchmark enables researchers and
practitioners to assess their algorithms and models across
a range of tasks. Moreover, leveraging the results from
MSMO, we introduced a new task: automatically generat-
ing thumbnails for videos. This innovation has the potential
to significantly enhance user engagement, content discover-
ability, and overall user experience. We hope that our MM-
Sum dataset can contribute to the advancement of research
in the MSMO field.
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