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Abstract

Single-pixel imaging (SPI) is a potential computational
imaging technique which produces image by solving an ill-
posed reconstruction problem from few measurements cap-
tured by a single-pixel detector. Deep learning has achieved
impressive success on SPI reconstruction. However, previ-
ous poor reconstruction performance and impractical imag-
ing model limit its real-world applications. In this paper,
we propose a deep unfolding network with hybrid-attention
Transformer on Kronecker SPI model, dubbed HATNet, to im-
prove the imaging quality of real SPI cameras. Specifically,
we unfold the computation graph of the iterative shrinkage-
thresholding algorithm (ISTA) into two alternative modules:
efficient tensor gradient descent and hybrid-attention multi-
scale denoising. By virtue of Kronecker SPI, the gradient
descent module can avoid high computational overheads
rooted in previous gradient descent modules based on vector-
ized SPI. The denoising module is an encoder-decoder archi-
tecture powered by dual-scale spatial attention for high- and
low-frequency aggregation and channel attention for global
information recalibration. Moreover, we build a SPI proto-
type to verify the effectiveness of the proposed method. Ex-
tensive experiments on synthetic and real data demonstrate
that our method achieves the state-of-the-art performance.
The source code and pre-trained models are available at
https://github.com/Gang-Qu/HATNet-SPI.

1. Introduction
Conventional imaging technology produces images by ex-
ploiting the light reflected or scattered by an object on a
two-dimensional (2D) CCD or CMOS detector with mil-
lions of pixels. But in applications, such as the infrared or
deep ultraviolet sensing, the availability of pixelated array
detectors becomes expensive or impractical. As an alter-
native solution, single-pixel imaging (SPI) utilizes just one
light-sensitive single-pixel detector (SPD) to record the to-
tal intensity of the reflected or scattered light encoded by
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Figure 1. (a) Our built SPI prototype (OL: objective lens, DMD:
digital micromirror device, DAQ card: data acquisition card). (b)
Performance comparison of different methods on Set11 dataset at
different sampling ratios. (c) Real experimental results of different
methods at sampling ratio of 25%.

temporally varying modulation patterns from a spatial light
modulator, yielding compressed measurements, and the de-
sired image can be estimated from the captured (compressed)
measurements via iterative optimization algorithms or a deep
learning model. SPI camera offers advantages over conven-
tional cameras, such as improved detection efficiency, lower
dark counts, and faster timing response. Such advantages
can have significance in scenarios where the detected inten-
sities are very weak due to scattering or absorption losses.
Moreover, SPI camera is capable of sensing compressively
during data acquisition, thereby reducing the data storage
and communication bandwidth requirements. During the last
decade, SPI has been widely used in 3D imaging [45], hy-
perspectral imaging [56], X-ray diffraction tomography [15],
magnetic resonance imaging [16], ophthalmic imaging [27]
and imaging in non-visible wavebands [18] or through scat-
tering media [73].

SPI is driven from the compressive sensing (CS) [5, 10,
52, 53, 63–65] theory. In CS paradigm, a 1D signal x∈RN

is compressively sampled into few measurements y∈RM
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at a sub-Nyquist sampling ratio M
N (M ≪N ) via a linear

system:
y = Ax, (1)

where A∈RM×N is the measurement matrix. Due to the ill-
posed nature of the inverse process of Eq. (1), an estimate x̂
of x could be reconstructed from y by solving the following
optimization problem:

x̂ = argmin
x

1
2∥y −Ax∥22 + λR(x), (2)

where 1
2∥y − Ax∥22 is a data fidelity term, and λR(x) is

a regularization term. Over the past years, various opti-
mization algorithms have been developed to solve it, among
which iterative shrinkage-thresholding algorithm (ISTA) [8]
is the most widely used one. ISTA is composed of two
alternative operations:

zk = xk−1 + ρA⊤ (y −Axk−1), (3)

xk = argmin
x

1

2σ2
||zk − x||22 +R(x), (4)

where ρ = (1 + η)−1 and σ =
√
λ/η both with a penalty

parameter η. Eq. (3) is a gradient descent process and Eq. (4)
is equivalent to denoising image zk with the regularization
term R(x). Regarding R(x), various hand-crafted image
priors have been proposed to regularize the solution in the
desired signal space, such as sparsity [36, 67], total varia-
tion [62], low rank [25], and non-local self-similarity [68].
Unfortunately, hundreds and thousands of iterations lead to
just passable results, thereby making it impractical for real-
time and high-fidelity scenarios. Over the past few years,
deep neural networks have recently gained considerable pop-
ularity in solving the inverse problem of CS, from early
black-box networks [22, 28, 41, 59] to recent deep unfold-
ing networks (DUNs) [31, 34, 39, 42, 69, 71, 72]. Early
black-box networks usually learn a non-linear mapping from
sampled measurements to the final reconstructed result in an
end-to-end manner, with limited performance and without in-
terpretability. By combining an optimization algorithm with
a deep denoising network, DUNs enjoy the interpretability
of optimization algorithms and the powerful modeling ability
of deep neural networks, leading to the-state-of-art (SOTA)
performance. These deep models, both black-box networks
and DUNs, are developed as CS solvers.

However, there is a significant mismatch between real
SPI system and CS-oriented solvers. Regular CS model
in Eqs. (1) to (4) is established for vectored 1D signal but
SPI cameras take aim at 2D image. Before this work, 2D
image to be detected is considered as the vectorized signal
when a CS-oriented solver is employed, leading a huge mea-
surement matrix A and thus extremely high computational
cost in Eq. (3). For example, a 512 × 512 image needs
a measurement matrix A with 262, 144 columns, which
is terribly large. To address this problem, most previous

DUNs [34, 39, 42, 69, 71, 72] divide the whole image into
several small patches to process, thus also called block-CS-
oriented solvers. However, block-based sampling is im-
practical for mainstream SPI cameras. This is why these
DUNs are outstanding on simulation metrics but are rarely
deployed on real-world SPI cameras. Recently, the first
practical DUN [51] has been proposed to enable full image
CS reconstruction but also overlooks physical constraints in
imaging.

To bridge the gap between SPI and DUNs, we propose a
deep unfolding network with hybrid-attention Transformer,
dubbed HATNet, on Kronecker SPI [11] by unrolling the
computation graph of ISTA into two alternative modules:
efficient gradient descent and HAT-based denoising. The
main contributions of this work are summarized as follows.

1) To exploit global interactions of images and satisfy physi-
cal constraints of real SPI cameras, we introduce a DUN of
tensor ISTA, composed of tensor gradient descent module
and deep denoising module, to enable full-size sampling
and reconstruction for SPI. By avoiding vectorized huge
measurement matrix, the forward model of SPI and the
gradient descent of DUN are significantly accelerated.

2) We propose a DUN with hybrid-attention Transformer,
dubbed HATNet, powered by spatial-wise dual-scale self-
attention and channel-wise self-attention. HAT is capable
of aggregating high- and low-frequency information and
recalibrating channel-wise global information.

3) We use HAT under an encoder-decoder architecture as
the deep denoiser of deep unfolding and it achieve SOTA
performance on synthetic data as reported in Fig. 1 (b).
Moreover, we also verify the effectiveness of proposed
method on real data as demonstrated in Fig. 1 (c), which
is captured by our SPI prototype in Fig. 1 (a). To our best
knowledge, we are the first to develop a SOTA deep model
to improve practical SPI, particularly for large scale.

2. Related Work

2.1. Compressive Sensing Reconstruction

CS reconstruction methods could be classified into two cate-
gories: optimization-based methods [3, 4, 9, 13, 17, 21, 29,
33, 57, 70] and learning-based methods [22, 32, 34, 39–42,
44, 58, 59, 69, 71, 72]. Optimization-based methods mainly
employ an iterative optimization algorithm along with hand-
crafted image priors to increasingly retrieve the visual infor-
mation from the sub-sampled measurement. Various iterative
optimization algorithms have been proposed, including iter-
ative shrinkage-thresholding algorithm (ISTA) [8], approx-
imate message passing (AMP) algorithm [74], alternating
direction method of multiplies (ADMM) [14], generalized
alternating projection (GAP) [62] method, least absolute
shrinkage and selection operator (LASSO) [47]. TVAL3
[23] utilizes the augmented Lagrangian method with total
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variation (TV) prior to remove the noise and restore the de-
tails. However, optimization-based methods need hundreds
and thousands of iterations and usually have a long process-
ing time and limited reconstruction quality. In recent years,
deep neural networks have been developed as powerful CS
solvers and have achieved impressive success. Early net-
works [22, 32] usually learn a black-box mapping from the
compressed measurements to the restored image. Most re-
cently, deep unfolding networks [31, 34, 39, 69, 71, 72] use
a deep denoising network to replace the proximal mapping
and maintain the gradient descent of a conventional opti-
mization algorithms, which achieve SOTA performance after
few iterations. With good performance and interpretability,
DUNs have become the mainstream choice for CS recon-
struction. Such regime was originally applied in plug-and-
play (PnP) methods, where pre-trained denoiser is employed
to implicitly express the regularization term as a denoising
problem [30]. Different iterative optimization algorithms
foster kinds of DUNs, such as ADMM-Net [72], ISTA-
Net [69], AMP-Net [72]. However, most of previous DUNs
are troubled with the information loss rooted in the frequent
signal-to-feature transformation. This problem indicates that
early-stage high-level features cannot be efficiently used for
later-stage feature refinement. Latest DUNs [42–44, 51] try
to solve this problem by heuristic cross-stage information
fusion designs. In addition, most of previous DUNs are de-
veloped under the block-based sampling assumption, which
is impractical for real SPI.

2.2. Vision Transformer

Motivated by the power of Transformer [48] in natural lan-
guage processing (NLP), ViT [2] first extends Transformer
into vision tasks by conducting self-attention (SA) mecha-
nism on non-overlapping patches. Swin Transformer [26]
proposes a pioneering SA within shifted windows under
a hierarchical architecture to achieve significant improve-
ment over convolutional neural networks (CNNs) on kinds
of vision tasks. Due to the remarkable performance of SA,
researchers are extending Transformer into low-level vision
tasks [7, 12, 35, 55, 60, 66]. PIT first introduces Transformer
to image restoration and showcases its performance on sev-
eral image restoration tasks [7]. Uformer [55] combines
Transformer and U-Net to build multi-scale Transformer
to further improve the performance. TransGAN, a mixture
of generative adversarial network (GAN) and Transformer,
is proposed in [20] for image generation. Restormer [66]
operates self-attention along channel dimension for high-
resolution image restoration. These Transformer-based meth-
ods remarkably outperform CNN-based methods and also
reveal that the attention mechanism on both spatial and chan-
nel dimensions are significant for most vision tasks.

3. Proposed Method
3.1. Tensor ISTA Unfolding Framework

In SPI paradigm, assume X∈R
√
N×

√
N is a 2D image, and

its 2D compressed measurements Y ∈R
√
M×

√
M can be

obtained by a linear measurement system:

Y = ΦXΨ⊤. (5)

where Φ∈R
√
M×

√
N ,Ψ∈R

√
M×

√
N are two independent

measurement matrices, simultaneously compressing image
along horizontal and vertical dimensions. In real imaging
systems, such dual modulation is impossible to implement.
Eq. (5) is equivalent to the vectorized CS form in Eq. (1)
through the Kronecker product [11]:

y = Ax, s.t.

 x = vec (X) ,
y = vec (Y) ,
A = Ψ⊗Φ,

(6)

where vec(·) denotes the vectorization operation and ⊗ rep-
resents the Kronecker product. The ill-posed inverse process
of Eq. (5) can be conducted by solving the following opti-
mization problem:

X̂ = argmin
X

1

2

∥∥∥Y −ΦXΨ⊤
∥∥∥2
F
+ λR(X), (7)

where ∥·∥F denotes the Frobenius norm. The above opti-
mization problem can be solved by the tensor version of
ISTA [51], namely

Zk = Xk−1 + ρΦ⊤(Y −ΦXk−1Ψ
⊤)Ψ, (8)

Xk = argmin
X

1

2σ2
||Zk −X||2F +R(X), (9)

Eq. (8) is a tensor gradient descent (TGD) with a step size
ρ. Eq. (9) is a proximal mapping, usually can be seen as
a denoising problem [6] with the noise level σ from the
perspective of Bayesian probability. By alternatively repeat-
ing the above two steps enough times, a decent estimate X̂
would well approach to the ground truth X. In this man-
ner, image reconstruction task in Eq. (7) is converted to
a multi-stage image denoising task, which has extensively
studied in low-level vision [24, 26]. Recently, learning-based
denosiers have shown great performance gains over conven-
tional optimization-based denosiers.

By unfolding the computation graph of tensor ISTA into
deep neural network, we propose a deep unfolding network
with hybrid-attention Transformer (HATNet), which can be
formulated as{

Zk = Xk−1 + ρk−1Φ
⊤(Y −ΦXk−1Ψ

⊤)Ψ, (10)
Xk = D(θ,k)(Zk), (11)

where ρk−1 is a learnable step size controlling the intensity
of k-th gradient descent and D(θ,k) is a stage-specific deep
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Figure 2. Illustration of the proposed method. (a) demonstrates the Kronecker SPI model. As shown in (b), our DUN aims to reconstruct a
high-fidelity image X̂ from the initialization input X0, which is composed of multiple stages with skip connections and each stage involves a
tensor gradient descent (TGD) operator in Eq. (10) and a U-shaped deep denoiser as Eq. (11). The deep denoiser is powered by the proposed
HATB, each of which consists of residual dual-scale spatial-wise self-attention (S-SA), feed-forward network (FFN), and channel-wise
self-attention (C-SA). The structure of S-SA and C-SA are shown in (c) and (d), respectively.

denoiser with learnable parameters θ. The initialization in-
put is X0 = Φ⊤YΨ. Regarding the design of D(θ,k), we
propose a hybrid-attention Transformer (HAT) as building
block, where spatial-wise dual-scale attention for long-range
high- and low-frequency aggregation and channel-wise at-
tention for global information recalibration are established,
which will be introduced in detail in Sec. 3.2.

3.2. Deep Denoiser with HAT

In this sub-section, we give the details of deep denoiser
D(θ,k) used in Eq. (11). Different-stage denoisers have the
same network structure with independent learnable parame-
ters and thus we introduce just one of it.
Overall Architecture. As shown in Fig. 2 (b), k-th stage
denoiser is a symmetric encoder-decoder architecture built
by multiple hybrid-attention Transformer blocks (HATBs)
to generate the residual image with degraded input. Each
HATB is powered by a residual spatial-wise self-attention
(S-SA), feed-forward network (FFN), and channel-wise self-
attention (C-SA). As illustrated in Fig. 2 (e), FFN is com-
posed of two 1×1 convolutions which increases or decreases
the channel dimensions, one 3× 3 depth-wise convolution

(D-Conv), and one non-linear activation GELU between
them. The downsampling layer uses a 2 × 2 convolution
with a stride of 2. The upsampling layer uses a point-wise
convolution (1× 1 Conv) to double the channel dimensions
and then is followed by a pixel shuffle operation. At each
stage, the encoder features are concatenated with the de-
coder features via skip connections and then a point-wise
convolution is used to reduce channel dimensions by half
for efficient feature fusion and refinement. At two adjacent
stages, previous-stage decoder features are also fused with
current-stage encoder features to avoid the potential infor-
mation loss caused by the signal-feature transformation of
deep unfolding. Such dense skip connections between both
intra-stage and inter-stage HATBs enhance the performance
of proposed method clearly as demonstrated in the ablation
experiments shown in Tab. 2. As two core components of the
proposed HAT, S-SA and C-SA can realize spatial high- and
low-frequency aggregation and channel-wise recalibration
respectively. Next, we will describe the details.

Spatial-wise Self-Attention (S-SA). S-SA conducts multi-
head self-attention mechanism on dual scales within shifted
windows. Specifically, given the input feature F ∈
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R
H×W×C , S-SA generates two groups of query, key, and

value through the following linear projection:
Qh = FWh

q , Ql = FWl
q, (12)

Kh = FWh
k , Kl = AvgPool(F)Wl

k, (13)
Vh = FWh

v , Vl = AvgPool(F)Wl
v, (14)

where Wh
q ,W

h
k ,W

h
v ∈ R

C×C1 and Wl
q,W

l
k,W

l
v ∈

R
C×C2 are learnable projection matrices with biases omit-

ted, and AvgPool represents an average pooling operator
with the window resolution p. The resulting Qh,Kh,Vh∈
R

H×W×C1 belong to the high-frequency group, simi-
lar to that of regular Transformer [26]. The resulting
Ql ∈ RH×W×C2 and Kl,Vl ∈ Rh×w×C2 belong to low-
frequency group, similar to that of PVT [54], where h= H√

p

and w= W√
p . The total channel number of high-frequency

and low-frequency branches is the same with that of the
input feature, namely C1+C2=C. Then, Qh,Kh,Vh and
Ql,Kl,Vl are partitioned into non-overlapping windows
and then flatted into token sequences. For high-frequency
query, key, and value, the window resolution is N and
the reshaped results can be represented as Q̄h, K̄h, V̄h ∈
R

HW
N ×N×C1 . For low-frequency query, key, and value, the

window resolution is pN for Ql and N for Kl,Vl, and the
reshaped results can be represented as Q̄l ∈Rhw

N ×pN×C1

and K̄l, V̄l∈Rhw
N ×N×C1 . Next, they are split into m heads,

namely {Q̄h
i }mi=1, {K̄h

i }mi=1, {V̄h
i }mi=1, {Q̄l

i}mi=1, {K̄l
i}mi=1,

{V̄l
i}mi=1. The channel dimension of each head is d= C1

m for
high-frequency group and d= C2

m for low-frequency group.
The illustration of Fig. 2 (c) is the case with m= 1. For i-th
head, high-frequency output Ēh

i and low-frequency output
Ēl

i are calculated by

Ēh
i = softmax(

Q̄h
i K̄

h
i
⊤

√
d

)V̄h
i ,

Ēl
i = softmax(

Q̄l
iK̄

l
i
⊤

√
d

)V̄l
i.

(15)

As a result, high-frequency feature Eh ∈ RH×W×C1 and
low-frequency feature El ∈ RH×W×C2 can be got by re-
shaping and concatenating {Ēh

i }mi=1 and {Ēh
i }mi=1 separately.

The final output is obtained by fusing Eh∈RH×W×C1 and
El∈RH×W×C2 . This process is formulated as

S−SA(F) = Concat(EhWh,E
lWl), (16)

where Wh ∈ RC1×C1 ,Wl ∈ RC2×C2 are two learnable
projection matrices and Concat denotes the channel con-
catenation.

As illustrated in Fig. 2 (c), the high-frequency attention
performs regular attention within N -pixel windows, and
the low-frequency attention performs cross-scale attention
between query and average-pooled key, value within pN -
pixel windows. As average pooling can act as a low-pass

filter [35], such dual-scale attention has two sizes of receptive
fields on the input and the average-pooled input, enabling
high- and low-frequency aggregation.
Channel-wise Self-Attention (C-SA). Since that S-SA fo-
cuses on capturing spatial information within local windows,
we incorporate a channel-wise self-attention (C-SA) to cap-
ture channel-wise global information [19]. As illustrated
in Fig. 2 (d), C-SA squeezes the spatial information into
channels first and then a multilayer perceptron applies to
it to calculate the channel attention, which will be used to
weight the feature map. Given an input F∈RH×W×C , the
output of C-SA is formulated as

C−SA(F) = F ∗ Sigmoid(ReLU(GAP(F)W1)W2), (17)

where ∗ denotes channel-wise multiplication, W1∈RC×C
β ,

W2 ∈ R
C
β ×C are two fully-connected layers with a non-

linear activation ReLU inside, GAP indicates the global av-
erage pooling operation, and Sigmoid limits the channel
attention map in (0, 1). β is a channel shrinking factor. C-
SA plays two important roles, that is, global information
aggregation and channel-wise recalibration.

4. Experiment

4.1. Implementation Details

In the proposed HATNet, each-stage denoiser is a three-level
symmetric U-shaped structure, powered by proposed S-SA
and C-SA. From level-1 to level-3, the number of HATB are
[1, 1, 1] and the dimensions of head is 16. Toward S-SA, the
size of shifted windows is 4×16 or 16×4 and the kernel
size of average pooling operator is 2×2, namely N=64 and
p=4. Toward C-SA, the channel shrinking factor is β=16.
Following previous works [34, 39–42, 44, 51, 72], we adopt
400 images from BSD500 [1] as the training dataset. Data
augmentation operations, including random horizontal flip-
ping, random scaling, and random cropping, are performed
to generate 20,000 images as the training dataset. Proposed
method is implemented by PyTorch on NVIDIA A100 GPUs.
All models are trained through 100 epochs with learning
rate 1× 10−3 and then fine-tuned through 20 epochs with
learning rate 1× 10−4 using Adam optimizer (β1 = 0.9,
β2 = 0.999). Similar to previous works [34, 44, 51], two
measurement matrices of Kronecker SPI are set to be learn-
able for fair comparison on simulation. In real SPI, they are
set to be cake-cutting Hadamard matrices [37, 49, 61]. For
testing on synthetic data, we evaluate the proposed method
with different sampling ratios (SRs) {4%, 10%, 25%, 50%}
on a commonly-used Set11 dataset. For testing on real data,
we build a SPI prototype to verify the effectiveness of our
method. Peak Signal to Noise Ratio (PSNR) and Structural
Similarity (SSIM) are used to estimate the performance in
our experiments.
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Table 1. Average PSNR/SSIM of different methods on Set11 datasets with different SRs. The best and second best results are highlighted in
bold and underlined, respectively.

Dataset Method Sampling Ratio (SR)

4% 10% 25% 50%

ReconNet [22] 20.93/0.5897 24.38/0.7301 28.44/0.8531 32.25/0.9177
ISTA-Net+ [69] 21.32/0.6037 26.64/0.8087 32.59/0.9254 38.11/0.9707
CSNet+ [40] 24.83/0.7480 28.34/0.8580 33.34/0.9387 38.47/0.9796
SCSNet [41] 24.29/0.7589 28.52/0.8616 33.43/0.9373 39.01/0.9769
OPINE-Net+ [71] 25.69/0.7920 29.81/0.8884 34.86/0.9509 40.17/0.9797

Set11 AMP-Net [72] 25.27/0.7821 29.43/0.8880 34.71/0.9532 40.66/0.9827
TransCS [39] 25.41/0.7883 29.54/0.8877 35.06/0.9548 40.49/0.9815
MADUN [42] 25.71/0.8042 30.20/0.9016 35.76/0.9601 41.00/0.9837
DGUNet+ [34] 26.82/0.8230 30.93/0.9088 36.18/0.9616 41.24/0.9837
OCTUF+ [44] 26.54/0.8150 30.73/0.9036 36.10/0.9607 41.35/0.9838
SAUNet [51] 27.80/0.8353 32.15/0.9147 37.11/0.9628 41.91/0.9838
HATNet (ours) 27.98/0.8382 32.26/0.9182 37.24/0.9634 42.05/0.9838

Figure 3. Visualization of different methods on (a) Barbara and (b) Lena at SR = 10%.

4.2. Results on Synthetic Data

To evaluate the performance of proposed HATNet,
we compare it with previous methods, including Re-
conNet [22], ISTA-Net+ [69], CSNet+ [40], SC-
SNet [41], OPINENet+ [71], AMP-Net [72], TransCS [39],
MADUN [42], DGUNet+ [34], OCTUF+ [44], and
SAUNet [51]. Tab. 1 reports the average PSNR/SSIM of
different methods. Our method outperforms previous meth-
ods at all SRs. Fig. 3 visualizes the reconstruction results of
our HATNet and previous competitive methods. Obviously,
our HATNet has a significant improvement in image details
and textures, as highlighted in the zoom-in regions.

4.3. Results on Real Data

SPI Prototype Details. To evaluate the real performance of
our proposed method, we build a SPI Prototype to capture

real data as illustrated in Fig. 1 (a), which mainly consists
of a digital micro-mirror device (DMD), and a single-pixel
detector (SPD). A DMD is used to spatially filter light by
selectively redirecting parts of an incident light beam. A
DMD is used to measure the total filtered intensity. An object
is illuminated and imaged onto the DMD, where a sequence
of binary patterns displayed on the DMD are used to mask
the image, and then integrated into one pixel detected by
SPD. In view of practicality, we use cake-cutting Hadamard
matrix (CCH) [37, 49, 61], a variant of Hadamard matrix,
as the measurement matrices, whose each row is a binary
pattern to be displayed on the DMD.

Middle-Scale Results. We use our SPI prototype to cap-
ture real measurements of different scenes with 256× 256
pixels, and then they are reconstructed by ISTA-TV [62],
DGUNet+ [34], OCTUF+ [44], and SAUNet [51]. ISTA-
TV is a representative optimization algorithm and SAUNet is
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Figure 4. Experimental results of (a) cartoon tiger and (b)
resolution target reconstructed by different methods at
SR = 25%.

the first practical deep unfolding network. Note that original
DGUNet+ and OCTUF+ are impractical for real SPI cam-
eras due to their block-based sampling, thus we re-trained
them under Kronecker SPI for full-size sampling. Middle-
scale reconstructed results are visualized in Fig. 1 (c) and
Fig. 4. The reference images in the first column are cap-
tured through full-sampling (i.e., uncompressed) SPI. Full-
sampling SPI can be formulated as x = A⊤y s.t. y = Ax,
where A∈RN×N is a orthogonal Hadamard matrix. In the-
ory, full-sampled image is lossless due to the orthogonality
of Hadamard matrix. The initialization images are simply
computed through x = A⊤y, where A∈RM×N (M≪N )
is a sub-sampling matrix. However, noise is not avoidable
in real optical system and thus they serve as the references.
Clearly, our method leads to the best visual results.

Large-Scale Results. As mentioned previously, previous
SPI methods [22, 38, 50], vectorizing 2D image into 1D
signal to process, leads to a huge measurement matrix and
thus high computational costs in the forward model and the
gradient descent projection, which makes it difficult to train
on large-scale images. Our method utilizes Kronecker SPI
to replace a huge measurement matrix with two small mea-
surement matrices. The maximal resolution of our DMD is
768×1024. We try to capture image with 768×1024 pixels at
the sampling ratio 12.5%, namely compress 768,432 pixels
into 78,304 measurements. The size of two measurement ma-
trices are 256×768 and 384×1024. We use the two matrices
to train our HATNet on 20,000 images with 768×1024 pixels,
which are cropped from DIV2K dataset. To relieve mem-
ory and computational overheads, we properly reduce the
number of stage and channel. Due to the high training costs,
we do not re-train previous methods for comparison. Fig. 5
reports the large-scale reconstructed results of our HATNet
and ISTA-TV. Our HATNet outperforms ISTA-TV by a large
margin in the case of large-scale SPI reconstruction.

Illumination-Varying Results. We also conduct experi-
ments with varying light intensity, from 100 lux to 1,000 lux,
to evaluate the generalization ability of our HATNet. In gen-
eral, stronger the illumination intensity is, the higher signal-
to-noise-ratio (SNR) is. Fig. 6 reports the reconstructed

Figure 5. Large-scale experimental results with 768×1024 pixels
at SR = 12.5%.

Figure 6. Experimental results of different illumination intensity at
SR = 25%.

results of ISTA-TV and our HATNet in different illumina-
tion intensities. Clearly, the reconstructed results become
better as the illumination intensity increases. Our HATNet
shows a great generalization ability in both low- and high-
light conditions.

Optical Resolution. Under the same data throughput, we
are curious whether our sub-sampling method has truly im-
proved the optical resolution compared to full-sampling
method. To this end, we apply full-sampling SPI to capture
4, 096 measurements using a orthogonal Hadamard matrix
and then form a theoretically lossless 64 × 64 image. We
apply sub-sampling SPI to capture 4, 096 measurements at
SR = 6.25% and then the proposed HATNet to reconstruct
a 256 × 256 image. The full-sampling and sub-sampling
images are visualized in Fig. 7. The results demonstrate our
method, a pipeline of sub-sampling plus deep reconstruction,
can improve the optical resolution significantly.

4.4. Ablation Study

Different Components of HATNet. Our HATNet is mainly
powered by the following designs: cross-stage skip con-
nections (CSSC), high-frequency (HF) and low-frequency
(LF) aggregation of spatial-wise self-attention (S-SA), and
channel-wise self-attention (C-SA). To demystify the influ-
ence of different components, we conduct thorough ablation
experiments on Set11 dataset at SR = 10%. The average
PSNR and SSIM are reported in Tab. 2. Baseline model
(a) involves complete components and yields the best re-
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Figure 7. Optical resolution comparison under the same measure-
ments. Full-sampling result (left) versus our sub-sampling result
(right). The bottom tables visualize the intensity curve of high-
lighted lines.

sult of 32.26 dB/0.9182. Towards model (b) without CSSC,
there is an average 0.78 dB /0.0129 performance degrada-
tion, revealing that regular deep unfolding has an inherent
loss information issue due to its frequent signal-to-feature
transformation. Towards model (c) with only LF aggregation
in S-SA, there is an average 0.70 dB/0.0108 performance
degradation. Towards model (d) with only HF aggregation
in S-SA, there is an average 0.48 dB/0.0070 performance
degradation. It reveals that the proposed S-SA has a good
modeling ability for high- and low-frequency information.
Towards model (c) without C-SA, there is an average 0.11
dB/0.0042 performance degradation, meaning that our used
channel-wise global information recalibration is effective for
SPI reconstruction.
Kronecker SPI. By virtue of Kronecker SPI, our HATNet
has advantages over previous vectorized methods [22, 38,
50] and block-based methods [34, 44]. Vectorized methods,
modeling 2D image into 1D signal, can be deployed in real
SPI cameras but their performance is greatly limited by high
computational complexity. For example, ReconNet [22] has
an average 24.38 dB/0.7301 result at SR = 10%, far lower
than 32.26 dB/0.9182 of our HATNet. Block-based meth-
ods [34, 44], divide image into small-size patches to process
and their block-based sampling is impractical in mainstream
SPI cameras. Our HATNet has both practicality and SOTA
performance. We conduct experiments to reveal the superi-
ority of Kronecker SPI. The comparison between Kronecker
SPI and vectorized SPI is shown in Tab. 3. By shifting HAT-
Net from Kronecker SPI to vectorized SPI, GPU memory
occupation and inference time increase from 3.02 G and
0.38 s to 10.74 G and 0.55 s, revealing the efficiency of
our HATNet. Full-size sampling of Kronecker SPI is com-
pared with previous block-based sampling as shown in Tab. 4,
where we re-train DGUNet+ [34] and OCTUF+ [44] on Kro-
necker SPI and re-train HATNet under block-based pipeline.

Clearly, the re-train DGUNet+ and OCTUF+ achieve a clear
improvement and the re-train HATNet have a drop on per-
formance, revealing the effectiveness of Kronecker SPI.

Table 2. Ablation study for different components in HATNet.
Model CSSC HF LF C-SA PSNR (dB) SSIM

(a) ✓ ✓ ✓ ✓ 32.26 0.9182
(b) ✓ ✓ ✓ 31.48 0.9053
(c) ✓ ✓ ✓ 31.56 0.9074
(d) ✓ ✓ ✓ 31.78 0.9112
(e) ✓ ✓ ✓ 32.15 0.9140

Table 3. Comparison between Kronecker SPI and Vectorized SPI
at SR= 25%.

Method
Kronecker SPI Vectorized SPI

X∈RN×N , Y∈RM×M x=vec(X), y=vec(Y)

Φ∈RM×N , Ψ∈RM×N , α=M2
/
N2 A∈RM2×N2

, α=M2
/
N2

Measurement Y = ΦXΨ⊤ ⇒y= Ax,A= Ψ⊗Φ y = Ax

Gradient descent Zk=Xk−1+ρΦ⊤(Y−ΦXk−1Ψ
⊤)Ψ zk=xk−1+ρA⊤(y−Axk−1)

Complexity O((
√
α+ α)N3) O(αN4)

GPU memory (G) 3.02 10.74
Inference time (s) 0.38 0.55

Table 4. Comparison between block-based sampling and full-size
sampling of Kronecker SPI at SR=10%.

Method DGUNet + [34] OCTFU+ [44] HATNet (ours)
Block-based 30.92/0.9088 30.73/0.9037 31.62/0.9115

Full-size 31.65/0.9110 31.51/0.9102 32.26/0.9154

5. Conclusion
Towards real-world SPI cameras, previous vectorized meth-
ods are limited in resolution and performance, and previ-
ous block-based methods are impractical. In this paper,
we propose a deep unfolding network with hybrid-attention
Transformer on Kronecker SPI model, dubbed HATNet, to
realize practicality and SOTA performance. By unrolling
the computation graph of tensor ISTA, HATNet addresses
SPI reconstruction problem through two alternative modules:
efficient tensor gradient descent and hybrid-attention Trans-
former (HAT) based deep denoising. By virtue of Kronecker
SPI, HATNet can efficiently reduce the computational costs,
GPU memory, and inference time by replacing a regular
large measurement matrix with tow small matrices in the gra-
dient decent projection. Toward deep denoising module, we
propose HAT to aggregate high- and low-frequency informa-
tion in spatial dimensions and recalibrate global information
along channel dimension. Overall, the proposed method
has a potential of improving real-world SPI cameras and
take one significant step towards real-world computational
imaging applications [46].
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