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Abstract

Implicit neural SLAM has achieved remarkable progress
recently. Nevertheless, existing methods face significant
challenges in non-ideal scenarios, such as motion blur or
lighting variation, which often leads to issues like conver-
gence failures, localization drifts, and distorted mapping.
To address these challenges, we propose EN-SLAM, the
first event-RGBD implicit neural SLAM framework, which
effectively leverages the high rate and high dynamic range
advantages of event data for tracking and mapping. Specif-
ically, EN-SLAM proposes a differentiable CRF (Camera
Response Function) rendering technique to generate dis-
tinct RGB and event camera data via a shared radiance
field, which is optimized by learning a unified implicit rep-
resentation with the captured event and RGBD supervi-
sion. Moreover, based on the temporal difference prop-
erty of events, we propose a temporal aggregating optimiza-
tion strategy for the event joint tracking and global bundle
adjustment, capitalizing on the consecutive difference con-
straints of events, significantly enhancing tracking accuracy
and robustness. Finally, we construct the simulated dataset
DEV-Indoors and real captured dataset DEV-Reals con-
taining 6 scenes, 17 sequences with practical motion blur
and lighting changes for evaluations. Experimental results
show that our method outperforms the SOTA methods in
both tracking ATE and mapping ACC with a real-time 17
FPS in various challenging environments. Project page:
https://delinqu.github.io/EN-SLAM.

1. Introduction

Simultaneous Localization and Mapping (SLAM) is an es-
sential problem in computer vision and robotics, widely ap-
plied in tasks such as virtual and augmented reality [8],
robot navigation [18] and autonomous driving [3] over last
decades. Exploration in extreme environments [10, 31, 41]
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Figure 1. Illustration of the proposed implicit event-RGBD neural
SLAM system EN-SLAM under non-ideal environments. The dy-
namic range of RGB sensors is relatively low and suffers from mo-
tion blur. Instead, event cameras show great potential in non-ideal
environments due to their high dynamic range and low latency ad-
vantages. Our method samples rays from two independent RGBD
and event cameras to jointly train a single implicit neural field with
both modalities. This hybrid shared mechanism provides a natural
fusion approach, avoiding alignment issues. It also leverages the
advantages of both modalities, resulting in dense, more robust, and
higher-quality reconstruction results.

remains challenging for visual SLAM (vSLAM) systems
due to the lack of visual features caused by motion blur and
lighting variation in diverse environments [42, 59, 68].

As a novel representation for myriad of signals, Neural
Radiance Fields (NeRF) [35] has innovated great progress
in SLAM recently, demonstrating significant improvements
in map memory consumption, hole filling, and mapping
quality [23, 49, 52, 58, 67, 71]. While the existing NeRF-
based neural vSLAM methods address the limitations of
traditional SLAM frameworks [11, 36, 37, 50, 62] in ac-
curate dense 3D map reconstruction, they are primarily
designed for well-lit scenes and always fail in practical
SLAM scenarios with motion blur [40, 66] and lighting
variation [32, 48]. These methods produce unsatisfying
results under non-ideal environments [58] because of the
following limitations: 1) View-inconsistency: When the
camera encounters rapid velocity variation in Fig. 2 (2nd),
the scene may exhibit discontinuous blur, leading to view-
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inconsistency among frames, further causing heavy artifacts
in the reconstructed map. 2) Low dynamic range: In light-
ing variation scenes illustrated in Fig. 1, the dynamic range
of the RGB sensor is relatively low, and the information on
the dark and overexposure areas is lost, leading to tracking
drifts and mapping distortions.

To address the issues in non-ideal scenarios of exist-
ing neural vSLAM, we introduce utilizing the advantages
of high dynamic range (HDR) and temporal resolution of
event data to compensate for the lost information, thereby
improving the robustness, efficiency, and accuracy of cur-
rent neural vSLAM in extreme environments. Fig. 2 shows
the event generation model that an event is triggered at a
single pixel if the corresponding logarithmic change in lu-
minance exceeds a threshold C. This asynchronous mech-
anism shows excellent potential in non-ideal environments
due to its advantages in low latency [26, 43, 70], high dy-
namic range [46], and high temporal resolution [54, 55].
Fig. 1 and Fig. 2 illustrate its superiority in dark and fast
motion, and event sensors capture higher-quality signals
than RGB sensors. However, applying events into NeRF-
based vSLAM is challenging due to the significant distinc-
tion in imaging mechanisms between event and RGB cam-
eras. Moreover, the requirement of highly accurate camera
poses and careful optimization in traditional surface density
estimation [32] further complicates the integration.

In order to overcome these obstacles, we present EN-
SLAM, the first event-RGBD implicit neural SLAM frame-
work that effectively harnesses the advantages of event and
RGBD streams. The overview of EN-SLAM is shown in
Fig. 3. Our method models the differentiable imaging pro-
cess of two distinct cameras and utilizes shared radiance
fields to jointly learn a hybrid unified representation from
events and RGBD data. By integrating the event gener-
ation model into the optimization process, we introduce
the event temporal aggregating (ETA) optimization strat-
egy for event joint tracking and global bundle adjustment
(BA). This strategy effectively leverages the temporal dif-
ference property of events, providing efficient consecutive
difference constraints and significantly improving the per-
formance. Additionally, we construct two datasets: the sim-
ulated dataset DEV-Indoors and the real captured dataset
DEV-Reals, which consist of 6 scenes and 17 sequences
with practical motion blur and lighting changes. Contribu-
tions can be summarized as follows:

• We present EN-SLAM, the first event-RGBD implicit
neural SLAM framework that efficiently leverages event
stream and RGBD to overcome challenges in extreme
motion blur and lighting variation scenes.

• A differentiable CRF rendering technique is proposed to
map a unified representation in the shared radiance field
to RGB and event camera data for addressing the sig-
nificant distinction between event and RGB. A tempo-
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Figure 2. Illustration of the Event Generation Model (EGM).
An event is triggered at a single pixel if the corresponding loga-
rithmic change in luminance exceeds a threshold C.

ral aggregating optimization strategy that capitalizes the
consecutive difference constraints of the event stream is
present and significantly improves the camera tracking
accuracy and robustness.

• We construct a simulated DEV-Indoors and real cap-
tured DEV-Reals dataset containing 17 sequences with
practical motion blur and lighting changes. A wide range
of evaluations demonstrate competitive real-time perfor-
mance under various challenging environments.

2. Related Work

Neural Implicit vSLAM. Existing NeRF-based visual
SLAM methods have made significant improvements in
dense map reconstruction. iMAP [52] first introduces
NeRF into SLAM, and NICE-SLAM [71] expands the
reconstructable environment size by introducing multi-
scale feature grids. Vox-Fusion [64] utilizes an octree-
based structure to expand the scene dynamically. Besides,
CoSLAM [58] combines coordinate and sparse paramet-
ric encoding to achieve fast convergence and surface hole
filling in reconstruction. Parallel works ESLAM [23] and
Point-SLAM [49] represent scenes as multi-scale feature
planes and neural point clouds, respectively, to improve the
efficiency and accuracy. Beyond NeRF, GS-SLAM [63]
utilizes 3D Gaussian [24] for scene representation and
achieves photo-realistic reconstruction performance. How-
ever, these methods are designed for well-lit indoor scenes
and commonly encounter challenges in non-ideal SLAM
processes, such as motion blur and lighting variation. In
contrast, we introduce utilizing the advantages of high dy-
namic range and temporal resolution of events to compen-
sate for the lost information, thereby improving the robust-
ness and accuracy of current neural implicit methods.
Event-based SLAM. Events have been incorporated into
traditional visual SLAM systems to address the motion blur
and lighting variation. These methods can be divided into
three main types: feature-based methods, direct methods,
and motion-compensation methods. Feature-based meth-
ods, such as USLAM [57], EIO [16] and PL-EVIO [17],
track point or line features from event data [29, 44], and per-
form the camera tracking and mapping in parallel threads.
However, the feature extraction algorithms [2, 33, 47, 56]
rely heavily on frame-based feature detection, facing chal-
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Figure 3. Overview of EN-SLAM. EN-SLAM decodes the scene encoding to a shared geometry and radiance representation, and decom-
poses the radiance into RGB color c(x) and event luminance l(x) via differentiable CRF Mappers. We iteratively optimize the pose and
scene representation by minimizing losses, in tracking and global BA with the event temporal aggregating techniques in Algorithm 1.

lenges for motion-dependent event data appearance. Di-
rect methods employ events without explicit data associa-
tion by aligning the photometric event image [19, 25, 26]
or utilizing the spatiotemporal information for event repre-
sentations alignment [43, 45, 70]. Direct methods are well
suited for events, but mainly focus on event-based visual
odometry, leaving the visual dense mapping unexplored.
Motion-compensation methods optimize event alignment in
motion-compensated event frames by maximizing the con-
trast [39, 60], minimizing the dispersion [38] and align
probabilistic [15]. However, they suffer from the collapse
in a broad range of camera motions. Thus, currently, event-
based SLAM demonstrates significant potential but lacks
sufficient exploration in dense map reconstructions [20].
Neural Radiance Fields using Events. Event-based
NeRF is in the nascent stages, and several studies have
demonstrated the possibility of view synthesis from events
via implicit neural fields. Event-NeRF [48] proposes an ap-
proach for inferring NeRF from a monocular color event
stream that enables novel view synthesis. E-NeRF [27] and
E2NeRF [40] tackle the NeRF estimation from event cam-
eras under strong motion blur. They develop normalized
and rendering loss to address varying contrast thresholds
and enhance neural volumetric representation. The paral-
lel work Ev-NeRF [22] conducts a threshold-bound loss
with the ReLU function to address the lack of RGB im-
ages. In addition to reconstruction, ∆tNeRF [34] proposes
an event camera tracker by minimizing the error between
sparse events and the temporal gradient of the scene repre-
sentation on the simplified intensity-change events. How-
ever, the traditional surface density estimation in NeRF re-
quires highly accurate camera poses and careful optimiza-
tion [32], thus making it exceptionally challenging to apply
NeRF to the event-based SLAM.

3. Methodology
The overview of our method is shown in Fig. 3. Given an
input RGBD stream {Ii,Di}Ji=1 and event stream {Ek}Nk=1

with known camera intrinsics K ∈ R3×3 and K′ ∈ R3×3,
we aim to leverage event and RGBD to reconstruct the cam-

era poses {Pi}Ji=1 and the implicit scene representation.
In Sec. 3.1, the scene encoding is decoded to a unified ge-
ometry and radiance representation. Then, the shared ra-
diance is decomposed into RGB color c(x) and event lu-
minance l(x) via differentiable CRF Mappers in Secs. 3.2
and 3.3 to address the imaging distinction of event and RGB
cameras. Finally, EN-SLAM iteratively optimizes the pose
and scene representation by minimizing the re-rendering
loss between the observed RGBD-E (RGBD and events)
and rendering results in tracking and global BA of Sec. 3.4.

3.1. Unified Implicit Scene Representation

As shown in Fig. 3, we represent the scene S with multi-
resolution geometric features and color grid features:

S = {(F g
x,θ, F

c
x,θ) | θ = 1, ...,Θ} , (1)

where x and θ denote the coordinate and resolution level.
There are two challenges that hinder us from learning a
scene representation from different RGB and event modal-
ities. Firstly, the event data is sparse and records loga-
rithmic changes in luminance. Secondly, different cameras
hold distinct physical imaging process mechanisms. De-
spite this, the geometry and radiance fields remain consis-
tent during the camera imaging. In this case, we propose to
learn a shared unified geometry hidden feature hg

x and ra-
diance representation e(x) across distinct cameras. The ge-
ometric grid feature F g

x,θ and color feature F c
x,θ are simul-

taneously mapped to geometry hidden vector hg
x, radiance

fields e(x) and TSDF (truncated signed distance function)
s(x), by a geometry decoder fg:

fg

(
F g
x,θ, F

c
x,θ

)
7→ (hg

x, e(x), s(x)). (2)

The geometry hidden vector hg
x and radiance fields e(x) are

shared by the color and event CRF decoders.

3.2. Decomposition of the Radiance Fields

In standard imaging devices, the incoming radiance under-
goes linear and nonlinear image processing before being
mapped into pixel values and stored in images. This entire
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image processing can be represented by a single function
fc called the camera response function (CRF) [9]. How-
ever, the traditional NeRF method [35] simplifies the imag-
ing process, leading to discrepancies between the rendering
and actual images. This deviation is further amplified in
multi-modal implicit representations. As Fig. 10 shows, the
captures of RGB and event cameras are significantly dis-
tinct, which can lead to joint optimization fluctuation. To
address this issue, we model the radiance e(x) and exposure
∆tc of a ray r but take the aperture and others as implicit
factors to obtain the color field c(x) [21, 53] by differen-
tiable tone-mapping:

c(x) = fc (e(x)∆tc) . (3)

To facilitate optimization, we convert all numerical values
into the logarithmic domain and present the inverse function
of
(
lnfc

−1
)−1

as Ψc:

c(x) =
(
lnfc

−1
)−1

(ln e(r) + ln∆tc)

= Ψc (ln e(x) + ln∆tc) ,
(4)

As for the event camera, directly obtaining the event data is
not feasible. However, we can predict high dynamic range
luminance l(x) and derive events using the event generation
model: As shown in Fig. 2, an event Ek = (uk, vk, tk, pk)
at image coordinate mk = [uk, vk, 1]

T is triggered if the
corresponding logarithmic brightness change L(m, t) ex-
ceeds a threshold C:

L(mk, tk)− L(mk, tk−1) = pkC, pk ∈ {+1,−1} . (5)

The logarithmic brightness L(m, t) can be obtained by:

L(m, t) = lin log(Ie(m)) =

{
Ie(m) · ln(B)/B, if Ie(m) < B
ln(Ie(m)), else , (6)

where B denotes the linear region threshold [7] and the
imaging brightness Ie(m) of event camera equals to the cor-
responding luminance of ray r. By applying the modeling
approach in Eqs. (3) and (4) to the CRF of an event camera,
we establish the relation among the luminance field l(x),
the radiance e(x) and exposure:

l(x) = Ψl (ln e(x) + ln∆tl) , (7)

where Ψl and ∆tl denote the luminance tone-mapping and
pseudo exposure of the event camera. In this way, we de-
compose the shared radiance field e(x) into the RGB and
event camera imaging processes through two differentiable
tone-mapping processes.

3.3. Differentiable CRF Rendering

Upon obtaining the color and luminance fields in Sec. 3.2,
we render the final imaging RGB, luminance, and depth by
integrating predicted values along the samples in a ray r:

xi = O+ zid, i ∈ {1, ...,M} , (8)
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Figure 4. The illustration of event temporal aggregating optimiza-
tion strategy. In the tracking and global BA stages, EN-SLAM
adaptively forwards query the previous frame according to the pre-
vious index table, and sample rays from different views perform
joint optimization in Eq. (13).

where O ∈ R3 is the camera origin, d ∈ R3, ∥d∥ = 1 is
the ray direction, and zi ∈ R denotes the depth. Hence, we
obtain the final imaging color ĉ, luminance l̂ and depth d̂:

ĉ(r,∆tc) =

i=M∑
i=1

wiΨc(ln e(xi) + ln∆tc),

l̂(r,∆tl) =

i=M∑
i=1

wiΨl(ln e(xi) + ln∆tl),

d̂(r) =

i=M∑
i=1

wizi.

(9)

We utilize the simple bell-shaped model [1] and compute
weights wi by two sigmoid functions σ(·) to convert pre-
dicted TSDF s(xi) into weight wi:

wi = σ

(
s(xi)

tr

)
σ

(
−s(xi)

tr

)
, (10)

where tr is the truncation distance of a ray r.

3.4. Tracking and Bundle Adjustment

In this section, to leverage the HDR and temporal differ-
ence properties of events, we propose an event joint track-
ing and global BA strategy in Sec. 3.4.1 that incorporates
events into optimization, thus improving the accuracy and
robustness. Besides, we introduce adaptive forward-query
and sampling strategies in Sec. 3.4.2 and Sec. 3.4.3, which
select event data and ray samples with more elevated confi-
dence for optimization, thereby boosting the convergence.
3.4.1 Event Temporal Aggregating Optimization
The overview of ETA is shown in Fig. 4 and Algorithm 1.
For tracking, we representate the camera pose Pcur =
exp (ξ∧t ) ∈ SE(3) of current frame Fcur and initialize with
constant assumption. By selecting Nt rays within Fcur and
performing an adaptive event forward query in Sec. 3.4.2
with a probability-weighted sampling in Sec. 3.4.3, we
get the event stream and previous rays. Then, we iter-
atively optimize the pose by minimizing objective func-
tions. For global BA, Nba rays from the global keyframe
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list are sampled to be the subset of pixels {PXcur}. And
then, the forward query and probability-weighted sampling
are performed for each sample to get the previous subset
{PXprev} and events {Ek}curk=prev . Finally, a joint opti-
mization is performed to optimize the geometry decoder fg ,
differentiable CRF {Ψc,Ψl}, and poses {Pi}curi=0.

3.4.2 Adaptive Forward Event Query
As shown in Fig. 4, ETA performs an adaptive event for-
ward window selection in tracking and BA by constructing
a previous index table to prioritize reliable prior frames for
optimization. Specifically, ETA uses a default window wd

and performs a forward query. If the loss of a queried frame
exceeds a threshold Ls, we conduct a shift lookup within
a neighborhood of length 2 × wk, selecting the frame with
the minimum loss as the forward frame for event loss cal-
culation Eq. (13). This event temporal constraint provides a
stable local constraint between the participating frames and
effectively leverages the high HDR property of events.

Algorithm 1: Event temporal aggregating optimization

Input : RGBD-E stream {Ii, di}Ji=1 and {Ek}Nk=1.
Output: Loss {Lev,Lrgb,Ld,Lsdf ,Lfs}.

1 while j < J do
2 for i ∈ {j} if not BA else {0, 1, ..., j} do

/* Forward Query Sec. 3.4.2 */
3 Fcur,Fprev ← Tab(i), Tab(i− wd);
4 if Ltotal > Ls then
5 Fprev

min← Tab(i− ws − wd, i+ ws).Loss
6 end
7 Probability-weighted ray sampling: Rayscur ,

Raysprev ← Fcur,Fprev ; // Sec. 3.4.3

8 Ray rendering: L̂(m, tβ)− L̂(m, tα);
// Sec. 3.3

9 Event accumulation:
∑tk=tprev

tk=tcur
pkC;

10 Calculate loss: Lev,Lrgb,Ld,Lsdf ,Lfs ;
// Eqs. (13) to (15)

11 Tab(i)← {Ltotal, cur, prev}
12 end
13 end

3.4.3 Probability-weighted Sampling Strategy
To take advantage of hybrid multimodality and reduce com-
putational costs, we propose to utilize the RGB loss to guide
ray sampling in the event plane. As shown in Fig. 5, the al-
gorithm starts by dividing the RGB image into h×w patches
and randomly sampling Nc rays from each patch to obtain
the loss for each sample. Then, we calculate the average
loss of each patch and project the center mc to a downsam-
pled mini-plan plane of the event camera:

m =
1

Ze
Km

[
I3×3|03×1

] [TecK
−1mZc

1

]
, (11)

where Zc and Ze are the depths of two planes, Km is the
intrinsic of event mini-plane, and Tec denotes the transfor-
mation between cameras. We apply the bilinear interpola-

RGBD Camera Event Camera

interpolation

Query

Figure 5. Illustration of the proposed probability-weighted sam-
pling strategy. We utilize the loss of the RGBD plane (left) to
guide ray sampling in the event plane (right).

tion to compute the loss for each pixel in the mini-plan. Fi-
nally, the divided patches of the event plane query the loss
{Lq

e}
Q
q=0 from the mini-plane and sample rays with proba-

bility distribution f(j) =
Lq

e∑Q
q=1 Lq

e
.

3.4.4 Objective Functions
According to the EGM in Eq. (5), although it is not pos-
sible to directly model the luminance signals supervision,
the logarithmic brightness differences L̂(m, tβ)−L̂(m, tα)
can be rendered from two camera poses Pα and Pβ with
Eq. (9). By integrating it with Eqs. (5) and (6), we obtain:

L(m, tβ)− L(m, tα) =

tk=tβ∑
tk=tα

pkC ≈ L̂(m, tβ)− L̂(m, tα). (12)

Thus, we establish the relation between events and render-
ing, and define event reconstruction loss as:

Lev (tβ , tα) = MSE

(tk=tβ∑
tk=tα

pkC − L̂(m, tβ) + L̂(m, tα)

)
. (13)

In our implementation, we perform a normalization
on Eq. (13) to eliminate C when it is unavailable. The color
and depth rendering losses [58] in a valid ray batch R be-
tween the rendering and observations are also utilized:

Lrgb =
1

|R|
∑
r∈R

(ĉ(r,∆tc))− c(r))2,Ld =
1

|R|
∑
r∈R

(d̂(r)− d(r))2, (14)

where c(r) and d(r) are the ground truth color and depth. To
achieve an accurate geometry reconstruction, we apply the
approximated SDF loss and free-space loss [58] to sampled
point x near the surface (Str

r = {x | |d(r) − d(x)| ≤ tr})
and far from the surface (Sfs

r = {x | |d(r)− d(x)| > tr}):

Lsdf =
1

|R|
∑
r∈R

1

|Str
r |

∑
x∈Str

r

(
x− (d̂(r)− d(r))

)2
,

Lfs =
1

|R|
∑
r∈R

1∣∣∣Sfs
r

∣∣∣
∑

x∈Sfs
r

(x− tr)
2
.

(15)

4. Dataset
To our knowledge, there is currently no SLAM dataset that
satisfactorily tackles challenges posed by strong motion
blur and lighting variations while encompassing RGBD and
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Figure 6. Overview of the DEV-Indoors and DEV-Reals datasets. DEV-Indoors is obtained through Blender [6] and simulator [14],
covering normal, motion blur, and dark scenes, providing 9 subsets with RGB images, depth maps, event streams, meshes, and trajectories.
DEV-Reals is captured from real scenes, providing 8 challenging subsets under motion blur and lighting variation.

event streams for NeRF-based SLAM. Common datasets
lack depth [19] or ground truth meshes [61]. Additionally,
they are primarily focused on outdoor scenes [65], without
significant motion blur [4] or lighting variation [30]. There-
fore, in this paper, we construct simulated Dynamic Event
RGBD Indoor (DEV-Indoors) and Dynamic Event RGBD
Real captured (DEV-Reals) datasets, as shown in Fig. 6. Be-
sides, we use Vector [13] dataset for evaluation as well.
1) DEV-Indoors is rendered from 3 Blender [6] models:
#room, #apartment, and #workshop. We gener-
ated 9 subsets containing high-quality color images, depth,
meshes, and ground truth trajectories by varying the scene
lighting and camera exposure time. The events are further
generated via the events simulator [14].
2) Dev-Reals is captured from 3 real scenes: #Pioffice,
#Garage and #Dormitory. Our capture system com-
prises a LiDAR (for ground truth pose), a Realsense D435I
RGBD camera, and a DAVIS346 event camera. Eight sub-
sequences are captured by modifying the lighting condi-
tions and camera movement speed in the environment.

5. Experiment
Baselines. To the best of our knowledge, there is cur-
rently no event-based RGBD dense vSLAM with avail-
able public code that can be directly compared with our
method. We opt EVO [43], ESVO [69], USLAM [57]
as a reference from the most relevant event-based meth-
ods [5, 12, 19, 28, 61, 72]. We also compare our method
with the existing SOTA NeRF-based methods: iMAP [52],
NICE-SLAM [71], CoSLAM [58], and ESLAM [23].
Metric. We use the absolute trajectory error [51] (ATE)
(cm) to measure the localization accuracy. For map recon-
struction, we use the 2D Depth L1 (cm) [71], 3D accuracy
(cm), completion (cm), and completion ratio (%) to measure
the scene geometry with mesh culling [1, 23]. The evalua-
tion datasets are generated by randomly conducting 2000

Table 1. Tracking (ATE RSME [cm]) comparison on DEV-
Indoors. Our method outperforms previous works, demonstrating
its robustness under motion blur and luminance variation.

Method #Rm
norm

#Rm
blur

#Rm
dark

#Apt
norm

#Apt
blur

#Apt
dark

#Wkp
norm

#Wkp
blur

#Wkp
dark

#all
avg

iMAP [52] 41.08 50.58 70.77 25.75 14.41 1.06e5 276.91 891.86 345.21 214.57

NICE-SLAM [71] 17.06 29.54 30.53 25.17 44.22 48.28 ✗94 % ✗33 % ✗33% 32.47

CoSLAM[58] 10.71 10.88 26.64 10.02 13.03 30.75 7.96 14.37 17.88 15.80

ESLAM [23] 10.72 15.55 40.42 9.99 12.79 12.39 7.01 15.07 7.97 14.66

Ours 9.62 9.72 9.94 8.62 8.77 9.21 6.74 7.51 6.94 8.56

poses and depths in Blender [6]. We run all the methods 5
times and report the average results or ✗+ tracking success
ratio if a method crashes.
Implementation Details. EN-SLAM is implemented in
Python and trained on a desktop PC with a 5.50GHz In-
tel Core i9-13900K CPU and NVIDIA RTX 4090 GPU. We
run EN-SLAM at 17 FPS and sample 1024 and 2048 rays
in tracking and BA stages with 10 iterations by default. The
event joint global BA is performed every 5 frames with 5%
of pixels from all keyframes. The model is trained using
Adam optimizer with learning rate lrrot = 1e−3, lrtrans =
1e−3, and loss weights λev = 0.05, λrgb = 5.0, λd = 0.1.
Default window wd and neighborhood window are set as
5 and 2, respectively. The exposures of RGB and event
cameras are 5.21e−5 in DEV-Indoors. We use two sigmoid
functions to fit the exposures if they are unavailable. De-
tailed settings can be found in the supplemental materials.

5.1. Evaluation of Tracking and Mapping

Evaluation on DEV-Indoors. We report the trajectory
accuracy and reconstruction quality in Tab. 1 and Tab. 2.
As shown in Tab. 1, EN-SLAM performs the best in all
9 scenes and remains stable (fluctuation below 0.8) under
all the blur and dark sequences. While the others perform
sensitive and unstable when facing non-ideal environments,
especially iMAP [52] and NICE-SLAM [71], which com-
pletely crushes in the blur and dark scenes. ESLAM [71]
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Figure 7. Reconstruction Performance on DEV-Indoors. EN-SLAM achieves, on average, more precise reconstruction details than
existing methods in motion blur and lighting varying environments with the assistance of high-quality event streams.

Table 2. Reconstruction Performance [cm] of the proposed
method vs. the state-of-the-art methods on DEV-Indoors dataset.

Method Metric #Rm
norm

#Rm
blur

#Rm
dark

#Apt
norm

#Apt
blur

#Apt
dark

#Wkp
norm

#Wkp
blur

#Wkp
dark

#all
avg

iMAP
[52]

Acc↓ 37.16 37.60 34.30 25.55 44.288 54.47 56.40 51.74 38.12 42.18
Comp↓ 48.69 55.97 33.76 19.28 23.94 49.61 65.40 27.18 47.11 41.22
Comp Ratio↑ 37.56 37.76 39.11 60.03 46.27 42.56 12.14 48.44 40.41 40.48
Depth L1↓ 79.93 97.98 64.96 40.36 128.45 140.00 131.79 115.07 124.69 102.58

NICESL
AM [71]

Acc↓ 18.49 18.86 16.69 21.27 16.51 19.17 26.35 22.09 28.40 20.87
Comp↓ 20.26 21.93 21.43 20.67 18.70 21.29 28.04 49.82 77.19 31.04
CompRatio ↑ 60.40 59.03 58.14 59.60 63.49 56.55 50.91 46.00 35.58 54.41
Depth L1↓ 40.59 42.09 40.26 41.54 24.00 34.89 62.48 104.20 106.09 55.13

CoSLA
M [58]

Acc↓ 10.66 11.36 12.77 15.47 16.42 30.71 13.02 17.59 19.85 16.43
Comp↓ 13.24 12.44 12.23 14.09 15.36 21.67 13.92 18.26 19.46 15.63
Comp Ratio↑ 69.22 76.87 77.26 70.61 66.75 55.26 67.92 61.26 60.70 67.3
Depth L1↓ 24.78 20.91 20.65 32.29 35.90 64.14 28.69 39.17 42.85 34.38

ESLA
M [23]

Acc↓ 9.48 8.58 11.81 12.86 16.25 14.85 9.01 10.01 10.02 11.43
Comp↓ 7.94 7.54 7.08 8.511 12.37 10.40 8.89 10.95 10.44 9.35
Comp Ratio↑ 84.60 85.69 86.70 82.93 71.53 80.90 83.17 80.02 81.64 81.91
Depth L1↓ 15.34 12.27 19.08 11.07 27.80 15.50 30.03 29.06 28.02 20.91

Acc↓ 7.48 10.53 7.07 9.46 9.91 9.34 9.23 9.28 9.25 9.06
Comp↓ 7.70 12.51 7.70 9.87 9.28 9.61 9.95 9.92 9.92 9.61
Comp Ratio↑ 83.00 74.48 84.26 85.36 83.40 84.01 82.27 82.38 82.35 82.39Ours
Depth L1↓ 15.10 23.36 11.92 19.86 11.94 19.21 23.16 23.14 23.39 19.01

Table 3. Tracking comparison (ATE median [cm]) of the pro-
posed method vs. the state-of-the-art methods on DEV-Reals.

Method Pio1 Pio2 Gre1 Gre2 dorm1 dorm2 dorm3 dorm4 avg

ORBSLAM [19] ✗63% ✗63% ✗63% ✗63% ✗63% ✗63% ✗63% ✗63% ✗63%
NICE-SLAM [71] 13.21 23.35 ✗63% ✗25% 24.69 10.68 18.44 44.04 ✗22.40

COSLAM [58] 11.14 19.83 82.52 40.16 15.99 15.42 30.12 32.45 30.95
ESLAM [23] 11.28 21.42 63.65 30.75 37.94 31.04 16.19 37.91 31.27

Ours 8.94 19.05 43.63 21.18 11.26 11.91 16.00 19.78 18.97

and CoSLAM [58] exhibit similar trends but achieve rela-
tively stable results. Specifically, in #room sequences, they
achieved 1.02 and 1.45 times the error on the blur subset
and 2.49 and 3.77 times the error on the dark subset, re-
spectively. The reconstruction quality in Tab. 2 and Fig. 7
show that EN-SLAM performs more accurately and ro-
bustly than the other methods. Specifically, our method re-
duces the error by 2.37, 0.48, and 1.90 in ACC, Comp, and
Depth L1 compared with the second ESLAM [23]. Fig. 7
also shows that our method reconstructs the details of the
scenes more accurately and produces fewer artifacts.

Evaluation on DEV-Reals. Tab. 3 illustrates the tracking
performance of our method and the state-of-the-art methods
on the DEV-Reals dataset. Our method achieves the best
performance in all the scenes (18.97), and the average er-
ror is 1.63 times lower than the second-best CoSLAM [58]
(30.95). Note that DEV-Reals is challenging due to the large
motion and varying light, leading to the crushes of ORB-
SLAM [36] and NICE-SLAM [71].

Table 4. Tracking comparison (ATE mean [cm]) of the proposed
method vs. the Event-based SLAM system on Vector[13] dataset.

Method
robot
norm

robot
fast

desk
norm

desk
fast

sofa
norm

sofa
fast

hdr
norm

hdr
fast

#all
avg

EVO [43] 3.25 ✗ ✗ ✗ ✗ ✗ ✗ ✗ 3.25
ESVO [69] ✗ ✗ ✗ ✗ 1.77 ✗ ✗ ✗ 1.77

USLAM [57] (EVIO) 1.18 1.65 2.24 1.08 5.74 2.54 5.69 2.61 2.84

CoSLAM [58] (DV) 1.00 124.69 1.76 97.65 1.74 77.89 1.47 1.42 38.45
ESLAM [23] (DV) 1.39 3.30 2.54 3.64 7.99 19.03 7.38 12.23 7.19

Ours (EDV) 1.06 1.73 1.76 2.69 2.02 1.84 1.03 1.22 1.67
E: event, V: RGB or gray image, D: depth, I: IMU, S: stereo, O: odometry, ✗: crashes.

Table 5. Run-time comparison on DEV-Indoors. EN-SLAM is
comparable to the most efficient ESLAM and keeps lightweight.

Method Tracking [ms×it] ↓ Mapping [ms×it] ↓ FPS ↑ #parama.

iMAP [52] 24.73×50 41.18×300 0.36 0.22 M
NICE-SLAM [71] 6.46×16 26.42×120 1.55 5.86 M

CoSLAM[58] 6.08×15 13.52×15 11.26 1.71 M
ESLAM [23] 5.20×13 16.68×10 14.77 7.85 M

Ours 5.75×10 13.16×10 17.40 1.95 M

5.2. Runtime Analysis

We evaluate all the frameworks on an NVIDIA RTX
4090 GPU and report average tracking and mapping iter-
ations spending, FPS, and parameters number of the model
in Tab. 5. The experimental results indicate that our method
is fast, with an average of 17 FPS, comparable to the
currently most efficient ESLAM [23]. Meanwhile, our
method remains lightweight, with only 1.95M parameters,
yet achieves the best accuracy.

5.3. Evaluation of Rendering

We compare the rendering performance in Fig. 5.3 (left),
EN-SLAM outperforms most SOTA works in image qual-
ity. The thumbnails in Fig. 5.3 (right) show that EN-SLAM
achieves more precise rendering details than previous meth-
ods. Specifically, on #Rm Blur, EN-SLAM yields more
refined results, while CoSLAM and ESLAM exhibit ghost-
ing. Note that in #Rm Dark and #Wkp Dark, all the
RGB rendering is dark and blurred, while our method can
still generate high-quality luminance results with the assis-
tance of the HDR event stream.

5.4. Ablation Study

Effect of event and RGB modalities. Fig. 9 illustrates
quantitative evaluation using ETA in tracking and mapping.
Our full model achieve lower tracking error of 9.61 and
15.47 than the model w/o ETA in tracking (10.73 and 17.07)
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Method Metric
#Rm

norm

#Rm

blur

#Rm

dark

#Apt

norm

#Apt

blur

#Apt

dark

#Wkp

norm

#Wkp

blur

#Wkp

dark

NICESL

AM [71]

PSNR 13.65 18.24 28.09 14.23 17.50 28.37

SSIM 0.457 0.623 0.828 0.445 0.573 0.853 ✗ ✗ ✗

LPIPS 0.646 0.485 0.349 0.673 0.552 0.325

CoSLA

M [58]

PSNR 23.16 24.86 31.22 22.79 23.85 32.45 24.12 25.11 39.13

SSIM 0.785 0.830 0.883 0.768 0.799 0.925 0.821 0.846 0.962

LPIPS 0.487 0.428 0.392 0.515 0.523 0.289 0.462 0.451 0.183

ESLA

M [23]

PSNR 19.52 20.70 28.48 18.68 15.11 31.15 16.38 18.35 31.08

SSIM 0.670 0.715 0.841 0.614 0.518 0.895 0.519 0.603 0.905

LPIPS 0.522 0.487 0.414 0.606 0.836 0.285 0.688 0.664 0.255

Ours
PSNR 23.72 25.11 32.64 23.08 24.53 31.26 23.83 25.11 39.38
SSIM 0.808 0.840 0.911 0.777 0.821 0.909 0.810 0.848 0.963
LPIPS 0.468 0.423 0.349 0.510 0.493 0.358 0.481 0.448 0.182
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Figure 8. Rendering Performance on DEV-Indoors. left): Our method outperforms most previous works in image quality evaluation
under non-ideal environments. right): EN-SLAM achieves more precise rendering details on average than previous methods.

Tracking Mapping #Rm blur #Dorm2
Event Event ATE↓ ACC↓ Comp↓ Comp ratio↑ Median↓ RSME↓

✗ ✗ 11.89 8.61 10.98 76.31 14.46 18.75
✗ ✓ 10.73 8.32 9.53 81.83 14.17 17.07
✓ ✗ 11.68 8.28 10.28 79.05 16.09 19.72
✓ ✓ 9.61 7.88 7.59 83.51 11.91 15.47

RGB 1st-2nd only 10.92 9.02 9.15 82.81 13.52 17.80
W/o RGB 12.07 11.12 11.05 76.27 22.50 26.48
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Figure 9. Ablation study of modalities on the #Rm blur and
#Drom2 subset of DEV-Indoors and DEV-Reals (15 iterations).

and mapping (11.68 and 19.72) on the #Rm blur and
#Dorm2, respectively. The results also show that the full
model surpasses the model w/o ETA by 0.73 and 3.39% in
ACC and completion. In addition, the RGB is also critical,
but with the initialization of RGB in 2 frames, the perfor-
mance is significantly improved, benefiting from the CRF.

Effect of CRF and probability-weighted sampling.
Fig. 9 show the performance of differentiable CRF and
probability-weighted sampling strategy (PWS). The system
without CRF might suffer from the distinct event and RGB
imaging process, resulting in fluctuating training and poor
performance, especially in real datasets. It significantly
reduces the tracking ATE RSME from 30.18 to 15.47 in
#Drom2 and reconstruction completion from 9.78 to 7.59
in #Rm blur. The results also show that the full model
surpasses the model w/o PWS by 0.25 and 1.9% in ATE
and completion on #Rm blur. A visualization of CRF is
shown in Fig. 10, on dark scene #Drom2, the model with
CRF renders HDR luminance results and accurate mesh
benefiting from events. In contrast, the model w/o CRF suf-
fers from the low dynamic range RGB input.

Setting # Rm blur #Dorm2
ATE↓ ACC↓ Comp↓ Comp ratio↑ Median↓ RSME↓

w/o CRF 12.12 8.29 9.78 83.57 27.67 30.18
w/o PWS 9.86 7.88 9.49 81.04 16.59 19.78
Full model 9.61 7.88 7.59 83.51 11.91 15.47

Table 6. Ablation study of CRF and PWS on the #Rm blur and
#Drom2 subset of DEV-Indoors and DEV-Reals (15 iterations).

RGB Input Event Input W/o CRF Color Rendering FULL Luminance Rendering

ATE 27.67 ATE 11.91

W/o CRF. Mesh FULL. Mesh

Figure 10. CRF ablation on the #Dorm2 of DEV-Reals.

6. Conclusion and Limitation
This paper first integrates the event stream into the implicit
neural SLAM framework to overcome challenges in scenes
with motion blur and lighting variation. A differentiable
CRF rendering technique that maps the unified representa-
tion to color and luminance is proposed to address the sig-
nificant distinction between event and RGB. An event tem-
poral aggregating optimization strategy that capitalizes the
consecutive difference constraints of events is presented to
enhance the optimization. We construct DEV-Indoors and
DEV-Reals datasets to evaluate the effectiveness of EN-
SLAM under various environments. However, EN-SLAM
relies on depth input, which might be unavailable in some
scenarios. Besides, EN-SLAM focuses on indoor scenes
and might face challenges in boundless long trajectories. In
future work, we aim to extend it to large-scale outdoor en-
vironments and enhance the generalization capability.
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