
Towards Modern Image Manipulation Localization:
A Large-Scale Dataset and Novel Methods

Chenfan Qu1, Yiwu Zhong2,*, Chongyu Liu1, Guitao Xu1, Dezhi Peng1, Fengjun Guo3,
Lianwen Jin1,4,*

1South China University of Technology, 2University of Wisconsin,
3INTSIG Information Co., Ltd

4INTSIG-SCUT Joint Lab on Document Analysis and Recognition
202221012612@mail.scut.edu.cn, yzhong52@wisc.edu, eelwjin@scut.edu.cn

Abstract

In recent years, image manipulation localization has at-
tracted increasing attention due to its pivotal role in guar-
anteeing social media security. However, how to accurately
identify the forged regions remains an open challenge. One
of the main bottlenecks lies in the severe scarcity of high-
quality data, due to its costly creation process. To address
this limitation, we propose a novel paradigm, termed as
CAAA, to automatically and precisely annotate the numer-
ous manually forged images from the web at the pixel level.
We further propose a novel metric QES to facilitate the au-
tomatic filtering of unreliable annotations. With CAAA and
QES, we construct a large-scale, diverse, and high-quality
dataset comprising 123,150 manually forged images with
mask annotations. Besides, we develop a new model APSC-
Net for accurate image manipulation localization. Accord-
ing to extensive experiments, our dataset significantly im-
proves the performance of various models on the widely-
used benchmarks and such improvements are attributed to
our proposed effective methods. The dataset and code are
publicly available at https://github.com/qcf-568/MIML.

1. Introduction
The rapid development of modern image editing tech-

niques, such as PhotoShop and GIMP, has greatly en-
riched people’s visual world. However, the abuse of manip-
ulated images may lead to fraud and the spread of rumors,
posing significant risks to social media security [6, 13].
Consequently, Image Manipulation Localization (IML) has
emerged as an important research topic in recent years [11].
It is crucial to develop effective techniques for IML.

The key challenge for IML is the scarcity of manu-
ally forged images [35]. Tons of training data are essential
for models to prevent overfitting. Unfortunately, the pro-
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Figure 1. We propose a novel paradigm for constrained image ma-
nipulation localization, which treats images in SPG and SDG sep-
arately. We also propose to employ it for auto-annotation and con-
struct a large-scale, high-quality dataset that noticeably enhances
the generalization of image manipulation localization models.

Manipulated image Manipulated region Manipulated image Manipulated region
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Manipulation by copying a region
(mouse) and pasting it into other 
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Figure 2. The definition of ’SPG’ and ’SDG’. This definition ap-
plies to an image pair consisting of a real and a forged image.

cess of elaborately manipulating images and annotating the
forged regions at pixel-level is extremely exhaustive and
time-consuming. Although synthetic data is utilized to over-
come the data scarcity [12, 17], it often exhibits a significant
domain gap between real-world manipulations, leading to
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poor generalization of models trained with it [35]. Recently,
various methods have been proposed and successfully im-
proved generalization, such as noise domain features [6, 36]
and semantic suppression [27]. However, they are far from
fully addressing the issue caused by the severe shortage of
manually forged data and still suffer a lot from overfitting.

Considering that there are numerous manually forged
images publicly available on the web, along with their cor-
responding authentic images. We propose a novel idea that
employs well-trained constrained image manipulation lo-
calization models to automatically obtain the mask anno-
tations for these unlabelled forged images, so that the data
scarcity problem for image manipulation localization can be
greatly alleviated, as shown in Fig. 1. Since constrained im-
age manipulation localization methods localize forged re-
gions with the help of the corresponding authentic images,
the complexity of the task can be considerably reduced.

However, despite progress has been made in less chal-
lenging data, previous constrained image manipulation lo-
calization methods are inadequate as qualified automatic
annotators for complex modern images due to three serious
handicaps. First, they mostly employ a single correlation-
based model to process all input data [19, 28], which
we argue is a suboptimal paradigm. Generally, based on
whether the common parts among the manipulated im-
ages are forged regions or authentic regions, the pairs of
forged images and their original ones can be divided into
two groups, Shared Donor Group (SDG) and Shared Probe
Group (SPG), as shown in Fig. 2. Although the previous
correlation-based methods are reasonable for SDG, they
are not suitable enough for SPG, as the actual common
parts for data in SPG are mostly background, while those
in SDG are mostly foreground. The shared background in
SPG have much larger area and much fewer distinctive fea-
tures compared to the shared foreground in SDG. Simul-
taneously training correlation-based models on SDG and
SPG data will lead to confusion and weaken their gener-
alization ability. Second, the difference maps derived by
subtracting the forged images from their authentic ones can
always highlight the forged regions, but such an vital clue is
completely ignored by previous constrained image manip-
ulation localization methods. Third, previous works don’t
pay enough attention to the semantic misalignment caused
by the substantial re-scaling operation during manipulation,
which confuses the models and negatively affects them.

To tackle these problems, we propose a novel paradigm
termed as Category-Aware Auto-Annotation (CAAA),
which treats image pairs in SDG and SPG separately. The
proposed CAAA paradigm consists of three components.
Initially, a classifier is employed to determine whether an
input image pair belongs to SDG or SPG. This classifier can
be trained effectively through self-supervised learning using
unlabeled images. Second, a Difference Aware Semantic

Segmentation model that utilizes both the image pairs and
their difference maps for accurate constrained manipula-
tion localization in SPG. Additionally, a Semantic Aligned
Correlation Matching model that improves the performance
in SDG through better semantic alignment. Experiments
demonstrate that our methods significantly outperform pre-
vious constrained image manipulation localization methods
on complex scenarios and are adequate for auto-annotation.

Subsequently, we collect a large amount of manually
forged images from the Internet and then annotate their
forged regions with the proposed CAAA. This approach can
considerably alleviate the scarcity of non-synthetic data in
image manipulation localization, as shown in Fig. 1. To en-
sure that all the annotations are reliable enough, we further
propose a novel metric, termed as Quality Evaluation Score
(QES). The QES can automatically evaluate the quality of
the annotations and exclude the bad ones, without needing
the ground-truths to calculate. Experiments show that our
dataset can significantly improve various image manipula-
tion localization models on the widely-used benchmarks.

Additionally, to make better use of our MIML dataset,
we propose a new model, termed as APSC-Net, which out-
performs previous methods on various benchmarks.

In summary, our main contributions are as follows:
• We propose a novel idea: facilitating the task of image

manipulation localization from the web-scale images and
the auto-annotations distilled from a less challenging task,
constrained image manipulation localization.

• We propose a novel paradigm for constrained image ma-
nipulation localization, termed as CAAA, which treats
SPG and SDG separately. For SPG, we propose to em-
ploy the image difference denoised with by semantic in-
formation. For SDG, we propose to align the semantics
with a cross-level feature correlation framework.

• We propose a novel effective metric QES to automatically
filter out unreliable mask annotations, during the dataset
construction where the ground-truth is not available.

• Based on the above techniques, we construct a large-
scale, diverse, high-quality dataset, termed as MIML. It
significantly addresses the scarcity of manually forged
data for image manipulation localization, thereby consid-
erably improving the generalization ability of the models.

2. Related works
2.1. Image Manipulation Localization

Image manipulation localization aims at localizing the
forged regions in images. Due to costly data collection, ex-
isting handmade datasets [3, 23] are tiny in size, thereby
leading to overfitting in many models [27, 35]. To address
overfitting, some studies incorporated handcrafted features
in the noise domain. Zhou et al. [36] utilized Steganalysis
Rich Model filters to help suppress semantic features unre-
lated to manipulation operation. Dong et al. [2] further used
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Figure 3. The proposed Category-Aware Auto-Annotation (CAAA) paradigm. In this CAAA paradigm, the input image pairs are first fed
to a classifier to be classified into SPG or SDG. We then use Difference Aware Semantic Segmentation and Semantic Aligned Correlation
Matching to predict manipulated regions in SPG and SDG respectively. The predictions serve as automatic annotations.

Bayar filter for learnable noise domain modeling. Kwon
et al. [12] proposed using double JPEG compression arti-
facts to localize manipulations. Wang et al. [29] employed
high-pass filters for anomaly detection. However, the hand-
crafted features are mostly noisy and unstable, hindering
further improvements in model performance. Recently,
pure vision models with semantic suppression techniques
have achieved better performance. Sun et al. [27] proposed
semantic-agnostic feature learning framework to reduce the
bias introduced by semantic features. Zhou et al. [35] em-
ployed contrastive learning loss to improve generalization
ability. Despite the progress made, these works still suffer a
lot from over-fitting due to inadequate high-quality data. To
this end, we propose to address data scarcity by construct-
ing a large-scale, diverse, and high-quality dataset, with the
Internet images accurately annotated in an automatic way.

2.2. Constrained Image Manipulation Localization
In contrast to image manipulation localization, con-

strained image manipulation localization (CIML) [32] lo-
calizes the forged image regions with the extra help of the
given authentic image. Most of the previous works were
based on correlation matching, and treated image pairs in
SDG and SPG uniformly. Wu et al. [32] proposed DMVN,
the first deep correlation model, which computed corre-
lation maps to localize similar objects in images. Liu et
al. [19] proposed to remove the pooling layers and adopted
atrous convolution for richer spatial information. Liu et
al. [18] employed attention-aware mechanism for better per-
formance. Tan et al. [28] proposed performing correlation
in both the encoder and decoder to extract better features.
These methods achieved significant progress on the datasets
that are less challenging (e.g., synthetic COCO [32]). How-
ever, their performance are limited in modern images that
have high resolution, large variation, and great complexity.

3. Category-Aware Auto-Annotation
For constrained image manipulation localization, previ-

ous works didn’t consider the discrepancy between SPG
and SDG image pairs, and processed them uniformly us-
ing a single correlation-based model. We argue that such a
paradigm is sub-optimal and the reasons are as follows:

First, the similar regions for SDG images are foreground
(e.g., the cats in the SDG branch of Fig. 3). They have spe-
cific, similar shapes and unique features. In contrast, the
similar regions for SPG images are background. They don’t
usually have features distinctive enough for accurate cor-
relation matching (e.g., in the images of the SPG branch
in Fig. 3, a patch of snow from the background has high
similarity to all other patches of snow in the background).
Therefore, these regions are likely to cause confusion in the
correlation-based models, especially in complex scenarios.

Second, the difference between the paired SPG images is
an important cue. Most of the area in an SPG image pair is
almost the same and spatially aligned (e.g., the image pair
of SPG branch in Fig. 3). Simply subtracting between them
and the resulting difference map can always highlight the
manipulated regions. However, such information is diffi-
cult to be utilized in the previous correlation matching based
models and thus not considered in previous CIML works.

Based on these observations, we propose a new paradigm
for CIML task, Category-Aware Auto-Annotation. The key
idea is to process SPG and SDG images independently, as
shown in Fig. 3. First, the input image pairs are catego-
rized into SPG or SDG with a classifier proposed in Sec-
tion 3.1. For SPG, image pairs are processed by the Dif-
ference Aware Semantic Segmentation proposed in Sec-
tion 3.2. For SDG, image pairs are processed by the Seman-
tic Aligned Correlation Matching proposed in Section 3.3.

More importantly, the models trained with our proposed
paradigm are further utilized to perform automatic annota-
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Figure 4. Since manipulated images usually undergo a series of
degradation during transmission, the absolute difference between
them and their authentic images cannot accurately indicate the
forged regions. Our method achieves adequate denoising through
the use of semantic information, thereby solving this problem.

tion on numerous manually forged images from the web.
In return, the collected data addresses the severe scarcity of
non-synthetic data for image manipulation localization.

3.1. Self-Supervised Classification
To achieve the classification of SPG and SDG, we pro-

pose to train a classifier via self-supervised learning with
unlabelled images. Given an image, we perform random
augmentations and manipulations on it, then the forged im-
age and the original image form an SPG pair. To construct
an SDG pair, we copy random objects from the original im-
age, resize them, and paste them into another image. With
the obtained image pairs, we can effectively train our classi-
fier. The two images in each input pair are concatenated in
the channel dimension before being fed into the classifier.
The classifier only needs to discern whether the two images
in an image pair are almost the same (SPG) or clearly dif-
ferent (SDG), without considering which or where is fake.
Therefore, this classification task is quite simple and we can
accurately separate the image pairs into the two groups.

3.2. Difference-Aware Semantic Segmentation

Ideally, for an image pair in SPG, the absolute differ-
ence between the authentic image and the forged image is
actually the forged region. However, manipulated images
typically suffer degradation during transmission [31], mak-
ing it unfeasible to utilize the absolute difference as a pre-
cise annotation. As shown in Fig. 4. almost all of the area
in the image difference map is non-zero due to transmis-
sion degradation. Even the difference map binarized by the
OTSU [24] algorithm exhibits highlights on authentic re-
gions, particularly in high-frequency area such as edges. To
address this issue, we propose to denoise the difference map
by utilizing the semantic information from the images. To
achieve this, we propose inputting the channel dimension
concatenation of the authentic image, the forged image and
their difference map into a semantic segmentation model.

3.3. Semantic Aligned Correlation Matching

Due to the extensive rescaling operations, semantic mis-
alignment becomes a key factor that has an adverse impact
on the effectiveness of correlation-based methods. For ex-
ample, in the SDG branch of Fig. 3. the cat in the original
image occupies a large region, whereas in the forged image,

the same cat is confined to a much smaller one. The cat fea-
tures of the original image are mostly in the highest level
but those of the forged image are mostly in the lowest level.
Hence, the visual features at the same encoding level be-
tween the two images have misaligned semantics. However,
previous works simply force the models to perform feature
matching between the same feature level, which confuses
the models and negatively affects their generalization. To
this end, we propose to improve the performance of corre-
lation model by achieving better semantic alignment.

Specifically, given a set of feature maps with different
resolutions extracted from the backbone model, we first
compute global representations from the highest features
with average pooling, and then fuse them with the high-
est features with a convolutional layer. subsequently, we
fuse these feature maps in a top-down manner similar to
that in FPN [15, 34]. In this way, the low-level features
have more semantics and are prepared to match the high-
level features. We then calculate correlation features Fcorr

between the features of the input image pair in a cross-level
manner as equation (1), which differs from previous meth-
ods [18, 19, 32] that compute correlation features solely be-
tween feature maps of the same level as equation (2).

[Corr(Fo,i, Fm,j) for i in (0–3) and for j in (0–3)] (1)

[Corr(Fo,i, Fm,i) for i in (0–3) ] (2)
In these equations, Corr denotes the correlation function
widely-used in previous works [18, 19, 32], Fo,i denotes
the ith level feature map from the original image and Fm,j

denotes the jth level feature map from the forged image.
Our model is able to adaptively select the optimal match-
ing route, leading to enhanced semantic alignment. Fcorr is
subsequently concatenated, channel reduced and fed into a
convolutional decoder for the final prediction.

4. MIML Dataset
In this section, we propose a large-scale, diverse, high-

quality dataset, termed as MIML. The key idea is leverag-
ing the constrained image manipulation localization models
trained on existing datasets to automatically obtain accurate
mask annotations for the manually forged images from the
web. To ensure the dataset is of high quality, we also pro-
pose a novel metric to filter out the inadequate annotations.

4.1. Dataset Construction
As shown in Fig 6, we construct MIML as follow steps:
Image Collection. We collect image pairs from imgur.com.
On this website, the images are manually forged by millions
of people and thus have high-quality, diverse forged regions.
Data Clean. We clean the collected data and exclude the
images that overlap with the evaluation datasets in Sec.6.
Classification We categorize the cleaned image pairs into
SPG or SDG using the classifier proposed in Sec.3.1. The
actual classifier is an ensemble of three models [8, 20, 21].
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Figure 6. The construction pipeline of our MIML dataset.

Auto-Annotation. We utilize the DASS and SACM pro-
posed in Sec.3.2 and Sec.3.3 to automatically obtain mask
annotations for the images in SPG and SDG respectively.
Quality Evaluation. After auto-annotation, the annotations
of SPG already have high quality, while a few annotations
of SDG are still unsatisfactory. To ensure overall quality, we
propose a novel metric, Quality Evaluation Score (QES), to
further filter out the unreliable annotations. The key idea of
QES is that most of the high quality predictions have very
high confidence and sharp edges, thus we can evaluate the
predictions’ quality and exclude the bad ones by examining
their confidence and sharpness. Specifically, given a predic-
tion mask with shape (H, W) and normalized probability,

we compute the QES as follows: QES=
∑H,W

i,j pi,j>(1−Th)∑H,W
i,j pi,j>Tl

,

where
∑H,W

i,j pi,j > (1 − Th) denotes the area of pre-
diction with a high confidence greater than (1 − Th), and∑H,W

i,j pi,j > Tl denotes the total predicted potentially ma-
nipulated area. We set Th and Tl to 1

16 and only retain sam-
ples with QES>0.5. Experiments show that our QES has
strong correlation with the IoU metric and can effectively
assist in filtering out the unreliable mask annotations.

Name Year Nums (Height, Width) Range
CASIAv1 [3] 2013 921 (246, 384)-(500, 334)
CASIAv2 [3] 2013 5,123 (160, 240)-(901, 600)
Coverage [30] 2016 100 (190, 334)-(472, 752)

NIST16 [5] 2016 564 (500, 500)-(3744, 5616)
In Wild [10] 2018 201 (650, 650)-(2736, 3648)
IMD20 [23] 2020 2,010 (193, 260)-(4437, 2958)

MIML (Ours) 2024 123,150 (45, 120)-(13846, 9200)

Table 1. A brief summary of previous publicly available hand-
crafted datasets for IML. Some handcrafted datasets with less than
3k samples and rarely used are omitted. ’Nums’ denotes the num-
ber of annotated forged samples in the dataset.

4.2. Dataset Highlights

We present a few examples of the proposed dataset in
Fig. 5. The main highlights of our dataset are as follows:
• High quality. Image manipulation in the proposed dataset

is elaborately crafted by humans. Such data can teach
models to spot forgery in real-world scenarios, rather than
merely overfitting a few simple patterns in synthetic data.

• Large Scale. As shown in Table 1, the proposed dataset
has a total of 123,150 manually forged images, which is
dozens of times more than the previous handmade IML
datasets (e.g., ≈60 times more samples than IMD20).

• Board Diversity. Our dataset comprises images of var-
ious sizes, various styles and various types of manipula-
tion (e.g., copy-move, splicing, removal). They are cre-
ated by hundreds of thousands of individuals utilizing
various software. Such diverse data can considerably en-
hance the generalization ability of deep IML models.

• Modern Style. Our dataset has a large number of modern
images that were recently captured and forged, keeping
up with modern technology for digital photography. In
contrast, the CASIA dataset [3] was proposed more than
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a decade ago, where most images have small sizes and
are blurred. Therefore, our dataset can better meet the
requirements of modern image manipulation localization.

• Strong Scalability. There are many increasingly popu-
lar image manipulation competitions on the web, which
continuously attract millions of people to take in for en-
tertainment (e.g. 19 million people in PS-Battles [9, 25]),
resulting in numerous new manually forged images. Our
dataset construction approach is ready to harness these
growing cheap web data. Therefore, our dataset can be
easily expanded, demonstrating strong scalability.

5. APSC-Net
In this section, we propose a new model, named APSC-

Net, to achieve accurate image manipulation localization.
As shown in Fig. 7, it consists of a feature extractor, an
Adaptive Perception module and a Self-Calibration module.

5.1. Adaptive Perception Module

During meticulous image forensic analysis, humans of-
ten zoom in and out the image repeatedly, selecting an op-
timal set of observations to assist their final prediction. To
mimic the human perception way, we design an Adaptive
Perception module to help the model compare between dif-
ferent views and adaptively select the optimal combination
for each input image. The key idea is to weighted sum the
current and all the higher-level feature maps using adaptive
weights calculated from the their global representations.

Specifically, given four feature maps extracted from the
backbone model, we first map them to the same number of
channels with an 1×1 conv-layer and obtain four feature
maps Fi,0, Fi,1, Fi,2, Fi,3. We then get global image repre-
sentations from Fi,3 with global average pooling, and fuse
them with Fi,3 to Fo,3 using an 1×1 conv-layer. Finally, for
a in (2, 1, 0) and for b in range (a + 1, 3), we successively
calculate Fo,a following the equation (3) and (4) below:
[wa,a, wa,b] = σ(fa(Cat([Avg(Fi,a), Avg(Fo,b)]))) (3)

Fo,a = Conv(wa,a ∗ Fi,a +

3∑
b=a+1

wa,b ∗ Fo,b) (4)

where Avg denotes global average pooling, Cat denotes
channel dimension concatenation, fa denotes two linear
layers with a ReLU [4] layer, σ denotes the Sigmoid ac-
tivation function and Conv denotes a 3×3 conv-layer.

5.2. Self Calibration Module
When performing meticulous localization of manipu-

lated images, humans are inclined to confirm their initial
predictions by comparing the features surrounding the pre-
dicted forged regions. Additionally, they might amend
their local prediction based on their global evaluation of
the image’s authenticity. To emulate the human perception
way, we design a Self Calibration module for better perfor-
mance. As shown in Fig. 7, the proposed Self Calibration
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Figure 7. The overall framework of the proposed APSC-Net.

module comprises a Segmentation-based Self Calibration
(SSC) and a Classification-based Self Calibration (CSC).

For the SSC, the initial prediction from the end of the
Adaptive Perception module is obtained and fed into a tiny
Calibration Kernel Mapping Module, which consists of sev-
eral convolutional layers. Subsequently, we get a calibration
kernel and conduct convolutional operation on the initial
prediction with it. The resulting values are then normal-
ized using a Min-Max approach. We multiply the normal-
ized result by Fo, the concatenation of Fo,0, Fo,1, Fo,2, Fo,3,
and get Fref1. Next, we refine Fref1 with several con-
volutional layers and get the refined feature Fref2. After
that, we concatenate Fref2 with Fo, perform channel atten-
tion and channel reduction, substitute Fo with the outcome,
and repeat the process that utilizes Fo and calibrated pre-
diction to obtain Fref2 twice again, for a refined version of
Fref2. Then the resulting Fref2 is utilized for final predic-
tion. With the SSC, our model can adaptively attend to the
optimal region roughly based on its initial mask prediction,
thereby achieves higher performance via in-depth analysis.

For the CSC, we begin by feeding the refined features
Fref2 into a tiny classification head that predicts whether
the input image is manipulated or not. If the image is pre-
dicted as authentic, the mask prediction is likely to have
more false positive (FP), so we increase the binarization
threshold to reduce the FP. On the other hand, if the image
is predicted as manipulated, we decrease the binarization
threshold to reduce the false negative. Given a probability
P that the input image is predicted as forged, CSC adjusts
the binarization threshold of the prediction mask from 0.5
to min(max(1− P, λ), 1− λ), and λ is set to 0.3.

6. Experiments
6.1. Experiments for CIML

The task of image manipulation automatic annotation
can be evaluated as a CIML task. Considering that im-
ages in the IMD20 dataset [23] have very similar style to
the target images we aim to annotate, we use part of them
to evaluate models’ performance with IoU and F1-score.
Implementation Details. We categorize the forged images
in IMD20 into SPG or SDG and randomly split them into
training and testing sets with an approximate 3:1 ratio. The
CASIAv2 [3] and about one million images synthesized
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Dataset
PSCC-Net [17] CAT-Netv2 [12] APSC-Net (Ours)

IoU F1 IoU F1 IoU F1
w.o. w/ gain w.o. w/ gain w.o. w/ gain w.o. w/ gain w.o. w/ gain w.o. w/ gain

CASIAv1 .401 .609 +52% .430 .649 +51% .660 .691 +5% .703 .728 +4% .799 .810 +1% .837 .848 +1%
NIST16 .247 .402 +62% .295 .476 +61% .239 .353 +48% .287 .422 +47% .398 .525 +35% .436 .590 +35%

Coverage .197 .395 +100% .218 .477 +118% .245 .302 +23% .286 .389 +36% .490 .498 +2% .523 .568 +8%
IMD20 .125 .470 +277% .156 .541 +247% .157 .547 +248% .192 .629 +228% .339 .679 +101% .391 .760 +95%

Table 2. IML ablation study for the proposed MIML dataset. ’w.o.’ denotes training without the MIML dataset, ’w/’ denotes training with
the MIML dataset, and ’gain’ denotes the ratio of improvement in performance.

QES Threshold 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Number ratio of kept predictions 3.03 1.90 1.66 1.43 1.21 1.00 0.78 0.54 0.29 0.06

Kept predictions’ IoU on IMD20SDG .702 .812 .825 .851 .881 .903 .917 .948 .966 .968

Table 3. Ablation study for the threshold of the proposed Quality Evaluation Score (QES).

Methods IoU F1
DMVN* [32] .276 .430
DMVN [32] .578 .728
DMAC* [19] .432 .620
DMAC [19] .573 .728

Ours(VGG [26]) .781 .860
Ours(VAN [7]) .834 .889

Methods IoU F1
Nonzero .079 .273

OTSU [24] .497 .683
w.o. Difference .718 .827

w.o. Images .741 .812
Ours(VGG [26]) .781 .860
Ours(VAN [7]) .834 .889

Table 4. CIML experiments on the IMD20 SPG. Left: Com-
parison study for our Difference-Aware Semantic segmentation.
Right: Ablation study for it. ’DMVN*’ denotes DMVN trained
with both SDG and SPG data, akin to ’DMAC*’. ’Nonzero’ de-
notes using the non-zero region of the difference between a pair
of images, ’OTSU’ denotes the difference binarized with OTSU.
’w.o. Difference’ denotes that the input of the semantic segmen-
tation model contains only the image pairs, ’w.o. Images’ de-
notes that only using the difference map of image pairs as input.
’Ours(VGG)’ denotes our model with the same VGG backbone as
DMAC. ’Ours(VAN)’ denotes our model with the VAN backbone.

Methods IoU F1
DMVN* [32] .276 .434
DMVN [32] .317 .495
DMAC* [19] .410 .559
DMAC [19] .518 .660

Ours .702 .798

Set TDFCLMQES IoU F1
(1) .590 .731
(2) ✓ .608 .741
(3) ✓ ✓ .702 .798
(4) ✓ ✓ ✓ .903 .950

Table 5. CIML experiments on the IMD20 SDG. Left: Compari-
son study for our Semantic Aligned Correlation Matching. Right:
Ablation study for it. ’DMVN*’ denotes DMVN trained with both
SDG and SPG data, similar to ’DMAC*’. ’TDF’ denotes Top-
Down Fusion, ’CLM’ denotes Cross-Level Matching, ’QES’ de-
notes filtering predictions with our Quality Evaluation Score and
the evaluation includes only the predictions with QES > 0.5.

Training-Set+ CASIAv1 NIST16 IMDP2Setting IMDP1 MIML IoU F1 IoU F1 IoU F1
(1) .799 .837 .398 .436 .351 .402
(2) ✓ .790 .825 .431 .479 .590 .667
(3) ✓ .810 .848 .525 .590 .703 .788

Table 6. IML ablation study for our MIML, ’Training Set+’ de-
notes the training set except for CASIAv2 and synthetic data.

Method CASIAv1 NIST16 Coverage Columbia
IoU F1 IoU F1 IoU F1 IoU F1

ManTraNet [33] .086 .130 .040 .062 .181 .271 .274 .377
RRU-Net [1] .330 .380 .080 .129 .165 .260 .351 .476

MVSS-Net [2] .403 .455 .243 .294 .389 .454 .578 .668
PSCC-Net [17] .410 .463 .067 .110 .340 .446 .469 .603
CAT-Netv2 [12] .684 .738 .238 .302 .238 .292 .760 .804

IF-OSN [31] .465 .509 .247 .326 .181 .268 .610 .710
EVP [16] .438 .502 .188 .239 .078 .114 .200 .263
TruFor [6] .630 .692 .279 .348 .446 .522 .748 .812

Ours(w.o. MIML) .799 .837 .398 .436 .490 .523 .956 .966
Ours(w/ MIML) .810 .848 .525 .590 .498 .568 .962 .973

Table 7. IML comparison study for the proposed APSC-Net.

with the COCO dataset [14] are also used for training. Input
image is resized to 512x512, and consistent training config-
uration is applied across all methods for fair comparisons.
Ablation Study. For SPG, the image difference between
forged images and their authentic ones can roughly indi-
cate the forged regions, the images themselves can provide
semantic information to help the model denoise the differ-
ence maps. We conduct ablation study for the proposed Dif-
ference Aware Semantic Segmentation on the testing set of
IMD20 SPG, as shown in the right part of Table 4, both of
these methods can enhance the model’s performance. For
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SDG, semantic alignment can reduce the confusion dur-
ing training and help our model achieve better generaliza-
tion. We conduct ablation study for the proposed Semantic
Aligned Correlation Matching on the testing set of IMD20
SDG, the results are shown in the right part of Table 5. Ob-
viously that both the proposed components contribute to-
wards a higher performance of the model. Moreover, the
proposed Quality Evaluation Score (QES) allows for the
automatic filtering of the most satisfactory predictions. As
there are some errors in IMD20’s ground truth, our methods
are sufficient for obtaining accurate automatic annotations.
Ablation Study for QES. The goal of the proposed QES
metric is to automatically filter out bad predictions during
dataset creation, where the ground truth is not available. As
shown in Table 3, a higher QES threshold always leads to
higher accuracy. This is because predictions with a larger
ratio of high confidence and sharper edges are mostly closer
to the actual ground truth, and the sharpness and confidence
can be well evaluated by our QES. Consequently, our QES
demonstrates a strong correlation with the IoU metric.
Comparison Study. We re-train the DMVN [32] and
DMAC [19] with their public codes on the same data as
ours, the results are shown in the left part of Table 4
and Table 5. Obviously our methods significantly outper-
form these previous methods. It’s notable that DMVN and
DMAC trained with both SPG and SDG data perform worse
on both tasks than those trained with only SPG or SDG data.

6.2. Experiments for IML

Implementation Details. We adopt ConvNeXt-Base [21]
as the feature extractor and train the model for 160k itera-
tions with a batch size of 20, The input size is set to 512x512
during training following the previous works [6, 12]. We
use Cross-Entropy loss and AdamW optimizer [22] with
a learning rate linearly decaying from 1e-4 to 1e-6. The
CASIAv2 [3] and the synthetic dataset as in CAT-Net [12]
are used for training following the previous works [6, 12].
Ablation Study for MIML dataset. Except for our APSC-
Net, we re-train PSCC-Net [17] and CAT-Net [12] with their
public codes with and without the proposed MIML dataset
respectively. When training with the MIML dataset, we
adopt an approximate 1:1 sampling ratio for the original
synthetic data and MIML, the total training volume is fixed
in all experiments for fair comparisons. As shown in Ta-
ble 2, MIML can significantly improve the performance
of all these models on commonly used real-world bench-
marks without any additional burden during training or
testing. This is because MIML can greatly alleviate the se-
vere shortage of manually forged data for deep IML models.
To further confirm the effectiveness of our MIML dataset,
we randomly divide the IMD20 dataset into IMDP1 with
1012 samples and IMDP2 with 988 samples, substitute the
MIML dataset with augmented IMDP1 of a similar scale

CAT-Netv2 Ours (w/ MIML)IF-OSNMVSS-Net Ours (w.o. MIML)TruForForged Image Ground Truth

Figure 8. Qualitative results on CASIAv1 and NIST16 datasets.

and train APSC-Net with them. As shown in Table 6, de-
spite the inclusion of IMDP1 in the training mitigates the
domain gap and improves the performance of the model
on NIST16 and IMDP2, it is still significantly worse than
the one trained with MIML. Obviously MIML can notably
enhance the generalization ability of deep models with its
considerable volume of diverse manually forged data.
Comparison Study for APSC-Net. We compare the per-
formance of our APSC-Net with state-of-the-art (SOTA)
methods on the widely-used benchmarks. Considering that
the previous methods performed different post-processing,
which leads to unfairness (e.g. EVP [16] used the best
threshold calculated from GT to perform binarization),
we ignore the post-processing unrelated to their proposed
methods and uniformly binarize the predictions with a
fixed threshold 0.5, then evaluate the performance with the
vanilla IoU and F1-score metrics. The quantitative results
are shown in Table 7, our APSC-Net outperforms previous
state-of-the-art methods on all these benchmarks. The qual-
itative results for visual comparison are shown in Fig. 8.

7. Conclusion

In this paper, we propose a novel paradigm for Con-
strained Image Manipulation Localization (CIML), termed
as CAAA, which treats Shared Probe Group and Shared
Donor Group image pairs separately. Experiments show
that the proposed paradigm considerably outperforms previ-
ous CIML methods. With this paradigm, the trained models
are used to automatically annotate unlabeled forged images
for image manipulation localization. We also propose a
novel metric QES to automatically exclude bad predictions.
As a result, we harvest a large-scale, diverse, high-quality
dataset MIML, with 123,150 manually forged images and
pixel-level annotations, which can inspire the potential of
deep forensic models by addressing their data scarcity is-
sue. Further, we propose a new effective model APSC-Net
for image manipulation localization. We hope our proposed
CAAA paradigm, QES metric, MIML dataset and APSC-
Net can bring insights to the community and promote the
real-world application of image manipulation localization.
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