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Figure 1. Multi-view art done generatively. We present DreamWire as the first system that takes user prompt for each view as input – either
via the expressive vehicle of text or image – and produces 3D line sculptures showing distinct interpretations when viewed at different angles,
i.e., multi-view wire art (MVWA). Compared to previous rule-based work, we significantly improve the quality of MVWA by utilising the
flexible drawing capabilities of a universal generative prior (diffusion models or ControlNet). Notably, the “GBE” here pays tribute to the
book “Gödel, Escher, Bach: an Eternal Golden Braid” [12], which discusses how systems can acquire meaningful context despite being
made of “meaningless” elements, just like what MVWA does.

Abstract

Creating multi-view wire art (MVWA), a static 3D sculp-
ture with diverse interpretations from different viewpoints, is
a complex task even for skilled artists. In response, we
present DreamWire, an AI system enabling everyone to
craft MVWA easily. Users express their vision through text
prompts or scribbles, freeing them from intricate 3D wire
organisation. Our approach synergises 3D Bézier curves,
Prim’s algorithm, and knowledge distillation from diffusion
models or their variants (e.g., ControlNet). This blend en-

ables the system to represent 3D wire art, ensuring spatial
continuity and overcoming data scarcity. Extensive evalua-
tion and analysis are conducted to shed insight on the inner
workings of the proposed system, including the trade-off
between connectivity and visual aesthetics.

1. Introduction
A great thought begins by seeing something differently, with
a shift of the mind’s eye.

Albert Einstein

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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There is an artist in everyone, they say. Attending an art
exhibition, being mesmerised by a 3D wire-art installation
from Matthieu Robert-Ortis1 is what motivated this paper!
As an AI practitioner, the immediate question was, “Can
I program this?” Not to replace artists, but rather, for fun,
for finding that artist within myself, and for the vision of
democratising art creation for everyone!

Lighthearted as it might sound, this endeavour holds sci-
entific value on two fronts. First, it delves into the uncharted
territory of wired-art generation using current generative AI
[34, 37, 39], seeking to understand the limits of these tech-
nologies in the realm of this unique artistic form. Secondly,
it contributes to the ongoing dialogue by exploring the ex-
pansion of existing 2D-focused generation methods into the
intricate domains of 3D and perhaps more challengingly, the
extreme abstraction presented by wire art.

Multi-view wire art (MVWA) [14] is a unique form of art
that leverages wire as a flexible medium to create complex
3D objects, whereupon different viewpoints, multiple inter-
pretable images appear – recall those 2D pictures where you
move your head and see different things. This time, you are
walking around a 3D installation, and upon different viewing
angles, you see different 2D depictions (see Fig. 1). Being
prohibitively difficult for novice users, creating MVWA is
an extremely time-consuming task even for qualified artists.
Apart from artistic ideation, working with reverse projec-
tion (2D to 3D), efforts have been made on physics so the
installation does not collapse. Our ambition for MVWA,
one that focuses on democratising its creation for everyone,
is removing all said challenges but limiting its creation to
just ideation (perhaps not entirely artistic, though!). That is,
specifying what you want each view to look like, and bingo
– the final 3D art form!

We present a system named DreamWire to do just that.
All users need to generate 3D wire art is a set of text prompts
(e.g., “a portrait of Einstein”) or rough scribbles (e.g., styled
writings of “CVPR”), each for a 2D view. Fig. 1 illustrates
some examples, and for a more immersive experience, we
offer fully interactive MVWA demos in our project page –
please do set your eyes on them; we promise they won’t be
boring! However, there is a caveat: there is an upper bound
(three) on how many viewpoints an MVWA object could
support, largely due to the degree of conflict in the 3D wire
space that a large number of views would introduce.

Computational methods for MVWA [14] or related art
forms alike [22] have been attempted before but only appear
as rule-based endeavours – they rely on a set of prewrit-
ten rules to construct an MVWA piece2. Much like any

1https://leonacreo.com/sculptures-by-matthieu-
robert-ortis/

2For readers unfamiliar with the existing “assembly manual” for MVWA,
we briefly summarise the rules here: i) back-project the 2D images to 3D
via generalised cones and discrete the intersection of the camera’s viewing
frustums with a fixed resolution of vocalisation; ii) inevitably, some of

rule-based methods for vision problems (SIFT, HOG), these
approaches are advantageous for their full transparency of
the playbook but fall short in generalisation. This is dis-
cussed in Sec. 4.3, where existing approaches, guided by
human-informed rules, can create MVWA pieces whose 2D
projections align perfectly with user inputs, but they collapse
when faced with slightly more complex combinations of
2D view images. Reproducing most of the results shown in
Fig. 2 would therefore be a stretch because there is not yet a
rule-based system that can generate arbitrary plausible 2D
visual images from a text string, let alone generating MVWA
on top of that.

We face two key challenges: (i) how to represent 3D wire
art while ensuring connectivity (so it does not collapse!), and
(ii) how to ensure effective learning from extremely scarce
MVWA training examples. For the former, we leverage 3D
Bézier curves to solve a connectivity (“wiredness”) problem
that cannot be easily achieved in a naive way, such as by
chaining control points (see Fig. 8). Instead, we treat each
Bézier curve independently and propose a loss function to
spatially constrain their degree of freedom. At each itera-
tion, we depict the currently learned wires as a weighted
undirected graph and apply Prim’s algorithm [30] to derive
a subset of edges (including all vertices) corresponding to
a minimum spanning tree. The spatial continuity of wires
is thus assured by minimising the distance between each
parent and child vertex. On the latter challenge, we opt for
per-instance learning and base generalisation on knowledge
distillation from a powerful generative visual prior (diffu-
sion models [34] or their variant, i.e., ControlNet [46] in
this case). In unison, our system begins with a set of ran-
domly initialised Bézier curves, which, after 2D projection
and vector-to-raster conversion, are fed into diffusion models
to match the user target text or image and updated via the
typical score distillation sampling (SDS) [29] process.

In summary, our contributions are threefold: (i) empow-
ering everyone to become a wired 3D (MVWA) artist (even
if only half-decent), and scientifically, (ii) employing Bézier
curves and Prim’s algorithm to represent 3D wire art, and
(iii) utilising a powerful generative visual prior through a
designed rendering strategy to overcome data scarcity and
the limitations of rule-based methods.

2. Related work

Vector Graphics. Scalable vector graphics (SVGs), in
contrast to images composed of raster pixels, are defined by

these initial voxels only represent the line image from their own source,
resulting in inconsistent visual impacts on other viewpoints. To address
this, optimisation of a voxel displacement problem is needed, whereby
conflicting voxels are either merged into one or smoothed with neighbouring
voxels as a more holistic visual entity. iii) Voxels are subjected to further
manipulations, often targeting issues more delicate than inconsistency,
including redundancy, complexity, quality, etc.
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Figure 2. MVWA generated via DreamWire. The textual prompts employed predominantly include “a head of [character]” and “a simple
drawing of [item]”. Notably, all captions for these MVWA have been sourced from ChatGPT [26]. We prompt it to return three major
subjects of interests under a given topic, e.g., three celebrated movie characters of the United States of America.

extensible markup language (XML) covering lines, shapes,
or curves. Bézier curve is one of the most pronounced SVG
formats, which relies on a set of “control points” to define a
smooth line segment. While there is no denying that com-
puter vision has predominantly invested in understanding
raster images, recent efforts witnessed several important
breakthroughs in the generative modelling of SVGs, mostly
for Bézier curves. BézierSketch [5] first introduced an in-
verse graphics approach to sketch stroke embedding that
trains an encoder to embed each stroke to its best fit Bézier
curve, and their subsequent work extends this idea to a more
generalised case with variable-degree Bézier control. An-
other line of works [7, 19, 35, 44] directly utilise Bézier
curves to govern the general-purpose vector graphic genera-
tion process. VectorFusion [15] employs diffusion models
as transferable priors to generate high-quality abstract vector
graphics from text captions. SketchDreamer [31] presents an

interactive method for text-driven vector sketch generation,
adeptly incrementing strokes to an initial vector sketch in
accordance with a user-specified text prompt. These works
however only contribute to the application of 2D Bézier
curves. We consider the problem of how to render 3D Bézier
curves using a 2D Bézier renderer [19], which is significantly
different from previous work.

Diffusion Prior. There has been a burgeoning interest
in denoising diffusion probabilistic models [6, 11, 24, 40],
also known as score-based generative models [41, 42],
thanks to the remarkable generative prowess they have
shown. Consequently, an increasing number of studies
[8, 10, 20, 29, 38, 43] emerge as to how to leverage pre-
trained diffusion models to act as effective visual priors for
generative supervision. DDPMPnP [8] introduces a partition-
ing of diffusion models into a base prior and a conditional
constraint, enabling versatile applications in perceptual tasks
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like conditional image generation and segmentation. Dream-
Fusion [29] optimises NeRF parameters using an efficient,
high-fidelity Score Distillation Sampling (SDS) loss, facili-
tated by a 2D diffusion image prior to text-to-3D synthesis.
Make-A-Video [38] employs spatial-temporal modules built
on 2D text-to-image diffusion models, realising text-to-video
generation without the need for paired samples. We adopt
the idea of applying the diffusion prior to a differentiable
image parameterisation [23] (DIP) as proposed by Dream-
Fusion, with the difference that we focus on the generation
of multi-view wire art.

Multi-View Art. Multi-View Art entails the presentation
of multiple perspectives or views within a singular artwork
[2, 3, 14, 17, 25, 36]. The techniques for achieving var-
ied visual perceptions in an artwork can span a range of
approaches: from altering the viewing distance [25], adjust-
ing the viewing direction [14, 36], to changing illumination
from specific directions [1, 3, 22]. The underlying factors
prompting such phenomena are multifaceted, including the
use of optical materials [28, 45], innovative structural design
[3, 14, 22], or specialised devices [13]. We unprecedent-
edly introduce powerful text-to-image generation models
to this problem, elevating the upper limit of creativity and
simplifying and democratising the art creation process.

3. Methodology
3.1. Differentiable 3D MVWA rendering

We represent a 3D multi-view wire art S as a set of individual
wires {s1, · · · , sn}. Each individual wire employs a cubic
3D Bézier curve, which is rigorously defined by a quartet of
3D control points {p0, p1, p2, p3}, detailed in Eq. 1:

B(t) = (1− t)3p0 + 3(1− t)2tp1 + 3(1− t)t2p2 + t3p3,
(1)

where t ∈ [0, 1]. A straightforward approach to render 3D
Bézier curves is to consider a specific plane and calculate
the projection of every point along the curve onto this plane.
Given a plane π characterised by its normal vector N , the
projection of the 3D cubic Bézier curve B(t) onto π is for-
mulated in Eq. 2:

B′(t) = B(t)− [N · (B(t)− q)]N, (2)

where q is an arbitrary point on π. However, prevalent 2D
Bézier rendering techniques, such as the one discussed by
[19], as well as 3D point cloud rendering tools [18, 21, 33],
do not support the rendering of such 3D Bézier curves in
Eq. 2. We propose an inquiry: Is it feasible to render 3D
Bézier curves utilising existing 2D Bézier curves renderers?
The answer is YES.

Our objective is to prove that the projection of a 3D Bézier
curve onto a plane, denoted as B′(t), is equivalent to the
2D Bézier curve, whose control points are the projections

of the original control points of B(t) onto the same plane,
expressed as B′′(t). Utilising Eq. 2, the 2D Bézier curve
B′′(t) formed by the projection points of pi on π can be
expressed as,

B′′(t) = (1−t)3p′0+3(1−t)2tp′1+3(1−t)t2p′2+t3p′3. (3)

The equivalence of B′(t) and B′′(t) can be systematically
demonstrated by applying the principles outlined and the
property of vector addition to expand and transform Eq. 3:

B′′(t) = (1− t)3p0 + 3(1− t)2tp1 + 3(1− t)t2p2 + t3p3︸ ︷︷ ︸
B(t)

−

{N · [(1− t)3p0 + 3(1− t)2tp1 + 3(1− t)t2p2 + t3p3︸ ︷︷ ︸
B(t)

− q]}N = B(t)− [N · (B(t)− q)]N = B′(t).
(4)

This proof enables us to reframe the challenge of rendering
3D Bézier curves as essentially a 2D rendering task, an-
chored in the projection of 3D control points. Consequently,
we are able to directly optimise the 3D wire art S using a
differentiable 2D Bézier curve renderer, i.e., DiffVG [19].

3.2. DreamWire

The overall pipeline of our DreamWire is depicted in
Fig. 3. Users just need to provide three distinct inputs
c = {cX , cY , cZ}, corresponding to projections from three
mutually orthogonal viewpoints {X,Y, Z}. The primary
objective of our MVWA generation system is to produce a
3D wire art, S, such that its projections onto each of these
viewpoints align with the user’s specified inputs.

Initially, we initialise a 3D wire art S = {si}ni=1, where
the control points of each wire are randomly initialised. We
define the three planes of projection as πX , πY , πZ , with
their corresponding normal vectors NX , NY , NZ , which
relate to the three user-provided viewpoints. Utilising Eqs. 3
and 4, we can determine the projection of S on plane πX as,

SX = {ŝXi }ni=1 = {B̂X
i (t)}ni=1,

where B̂X
i (t) =

∑3

j=0

(
3

j

)
(1− t)3−jtj p̂Xj

i ,

p̂Xj
i = pji − [NX · (pji − qX)]NX ,

(5)

where qX is any point on plane πX . We then utilise a differ-
entiable 2D Bézier curve renderer, denoted as R, to produce
the rasterised projection. These projections are subsequently
processed through the encoder Eϕ of a Latent Diffusion
Model (LDM) [34], utilising the Score Distillation Sampling
(SDS) loss [29] to estimate zX = Eϕ(R(SX)). During each
forward diffusion timestep, we introduce random noise to
the latents, zXt = αtz

X + σtϵ, and apply the teacher model
ϵ̂ϕ(z

X
t ; t), conditioned on cX , for denoising. This process

is replicated for {Y,Z}. The optimisation targets all control
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Figure 3. Schematic overview of DreamWire. Starting from an initial set of random 3D Bézier curves, we project these curves onto a given
2D plane and process them into normal raster images. It follows that these images are fed into a generative diffusion model and optimised
towards a visual target. In addition, we use the MST algorithm to constrain the distance between curves. Here we present a MVWA sample
output under the condition {cX , cY , cZ} = {“dog”, “backpack”, “cat”}.

points (collectively represented as P), and is steered by the
SDS loss, as expressed in Eq. 6:

∇PLMulti-SDS = Et,ϵ

[
w(t)

(
ϵ̂ϕ(αtz

X
t + σtϵ; c

X , t)− ϵ
)∂zX
∂P

]
+ Et,ϵ

[
w(t)

(
ϵ̂ϕ(αtz

Y
t + σtϵ; c

Y , t)− ϵ
)∂zY
∂P

]
+ Et,ϵ

[
w(t)

(
ϵ̂ϕ(αtz

Z
t + σtϵ; c

Z , t)− ϵ
)∂zZ
∂P

]
.

(6)
Here, w(t) represents the weighting function, and t ∈

[1, 2, · · · , T ] denotes the timestep. To afford users greater
flexibility in input types, we adopt the multi-conditional dif-
fusion model approach, as suggested by [31], utilising a Con-
trolNet [46] to govern the diversity and guide the diffusion
model generation processes. This results in a controllable
variant of Eq. 7:

∇PLCSDS = Et,ϵ

[
w(t) (ϵ̂ϕ(αtzt + σtϵ; c, t, C)− ϵ)

∂z

∂P

]
,

(7)
where C denotes visual conditions for ControlNet, e.g.,
canny edges, HED boundaries, user scribbles, human poses,
semantic maps, depths, etc. With the capabilities of Control-
Net, users’ input conditions can extend beyond text captions
of visual concepts to include spatial layouts, enabling per-
sonalised customisation.

3.3. MVWA to Reality

Technical approach laid out in Sec. 3.2 only allows a digital
construct of MVWA instance within the AR/VR environ-
ment. To enable a real tangible MVWA entity in real life
that respects the law of physics however remains highly

Figure 4. Effect of the MST regularisation on a set of randomly
initialised Bézier curves.

challenging. The wires s1, s2, . . . , sn we acquire so far are
incapable of sustaining stability in suspension; they mandate
methodical interconnections to cultivate a stable and sup-
portive structure. Taking inspiration from [14], we approach
this challenge by framing it as a classic minimum spanning
tree (MST) problem, with the isolated wires and their spatial
relationships represented as a graph. For a set of n wires
{s1, s2, . . . , sn} and P representing all control points, we
introduce P̈ to denote the endpoints of all wires. For any
pair of wires {si, sj}, we calculate the Euclidean distance
between their endpoints in four different ways3, electing
the smallest of these as Eij . Through the assessment of the
Euclidean distances amongst all endpoints, we proceed to
construct a densely interconnected undirected graph G, com-
prising n vertices represented as {s1, s2, . . . , sn}, with the
edges bearing weights equivalent to Eij .

Our objective is to identify a subset of the edges of G that
binds all the wires together, forming a cycle-free structure

3Eij = min(∥ p0i −p0j ∥2, ∥ p3i −p0j ∥2, ∥ p3i −p3j ∥2, ∥ p0i −p3j ∥2)
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with the minimum aggregate edge weight. Employing Prim’s
Algorithm [30], we derive the minimum spanning tree, and
the associated cost is formulated as follows:

LMST(P̈) =
∑

Prim(Eij) i, j ∈ [1, n]. (8)

Consequently, our final training objective is articulated
as:

L = LMulti-SDS(P, c) + λ ∗ LMST(P̈). (9)

Here, λ functions as a balancing factor between aesthetic ap-
peal and structural realism. In Fig. 4, we present a qualitative
depiction of the impact elicited by the MST regularisation,
effectively demonstrating how wires, initially scattered, pro-
gressively coalesce into a stable and integrated structure.

4. Experiments
4.1. Settings

Implementation. Building upon the methodologies em-
ployed in [15] and [31], we initiate each 3D Bézier curve
of MVWA comprising 5 segments, maintaining a constant
width and adopting a uniform black colour. Prior to inputting
the 2D projection of the MVWA into the diffusion model, we
employ random affine augmentations (RandomPerspective
and RandomResizedCrop) to refine the projection’s quality
and to reinforce the optimisation process against the potential
adversarial examples. To optimise the MVWA, we employ
the Adam optimiser [16] across 2000 iterations, setting the
learning rate to 1. Within our configuration, we adopt a
guidance scale equal to 100. All experiments are executed
on an NVIDIA A100 GPU.

Data preparation. For the visual control setting, to en-
sure a fair comparison, the input sets employed are identical
to that of the baseline methods [14, 22]. For the text control
setting, a selection of 96 daily item categories was randomly
drawn from the QuickDraw dataset [9]. Each category name
was then inserted into a standard template as “a simple draw-
ing of [item]” and these were subsequently randomised into
32 distinct input sets.

Evaluation metrics. Within the text control setting, we
utilise the CLIP [32] score and R-Precision [27] as metrics to
assess the similarity between the input text condition and 2D
rasterised projection of the synthesised MVWA. For visual
control, DINO [4] is employed to quantify the similarity be-
tween the 2D rasterised projection of the generated MVWA
and the visual input provided by the user.

4.2. Baseline comparison

We compared our approach against two state-of-the-art
(SOTA) methods grounded in traditional graphics algorithms.
ShadowArt [22] introduces a novel geometric optimisation
method that automatically finds a consistent shadow hull

by deforming the input images. MVWA [14] starts with
reconstructing a discrete visual hull through intersecting
generalised cones formed by back-projecting the given 2D
image to 3D space and integrates the isolated components
into a connected visual hull via a 3D path-finding method.
Our-V and Our-V-λ are calibrated to align with the set-
tings of these two methods, processing three user-specified
line drawings alongside corresponding viewpoints as inputs.
Here, λ signifies the incorporation of MST regularisation.

The synthesised 3D wire arts, along with their correspond-
ing 2D projections, are shown in Fig. 5. We can see that,
the voxels yielded by ShadowArt [22] has a multitude of
transformed components, attributable to the markedly incon-
sistent nature of the input line drawings, resulting in severely
distorted 2D projections. Conversely, the MVWA [14] as-
pires to integrate the isolated components into a connected
visual hull via a 3D path-finding method, inevitably incorpo-
rating numerous extraneous lines, thereby compromising the
projected visuals’ fidelity. In contrast, Our-V and Our-V-λ
are predicated upon the optimisation of a set of 3D Bézier
curves, complemented by the utilisation of MST loss to em-
ulate the impression of a singular line, a technique distinctly
divergent from the conventional “Voxel Hall Carving” em-
ployed by preceding approaches. Our generated results are
slightly inferior to the results of traditional methods in this
setting as our approach cannot solve the input conflict prob-
lem very well. However, given only text as conditions, our
method can generate projections with much higher quality
(refer Fig. 6). In addition, our results possess a more stream-
lined structural simplicity within the 3D space compared to
traditional methods.

4.3. Main results

As demonstrated in Sec. 4.2, we have previously illustrated
the capabilities of our method under visual control. In this
section, we delineate the unique advantage of our approach
over the baselines: our capacity to generate MVWA in re-
sponse to textual input or a hybrid of text and visual inputs.
This flexibility significantly diminishes the user’s burden in
resolving conflicts inherent in visual controls.

Qualitative evaluation. In addition to the examples
shown in Fig. 1, where we show the MVWA generated by

Methods DINO-V2-Base DINO-V2-Giant CLIP Score

ShadowArt [22] 79.62 83.82 34.37
MVWA [14] 73.68 78.86 34.81
Ours-V 69.08 72.76 34.55
Ours-V-λ 66.99 71.33 32.75

Ours-T - - 37.21
Ours-T-λ - - 36.52

Table 1. DINO similarity (%) between the target sketches and the
projection results and CLIP similarity (%) between the captions
and the projection results generated by different methods.
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Figure 5. Comparison with existing multi-view wire art synthesis methods. The user-specified visual controls are highlighted with red lines.

Figure 6. Additional instances of MVWA generated by our proposed DreamWire with different random seeds. The text conditions for the
MVWA on the left are defined as {cX , cY , cZ} = {“a side view of an angel”, “a front view of an angel” “Christmas bells”}. Similarly, for
the MVWA on the right are: {cX , cY , cZ} = {“Hillary”,“Trump”,“Obama”}. The red lines indicate the additional connections that need to
be added in order to form all the curves together as a whole. Compared to Our-T, Our-T-λ ensures that the red lines are as short as possible
while maintaining visual aesthetics.
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Figure 7. The impact of λ on normalised evaluation metrics. Met-
rics are normalised to the [0, 1] interval for clarity. The original
scale for MST budget spans [0, 8], for CLIP Score it is [36, 38],
and for CLIP R-Prec it lies between [67, 85].

our method under text and hybrid control, we further show-
case massive cases in Fig. 2 and Fig. 6. For each case, we
present two variations created by Our-T and Our-T-λ. With
MST regularisation, it becomes apparent that the resulting
MVWA bears greater resemblance to coherent single-line
3D sculptures as opposed to an assemblage of numerous
discrete visual hulls.

Quantitative evaluation. The results are presented in
Tab. 1. Our method does not achieve the highest DINO
scores on several DINO variants. This is because our model
fits the target sketches by continuously optimising the param-
eters of Bézier curves, compared to the search process of tra-
ditional methods, our optimisation method may suffer from
underfitting and overfitting in different regions. Thus, given
the layout constraints for various viewpoints, the traditional
methods [14, 22] almost reach the best performance, and our
method is still some distance away from them. However,
given only the text conditions without layout constraints,
our method enables high-quality fit to the target concept in
numerous ways, omitting the step of the artist to elaborate
the target projections.

Ablation on λ. Fig. 7 illustrates the influence of the λ
coefficient within LMST and CLIP metrics. The increase of
λ drives the generated MVWA towards an optimisation that
favours a one-line wire art, leading to a substantial reduction
in the wire connectivity budget. However, this also results in
a notable decrease in both the CLIP-score and R-Precision,
suggesting an increased deviation between the user input
and the 2D projection of the synthesised MVWA. Taking
into account both aesthetic appeal and manufacturability, we
ultimately set the hyperparameter λ to 50.

4.4. One Line vs. MST Regularisation

In our endeavour to enhance the interconnectedness of gen-
erated 3D Bézier curves thereby more faithfully emulating
a single, continuous curve, we have instituted a novel loss
function, denoted as LMST. Intuitively, an alternative strategy
could entail initialising the 3D wire art structure as a singu-

Figure 8. Generation of “a simple drawing of a bicycle” starts
with a single curve containing 150 segments (top) and 30 curves
containing 5 segments (bottom) in the same random seed.

lar Bézier curve comprised of a substantially high segment
count. Fig. 8 (top) shows the generation result of “a simple
drawing of a bicycle” when the input is a single Bézier curve
with 150 segments. For a clearer presentation, only a 2D
Bézier curve is used. It can be noted that a curve comprising
numerous segments may not be able to update their positions
effectively. This problem may lead to substantial segment
overlap, thereby injecting redundancy and detracting from
the succinctness of the ultimate generated form. Therefore,
we utilise LMST instead of the one-line setting to ensure that
the wire art our model generates is aesthetically appealing
and realistically producible.

5. Discussion
It is worth noting that [44] emphasises the optimisation
process is susceptible to the initialisation of Bézier curves.
Therefore, the number, width and location of strokes and
what text prompt to give each viewpoint may all be issues
for artists to consider in future applications. In addition,
compared to voxels and polylines, Bézier curves have fewer
parameters, making them more advantageous for optimisa-
tion tasks. However, they may not fit targets well when
the visual objectives contain a large number of non-smooth
polylines. We anticipate the development of advanced line
representation techniques in future research, which will en-
hance the fidelity of visual representations of MVWA.

6. Conclusion
This project is a pioneering venture into the fusion of AI
and art, making strides by enabling AI to easily generate 3D
multi-view wire art. It does so with just brief text prompts
or spontaneous scribbles. Beyond its artistic impact, our
work dives into scientific challenges related to abstraction
and 3D representation in the generative AI community. The
core of our approach involves refining 3D Bézier curves
using diffusion models and a carefully designed rendering
strategy. The ultimate goal is to make this distinct art form
accessible to all, offering a platform for artists, designers,
and enthusiasts to effortlessly bring their imaginative wire
sculptures to life.
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[12] Douglas Hofstadter. Gödel, escher, bach, 1979. https:
//en.wikipedia.org/wiki/Gdel, _Escher,
_Bach. 1

[13] S Vahab Hosseini, Usman R Alim, A Mahdavi-Amiri, et al.
Portal: design and fabrication of incidence-driven screens. In
SMI, 2020. 4

[14] Kai-Wen Hsiao, Jia-Bin Huang, and Hung-Kuo Chu. Multi-
view wire art. ACM Transactions on Graphics, 2018. 2, 4, 5,
6, 8

[15] Ajay Jain, Amber Xie, and Pieter Abbeel. Vectorfusion: Text-
to-svg by abstracting pixel-based diffusion models. In CVPR,
2023. 3, 6

[16] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 6

[17] Ying-Miao Kuo, Hung-Kuo Chu, Ming-Te Chi, Ruen-Rone
Lee, and Tong-Yee Lee. Generating ambiguous figure-ground
images. IEEE transactions on visualization and computer
graphics, 2016. 4

[18] Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol,
Jaakko Lehtinen, and Timo Aila. Modular primitives for high-
performance differentiable rendering. ACM Transactions on
Graphics, 2020. 4
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