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Abstract

Reconstructing the viewed images from human brain
activity bridges human and computer vision through the
Brain-Computer Interface. The inherent variability in brain
function between individuals leads existing literature to fo-
cus on acquiring separate models for each individual us-
ing their respective brain signal data, ignoring common-
alities between these data. In this article, we devise Psy-
chometry, an omnifit model for reconstructing images from
functional Magnetic Resonance Imaging (fMRI) obtained
from different subjects. Psychometry incorporates an omni
mixture-of-experts (Omni MoE) module where all the ex-
perts work together to capture the inter-subject commonal-
ities, while each expert associated with subject-specific pa-
rameters copes with the individual differences. Moreover,
Psychometry is equipped with a retrieval-enhanced infer-
ence strategy, termed Ecphory, which aims to enhance the
learned fMRI representation via retrieving from prestored
subject-specific memories. These designs collectively ren-
der Psychometry omnifit and efficient, enabling it to capture
both inter-subject commonality and individual specificity
across subjects. As a result, the enhanced fMRI represen-
tations serve as conditional signals to guide a generation
model to reconstruct high-quality and realistic images, es-
tablishing Psychometry as state-of-the-art in terms of both
high-level and low-level metrics.

1. Introduction

Understanding the intricacies of brain activity entails ex-
tracting meaningful semantics from complex patterns of
neural activity [4, 5, 45, 54]. In the context of visual stimuli,
neural responses in the brain are commonly measured by
monitoring changes in blood oxygenation using functional
Magnetic Resonance Imaging (fMRI) [29]. Over time, tech-
niques for understanding brain activity based on fMRI have
evolved from fMRI classification [11, 27] to the more chal-
lenging fMRI-to-Image reconstruction [4, 55]. In neuro-
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Figure 1. Current fMRI-to-Image methods (e.g., MindEye [52])
train subject-specific models (SSM) on their respective data. They
suffer obvious performance degradation when utilizing data from
all the subjects to train a unified model (UM). Our Psychometry
enables consistent performance improvements over MindEye by
training one omnifit model on the amalgamated fMRI data.

science studies [15, 42], individual brains are typically nor-
malized to a template in an attempt to identify common pat-
terns of activation across a group that can be generalized
to a given population. However, it is evident that brains
vary considerably in terms of shape and functional organi-
zation among individuals—normalization cannot fully com-
pensate for these differences [3, 20, 51]. Furthermore, even
if anatomical features are perfectly aligned, the same func-
tional region may not occupy the same anatomical region in
different participants [18, 55].
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The inherent variability in brain functioning across indi-
viduals adds complexity to interpreting brain activity. As
a result, all existing fMRI-to-Image studies [9, 21, 32, 52,
62] delve into individual subject-specific characteristics by
training separate models for each individual using their re-
spective brain signal data. While these methods undeni-
ably enhance the accuracy and semantic consistency of vi-
sual stimulus image reconstruction, they demand the de-
velopment of individually tailored models for each subject.
Not only does this consume substantial computational re-
sources, but the specialized focus on individual differences
may also potentially obscure the opportunity to uncover
common patterns and similarities among subjects. Conse-
quently, the exploration of broader inter-subject commonal-
ity largely remains uncharted territory. The most straight-
forward strategy is to amalgamate fMRI data from differ-
ent subjects for training. Surprisingly, we find that state-of-
the-art fMRI-to-Image methods [52] suffer obvious perfor-
mance degradation when utilizing data from all the subjects
to train a unified model, as illustrated in Figure 1. This
divergence from the expected benefits of data scaling in im-
proving deep learning model stability and performance [64]
reveals the challenge of building a generalized model for
diverse subjects, given their inherent individual differences.

To address this challenge, we propose Psychometry, an
omnifit model for reconstructing images from fMRI data
of various individuals. Psychometry can capture both the
inter-subject commonalities and the individual variabilities
through two essential components. First, drawing inspi-
ration from the powerful concept of Mixture-of-Experts
(MoE) [26, 53], Psychometry is equipped with an Omni
MoE module, where all experts participate in the process of
fMRI representation learning in order to capture the com-
monalities from fMRI data among subjects. Moreover,
each expert is associated with subject-specific parameters
aimed at addressing individual differences. In addition,
Omni MoE adopts a split-then-lump mechanism with learn-
able splitting and lumping weights to maintain efficiency.
Second, Psychometry employs a retrieval-enhanced infer-
ence strategy, termed Ecphory. This strategy retrieves the
most relevant image or text CLIP [47] embedding from pre-
stored training data (referred to as “memories”) to enhance
the learned fMRI representation via a mix-up approach. The
enhanced representations serve as reliable conditional sig-
nals to guide a pretrained diffusion model in reconstructing
high-quality and realistic images.

Psychometry enjoys a few attractive qualities: First,
it significantly reduces the model size, training time, and
computational resources required. This is achieved by the
creation of an omnifit model that can handle fMRI data
of different subjects, eliminating the need for separately
training tailored models on subject-specific data. Second,
Omni MoE along with the split-then-lump mechanism en-

ables Psychometry to identify the inter-subject commonal-

ity and cope with the individual specificity in an efficient

way. Third, with the help of Ecphory, Psychometry can
further improve the fMRI embedding via incorporating the
retrieved reliable information from the prestored subject-
specific memories, leading to higher-quality image recon-
structions from fMRI data.

In a nutshell, our contributions are three-fold:

* We propose Psychometry, an omnifit model designed to
reconstruct images from fMRI data, representing a shift
from separately trained models to a more comprehensive
and generalized approach.

* Psychometry is integrated with an Omni MoE module,
enabling all the experts to collectively identify the inter-
subject commonalities and individual specificities among
fMRI data from diverse subjects, along with a split-then-
lump manner to ensure efficiency.

* Psychometryemploys aretrieval-enhanced inference strat-
egy, termed Ecphory, which accurately retrieves pertinent
“memories” based on the acquired fMRI representation.

2. Related Work

Our work draws on existing literature in image reconstruc-
tion from fMRI and mixture-of-experts. For brevity, only
the most relevant works are discussed.
Image Reconstruction from fMRI. Traditional fMRI-to-
Image reconstruction methods [19, 28, 41] rely on fMRI-
image paired data and utilize sparse linear regression to pre-
dict features from fMRI. In recent years, researchers have
advanced the reconstruction from fMRI techniques by map-
ping brain signals to the latent space of generative adversar-
ial networks (GANSs) [32, 40, 44]. With the release of mul-
timodal vision-language models [31, 34, 37, 38,47, 61, 68],
diffusion models [24, 50, 5659, 71], and large-scale fMRI
datasets [2, 7, 25, 66], image reconstruction from fRMI has
reached an unprecedented level of quality [48]. These diffu-
sion model-based methods [43, 52] explore mapping fMRI
signals to both CLIP text and image embeddings by adopt-
ing individual regression models for each subject, subse-
quently utilizing the pre-trained diffusion model that ac-
commodates multiple inputs for image reconstruction.
Though impressive, these methods primarily focus on in-
dividual subject analysis; they train specific models for dif-
ferent subjects on their respective data, thus ignoring the
commonalities among these data. This highlights the need
for a more universal and generalized framework, which is
the core motivation behind this work. Furthermore, unlike
previous methods that attempt to strictly align fMRI data to
CLIP image or text embeddings, we introduce an inference-
enhanced strategy named Ecphory. It retrieves the image
or text CLIP embedding most relevant to the learned fMRI
embedding from the pre-stored training data (memories) to
enhance the learned fMRI representation as a reliable con-
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ditional signal. Moreover, Ecphory can effectively explore
the individual specificity in the subject-specific memories.
Mixture of Experts (MoE). MoE initially suggests shar-
ing certain experts at the lower levels and combining them
through a gating network [26]. Recently, a sparse-MoE
framework [53] was introduced, which routes each input to
a subset of activated experts. This leads to a series of studies
focusing on routing strategies within Sparse MoEs [39, 49].
In particular, [10, 14, 23, 69] introduce task-specific gating
networks to choose different experts for processing infor-
mation from each task. These methods demonstrate suc-
cess across various applications, e.g., recommendation sys-
tem [39], natural language processing [16], and computer
vision [1, 49], although the majority of existing works pri-
marily focus on classification tasks [8, 13, 22].

This work represents the initial exploration of the appli-
cation of MoE in the field of reconstructing images from
fMRI data, with the aim of capturing inter-subject common-
ality and individual specificity across subjects. This con-
cept is akin to multi-task learning, which involves utilizing
a general model to handle diverse data. However, unlike
multi-task learning MoEs that selectively activate experts to
address task-specific attributes for different tasks, our focus
is on exploring both the inter-subject commonalities and in-
dividual specificities present in the diverse individual fMRI
inputs. To achieve this, we introduce an Omni MoE mod-
ule, where all the experts work together to cooperatively
learn the inter-subject commonality. Simultaneously, their
associated subject-specific parameters enable different ex-
perts to capture the individual specificity.

3. Methodology

Task Setup and Notations. Our target is to reconstruct
images from recorded fMRI data as the visual stimulus is
presented to a healthy subject. The input fMRI data is usu-
ally preprocessed and extracted as a 1D vector of voxels.
Formally, let X, € R? be the input preprocessed fMRI
data as an image I,, € R®™*W>3 was presented to the sub-
ject s € {1, - -, S}, where d is the number of voxels and
n € {1,---,N}. The latent representation of I,, and its
corresponding caption text 7;, are denoted as I,, € RV*¢
and T, € R**¢, respectively, which are obtained by feed-
ing I,, and text 7T}, into CLIP [47]. v and c are the numbers
of tokens of the CLIP image and text embeddings while ¢
indicates their dimensions. Considering the individual vari-
abilities across subjects, existing methods [35, 36] usually
train separate models for each subject using their respective
fMRI data, denoted as £) : X, ,, - R"*¢ and £ : X, ,, —
RX¢ to predict image- or text-aligned fMRI embeddings
(I,, and T},) for each individual subject s. Those predicted
features then serve as conditional signals for a diffusion-
based model to reconstruct the viewed image I,.

Method Overview. Psychometry is an omnifit model that

can explain fMRI data from various subjects. Unlike ex-
isting methods necessitate the creation of S models and re-
quire training S times for every single modality, Psychom-
etry only needs to be trained once using the amalgamated
fMRI data, i.e., p¥ : X,, — R™¢and p” : X,, — R¥°.
Psychometry involves two core modules: i) an Omni MoE
layer (§ 3.1) that exploits inter-subject commonalities and
individual specificities; and ii) a retrieval-enhanced infer-
ence strategy (Ecphory, §3.2). An overview of our complete
pipeline can be found in Figure 2 and the detailed network
architecture is presented in §3.3.

3.1. Omni MoE for Learning Inter-Subject Com-
monality and Individual Specificity

Omni MoE Layer. To achieve a full exploration of both the
inter-subject commonality and individual specificity from
the amalgamated fMRI data of various subjects, our Psy-
chometry is equipped with a Omni MoE layer. Specifically,
in Omni MoE, there are multiple experts who work in a
collaborative manner to capture the commonalities, while
each of these experts is assigned a set of subject-specific
parameters so as to cope with the individual variabilities.
Moreover, Omni MoE is empowered with a split-then-lump
mechanism to ease the computational load and prohibit
overfitting caused by learning with all experts. The above
designs of our Omni MoE are encapsulated into a network
layer and deeply embedded into the Transformer blocks.
Formally, the Omni MoE layer contains a group of
experts fi, fa,..., fe. Given the input sequence tokens
O € R™*¢ of a certain Transformer block, where m is the
number of tokens and ¢ is their feature dimension, Omni
MoFE works as follows:
* MOE. Basically, given the input O, Omni MoE actively
engages all the E experts to generate the output P:

P=3" 10, ()

where the weights of the F experts f1, fa, ..., fp are not
shared. Note that each expert needs to process inputs
from all the subjects, hence the inter-subject commonali-
ties are explored.

* Subject-Specific Parameters. In order to further cap-
ture individual variants, each expert f, is associated with
a c-dimension vector of parameters for each individual
subject s. The combined parameters are called subject-
specific parameters, denoted as {a® € RoxE }i.s, that are
only trained with the data of individual subjects, e.g., ol
is only optimized by the gradient collected from the fMRI
data of subject 1. Given O and subject-specific parame-
ters {a® }1.5, the subject-specific features are obtained as
O-a® cR™*E_ As such, despite letting every expert ex-
plore cross-subject patterns from amalgamated fMRI data
(Eq. 1), these subject-specific parameters enable experts
to address the unique aspects of different subjects.
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Figure 2. (a) Illustration of the Psychometry framework (§ 3.3). (b) Omni MoE engages all experts with subject-specific parameters
to work together to capture the inter-subject commonality and individual specificity. The detailed illustration of the “split-then-lump”
mechanism are presented in Eq. 2-Eq. 5. (c) Ecphory enhances the predicted fMRI embedding by incorporating the retrieved most pertinent
“memories”, serving as more dependable conditional signals to a pre-trained diffusion model. The reconstruction results for different
subjects should align as closely as possible with the visual stimulus, while the inconsistency among the results of different subjects is
caused by the individual specificity of each subject’s fMRI data. Please refer to § 3 for more details.

o Split-then-Lump: Split. Instead of directly processing
the original input with a large feature map through every
expert, we adopt a split-then-lump mechanism in order
to maintain computational efficiency. First, the splitting
weights are computed w by applying a softmax func-
tion on all the m input tokens of the subject-specific fea-
tures O -a®. The splitting weights refer to the specific
weights associated with each token, computed as:

; _ exp((0~a‘§)je)
YT exp((0-af);ie)

This allows the input O to be compressed into token-wise
feature w* ' O € RF*¢, suggesting all F experts collec-
tively handle m tokens. Next, we assign the correspond-
ing expert to tackle the splitted feature and compute the
output Q° as a convex combination of all m input tokens.

Q= Zf_l fo(w'TO) € REXe. 3)
Split-then-Lump: Lump. Then, the lumping weights C*
denote the results of applying a softmax function over
the E experts. The lumping weights suggest the impor-
tance of different experts when lumping the features, for-
mulated as:

e R™*F, )

w

exp((0-a®)je)
b exp((0-00);0)

i1 EXP

Cs e R™*F

Je —

(C))

=

Finally, the output sequence tokens P° for subject s is
derived as a convex combination from all the E experts,
utilizing the computed lumping weights:

P = CSQS e R™xe, 5)
By utilizing the split-then-lump mechanism, Omni MoE
layer enjoys an efficient approach via separate learning of
tokens and dimensions. Specifically, split-then-lump dis-
tributes m tokens to E experts (Eq. 2 & Eq. 3), where
E <« m. Then, a comprehensive feature P® € R™*¢is
derived from the compressed one Q° € R¥*¢ through the
lumping operation (Eq. 4 & Eq. 5).
Discussion. Existing MoEs used in multi-task learning [ 10,
14] typically employs a routing network R to determine
task routings via sparsely activating top-K experts [53] with
the largest scores. Although these sparse MoEs can offer
substantial computational savings, the discrete procedure
may introduce biases in activating specific experts based on
task-specific attributes, which contradicts our objective of
capturing both commonalities and differences in fMRI data
from different subjects. To address this challenge, Omni
MOoE layer engages all E experts to actively participate in
the process of fMRI representation learning, i.e., each ex-
pert fo in MOE (Eq. 1) is required to process the fMRI data
from all the subjects to capture inter-subject commonalities.
Concurrently, their associated subject-specific parameters
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{a@®}1.5 cope with the individual variabilities by only being
trained using the data from individual subjects. Note that
traditional dense MoE methods also leverage all E experts
for learning, but they suffer from intensive computational
costs since each expert in dense MoE is responsible for pro-
cessing every input, along with the burden of handling the
extensive parameter size in the router. Quantitative analyses
are later provided in §4.3.

3.2. Ecphory for Test-Time Reconstruction

In neurobiological research area [17, 60], Ecphory is an au-
tomatic memory retrieval process activated when a specific
cue interacts with stored information gathered from training
data, bringing forth recollections of past events [65]. Draw-
ing inspiration from this concept, we integrate Psychom-
etry with a retrieval-enhanced inference strategy named
Ecphory, where the predicted fMRI embedding serves as
the specific cue to interact with the prestored information.
Specifically, this strategy is tailored to retrieve the most rel-
evant CLIP image or text embedding used as reliable in-
formation to enhance the predicted fMRI representation I
and T rather than directly using them as the conditional
signals, ie., X, — I,, X5, — T,. This approach is
effective as it allows for obtaining a more reliable fMRI
representation through a retrieval method, rather than aim-
ing for an ideal alignment to a specific CLIP embedding,
which is more challenging. The enhanced conditional sig-
nals are then utilized to guide the generation process of a
latent diffusion-based model.

Prestored Subject-Specific Memories. Since each sub-
ject retains unique memories, a straightforward approach
involves retrieving the relevant embedding from subject-
specific memories. Specifically, we prestore the image
CLIP embeddings I and text CLIP embeddings T from
different subjects during training as the prestored subject-
specific memories, i.e., MY = {I,})_, and MT =
{T,,}N_, . Note that the memories are directly derived from
the respective training data and stored before inference.
Ecphory Mechanism. With the prestored subject-specific
memories, the predicted fMRI embeddings fn and Tn
act as the specific cues to activate the memory retrieval
process. In practice, they are used as queries to re-
trieve the most relevant CLIP embedding from the subject-
specific memories based on their similarities. These
similarities, denoted as, sim(I,,m"),¥Ym" eMV and
sim(T,,, mT),¥mT € M, are computed via a cosine sim-
ilarity function. In order to utilize the retrieved embedding
(denoted as F},), we employ a mixed-up approach to enrich
the fMRI embedding by blending the retrieved embedding,
i, a-I,+ (1 —a)- F,, where o is a hyperparameter.
Consequently, the mixed-up embeddings act as conditional
signals to steer the reconstruction process of the pretrained
Versatile Diffusion. Given that the diffusion model was

initially trained with the CLIP embeddings, our retrieved
CLIP embedding could offer more dependable information
to the learned fMRI embedding. This process is akin to the
ecphory psychology process, where the retrieved “memory”
aims to evoke recollections of viewed images.

3.3. Detailed Network Architecture

We adopt the Vision Transformer architecture [12] as our
backbone, in which Omni MoE layer is inserted into the
transformer block. As in [30, 70], lower layers in deep neu-
ral networks tend to learn more generic information than
higher layers, we can reduce computational overhead by ap-
plying the Omni MoE layer solely to the higher layers. In
our experiments, we incorporate the Omni MoE layer into
the last four out of the twelve transformer blocks.
Contrastive Learning. In practice, Psychometry model is
trained via treating fMRI as an additional modality, aim-
ing to pull the fMRI embeddings closer to the CLIP space.
Given image and text embeddings I,, and T, extracted by
CLIP, the training objective is to minimize the embedding
distances of (I~n, I,)and (Tn, T.,). Formally, the employed
bidirectional contrastive learning loss is formulated as:

exp (TJTn/T) exp (TJTH/T)
J - J -
> exp (TTTT]/T) > exp (TJ-TT"/T)
=0 =0
exp (iZIn/T)

J ~
> exp (I I, /7)
3=0

L7=—1log — log

)

- (6)
exp I;In T
L£Y=—1log — ( /7)

Z:Oexp (fTTIj/T)

)

where T is a temperature hyperparameter. The sum for each
term is over one positive and J negative samples. The sum
over samples of the batch size is omitted for brevity.

4. Experiments
4.1. Experimental Setup

Datasets. Natural Scenes Dataset (NSD) [2] comprises
fMRI data collected from 8 participants who viewed a to-
tal of 73,000 RGB images. This dataset has been widely
utilized [9, 21, 32, 52, 62] to reconstruct perceived images
from fMRI. Following the standard setting, we use the data
from subjects 1, 2, 5, and 7, who completed all the designed
trials, i.e., viewed 10,000 natural scene images and repeated
3 times. We train and evaluate our method using the exact
same data split as previous studies. Specifically, the train
set for each subject contains 8,859 image stimuli and 24,980
fMRI trials. The test set includes 982 image stimuli and
2,770 fMRI trials. All images and captions are sourced from
MS-COCO database [33]. Different from previous methods
which separately train the network for each subject, our pro-
posed method jointly learns the training set for all subjects.
Evaluation Metrics. Both qualitative and quantitative eval-
uations are conducted in our experiments. For qualitative
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Methods Low-Level High-Level
PixCorrT SSIM?T AlexNet (2) 1 AlexNet (5)1|Inception? CLIPT EffNet-B| SwAV]

Mind—Reader [32] [NeurIPS2022] — — — — 782% — — —
Mind-Vis [9] icveraos) .080 .220 72.1% 83.2% 78.8% 76.2% .854 1491

5 Takagl etal. [62] [CVPR2023] - - 830% 830% 760% 770% - -
“ Gu et al. [21] [MIDL2023] 150 .325 — — — — .862 465
MindEye [52] ieursz023) 309 323 94.7% 97.8% 93.8% 94.1% .645 367

Mind-Reader [32] [NeurIP$2022] — - — — 66.5% — — -
Mind-Vis [9] icveras) .067 .196 67.7% 74.2% 67.9% 69.3% .898 013

E Takagi etal. [62] [CVPR2023] — — 740% 751% 673% 690% - -
S) Gu et al. [21] [MIDL2023] 103 264 — — — — .892 508
MindEye [52] ieurrs03) 129 .255 84.2% 89.2% 84.1% 85.0% .812 A87
PSYCHOMETRY (ours) .297 340 96.4% 98.6% 95.8% 96.8% .628 .345

Table 1. Quantitative comparison results (§4.2) on NSD [2] test. UM denotes a unified model trained on the amalgamated fMRI data

from all subjects, while SSM indicates that subject-specific models are trained on subjects’ respective data.

E—— 17711

Visual
Stimulus

UM

Psychometry
Ours

=
o;rib
aa
EE
E;E

a
s
i
=
S =
B &
o
=5
= s

a

Figure 3. Visual comparison on NSD test. Psychometry trains only one unified model (UM) for once on the amalgamated fMRI data but
generates more accurate reconstructions, even compared to two recent methods [52, 62] that train subject-specific models (SSM) on their

respective data. See §4.2 for more detailed discussion.

evaluation, we visually compare our reconstructed images
with the ground truth images and the results of the state-
of-the-art methods in Figure 3. For quantitative evaluation,
we employ eight metrics for high-level and low-level eval-
uation following established research [21, 52, 62]. Specif-
ically, high-level metrics consist of the latent distance of
EffNet-B [63] and SWAV [6], which quantifies the similar-
ity between artificial neural networks and the brain’s mech-
anisms for core object recognition. Low-level metrics in-
clude the classical Structural Similarity (SSIM) and pixel-
wise correlation (PixCorr).

Reproducibility. Our model is implemented in PyTorch
and trained on one NVIDIA RTX A6000 GPU with a 48GB
memory. Testing is conducted on the same machine.

4.2. Comparison to State-of-the-Arts

Quantitative Results. We compare Psychometry with five
state-of-the-art methods, namely Mind-Reader [32], Mind-
Vis [9], Takagi et al. [62], Gu et al. [21], and MindEye [52].
As shown in Table 1, Psychometry trained on the amalga-
mated data from all subjects demonstrates competitive re-
sults compared to all other baselines. In particular, we ob-
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4 Omni | Subject-Specific Ecpho Low-Level High-Level
MoE | Parameters phory PixCorr?T SSIMT AlexNet (2) 1 AlexNet (5)1|Inception? CLIPT EffNet-B| SwAV]
1 .163 .238 74.7% 85.2% 80.8% 81.6% .856 471
2| vV v 237 287 89.5% 90.9% 86.7% 87.2% 794 423
3| vV v 279 317 94.9% 97.0% 93.7% 94.8% .647 .365
4 v v v 297 340 96.4% 98.6% 95.8% 96.8% .628 345
Table 2. Ablation study on NSD [2] test. See related analysis in §4.3.
serve that existing methods show a noticeable performance so0% e 56.0% e R
decrease when their models are trained on the amalgamated 04.0% . R - R
data from all subjects. For instance, MindEye [52] shows a 520 ST 8 s ol

significant decrease 58.3%/21.1%/10.5%/8.6% in all low-
level metrics, suggesting that these methods severely suf-
fer from the individual specificities across subjects. How-
ever, our method earns 12.2%, 9.4%, 11.7%, and 11.8%
performance gains over MindEye [52], which is current
state-of-the-art, in terms of AlexNet (2), AlexNet (5),
Inception, and CLIP respectively. Compared to Tak-
agi [62], our method significantly lifts the scores by 28.5%
and 27.8% on two high-level metrics. Note that the results
of “SSM” in Table 1 are averaged from four subject-specific
models, each of which is trained on the subject’s respective
data. As demonstrated, Psychometry can still provide no-
table performance gains when compared to these methods
and sets a new state-of-the-art. For instance, Psychome-
try promotes MindEye [52] by 2.0%/2.7%/2.6%/6.0% and
Mind-Vis [9] by 17.0%/20.6%/26.5%/29.7% over the four
high-level metrics. These improvements are particularly
impressive considering that our method only has to train a
single model once on the amalgamated data.

Qualitative Results. As depicted in Figure 3, the qual-
itative results are consistent with the numerical findings,
demonstrating that our approach produces superior qual-
ity and more realistic reconstructions compared to the other
methods. In particular, current state-of-the-art, i.e., Mind-
Eye [52], suffers from a noticeable performance decrease
when its models are trained on the amalgamated data from
all subjects. This decrease in performance is evident in
the reconstructed images, e.g., when it reconstructs a truck
while the visual stimulus was a motorbike. In contrast, the
reconstructed images generated by Psychometry maintain a
high level of consistency with the visual stimuli in terms
of semantics, appearance, and structure. This indicates that
Psychometry can effectively capture inter-subject common-
ality and individual specificity across subjects, resulting in
high-quality image reconstructions from fMRI data.

4.3. Diagnostic Experiment

To thoroughly demonstrate how each component in Psy-
chometry contributes to the performance, a series of abla-
tion experiments are conducted on NSD test set. All vari-
ants are based on ViT [12] backbone (‘#1° in Table 2).

Omni MoE Layer. We first investigate the effective-
ness of the Omni MoE layer which consists of subject-
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Figure 4. The comparison scores (Inception and CLIP) and
the model parameters vary as the number of experts increases. The
size of the marker depends on the model size. See §4.3 for details.

specific parameters and a split-then-lump mechanism. As
shown in Table 2, the Omni MoE layer bings noticeable
performance boost (e.g., 0.163/0.238/74.7%/85.2% —
0.279/0.317/94.9%/97.0% on all low-level metrics). This
suggests that a single shared MLP layer in the baseline
backbone is far from enough to capture the inter-subject
commonality and tackle the individual specificity, and
proves the effectiveness of our Omni MoE layer. In ad-
dition, we derive two more variants that replace the omni
MokE layer with a sparse MoE (i.e., topK [53]) and a classi-
cal dense MoE. The comparison results in Figure 4 suggest
that, although these two variants also boost the performance
over the baseline (‘#1° in Table 2), Omni MoE layer outper-
forms them obviously.

Subject-Specific Parameters. Table 2 also investigates the
impact of the subject-specific parameters in the Omni MoE
layer. When these parameters are not used (labeled as ‘#2°),
each Omni MoE layer adopts shared parameters across sub-
jects, without considering how to tackle the individual dif-
ferences across subjects. Doing so leads to worse perfor-
mance, i.e., 96.8%—87.2% over the CLIP scores.

Computational Efficiency. We further investigate the ef-
ficiency gains facilitated by our split-then-lump mechanism
(Eq. 2 - Eq. 5). As depicted in Figure 4, the Omni MoE
exhibits cost-effective computational overhead, despite in-
volving all its experts in the fMRI representation learning
process. This results in a substantial reduction in model
size when compared to the variant, dense MoE (Eq. 1), even
when comprising the same number of experts. Furthermore,
Psychometry equipped with Omni MoE demonstrates com-
parable parameters while achieving superior performance,
even when compared to the variant using sparse MoE.

Ecphory Inference Strategy. We then proceeded to as-
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Figure 5. Splitting weights (Eq. 2) and lumping weights (Eq. 4)
across experts for all four subjects. See related analysis in §4.3.

sess the effectiveness of our Ecphory inference strategy.
The corresponding results are summarized in Table 2. In
the absence of this strategy (labeled as ‘#3°), we directly
use the predicted embeddings, i.e., fn and ’f’n, as the con-
ditional signals for the pretrained diffusion model. Con-
sequently, the performance drops 0.018,/0.023/1.5%/1.6%
and 2.1%/2.0%/0.019/0.02 across all low-level and high-
level metrics, respectively. This evidences that leveraging
such a retrieval-enhanced strategy during inference leads to
more reliable condition signals and supports our motivation
that directly mapping fMRI embeddings to the CLIP image
or text embeddings falls short.

Splitting and Lumping Weights. We visualize the split-
ting weights and lumping weights by summing them across
the token dimension, presented in Figure 5. We observe that
some experts in our Omni MoE layer have high weights for
all subjects, e.g., 3rd and 16th expert in splitting weights,
while others vary significantly, providing valuable insights
into the model’s behavior. This suggests that certain experts
are adept at capturing common patterns across all subjects,
while others excel at capturing subject-specific nuances.
This aligns with the design of our model, where subject-
specific parameters enable experts to focus on individual
specificity, while the collaborative nature of the Omni MoE
layer facilitates the capture of inter-subject commonalities.
This balance between commonality and specificity is cru-
cial for the model to effectively learn and generalize from
the fMRI data across different subjects.

Number of Experts. As the number of experts increases,
the computational cost of the model also rises. We conduct
experiments by increasing the number of experts in all three
variants and training these models for the same duration to
determine the best-performing model. As depicted in Fig-
ure 4, we discontinue the use of £ > 16 for Dense MoE
(Eq. 1) due to memory constraints exceeding the computa-
tional limits of our hardware. Sparse MoE does not yield
performance gains with the increased number of experts.
On the other hand, Omni MoE achieves its peak perfor-
mance when E = 24. However, increasing E above 24 pro-
vides marginal or even negative gain. This may be because
too many experts would find some insignificant patterns that
are trivial or harmful to decision-making. Therefore, we use
E =24 in all other experiments.

. . . Visual
Subject 5 Subject 2 Subject 1 Stimulus

Subject 7

Figure 6. Reconstruction results of Psychometry for different sub-
jects with the same visual stimuli. See related analysis in §4.3.

Inter-Subject Commonality and Individual Specificity.
Figure 6 reveals the semantic coherence and visual discrep-
ancies among the reconstruction results of different sub-
jects when exposed to the same visual stimuli. This con-
sistency underscores the proficiency of Psychometry in cap-
turing shared patterns across subjects, while its use of a sin-
gle model to generate subject-specific outcomes further val-
idates its effectiveness in fMRI-based image reconstruction.
However, the inconsistencies in the results accentuate the
individual specificity of each subject’s fMRI data.

5. Conclusion and Discussion

In this paper, we introduce Psychometry, an omnifit model
for fMRI representation learning which marks a signifi-
cant departure from previous separate training approaches.
By leveraging the powerful concept of MoE in an effi-
cient Omni MoE and introducing Ecphory, a retrieval-
enhanced inference strategy, Psychometry can efficiently
and effectively capture inter-subject commonality and indi-
vidual specificity across subjects, resulting in high-quality
and realistic image reconstructions from fMRI data. Mov-
ing forward, the development of Psychometry presents new
challenges, particularly in the area of fMRI data privacy
protection when amalgamating fMRI data from various sub-
jects for training. Given the rapid advancements in related
techniques, we anticipate a surge of innovation towards ad-
dressing this promising direction in the field of image re-
construction from human brain activity.
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